/rust/registry/src/index.crates.io-6f17d22bba15001f/tokio-1.47.1/src/runtime/runtime.rs
Line | Count | Source (jump to first uncovered line) |
1 | | use super::BOX_FUTURE_THRESHOLD; |
2 | | use crate::runtime::blocking::BlockingPool; |
3 | | use crate::runtime::scheduler::CurrentThread; |
4 | | use crate::runtime::{context, EnterGuard, Handle}; |
5 | | use crate::task::JoinHandle; |
6 | | use crate::util::trace::SpawnMeta; |
7 | | |
8 | | use std::future::Future; |
9 | | use std::mem; |
10 | | use std::time::Duration; |
11 | | |
12 | | cfg_rt_multi_thread! { |
13 | | use crate::runtime::Builder; |
14 | | use crate::runtime::scheduler::MultiThread; |
15 | | } |
16 | | |
17 | | /// The Tokio runtime. |
18 | | /// |
19 | | /// The runtime provides an I/O driver, task scheduler, [timer], and |
20 | | /// blocking pool, necessary for running asynchronous tasks. |
21 | | /// |
22 | | /// Instances of `Runtime` can be created using [`new`], or [`Builder`]. |
23 | | /// However, most users will use the [`#[tokio::main]`][main] annotation on |
24 | | /// their entry point instead. |
25 | | /// |
26 | | /// See [module level][mod] documentation for more details. |
27 | | /// |
28 | | /// # Shutdown |
29 | | /// |
30 | | /// Shutting down the runtime is done by dropping the value, or calling |
31 | | /// [`shutdown_background`] or [`shutdown_timeout`]. |
32 | | /// |
33 | | /// Tasks spawned through [`Runtime::spawn`] keep running until they yield. |
34 | | /// Then they are dropped. They are not *guaranteed* to run to completion, but |
35 | | /// *might* do so if they do not yield until completion. |
36 | | /// |
37 | | /// Blocking functions spawned through [`Runtime::spawn_blocking`] keep running |
38 | | /// until they return. |
39 | | /// |
40 | | /// The thread initiating the shutdown blocks until all spawned work has been |
41 | | /// stopped. This can take an indefinite amount of time. The `Drop` |
42 | | /// implementation waits forever for this. |
43 | | /// |
44 | | /// The [`shutdown_background`] and [`shutdown_timeout`] methods can be used if |
45 | | /// waiting forever is undesired. When the timeout is reached, spawned work that |
46 | | /// did not stop in time and threads running it are leaked. The work continues |
47 | | /// to run until one of the stopping conditions is fulfilled, but the thread |
48 | | /// initiating the shutdown is unblocked. |
49 | | /// |
50 | | /// Once the runtime has been dropped, any outstanding I/O resources bound to |
51 | | /// it will no longer function. Calling any method on them will result in an |
52 | | /// error. |
53 | | /// |
54 | | /// # Sharing |
55 | | /// |
56 | | /// There are several ways to establish shared access to a Tokio runtime: |
57 | | /// |
58 | | /// * Using an <code>[Arc]\<Runtime></code>. |
59 | | /// * Using a [`Handle`]. |
60 | | /// * Entering the runtime context. |
61 | | /// |
62 | | /// Using an <code>[Arc]\<Runtime></code> or [`Handle`] allows you to do various |
63 | | /// things with the runtime such as spawning new tasks or entering the runtime |
64 | | /// context. Both types can be cloned to create a new handle that allows access |
65 | | /// to the same runtime. By passing clones into different tasks or threads, you |
66 | | /// will be able to access the runtime from those tasks or threads. |
67 | | /// |
68 | | /// The difference between <code>[Arc]\<Runtime></code> and [`Handle`] is that |
69 | | /// an <code>[Arc]\<Runtime></code> will prevent the runtime from shutting down, |
70 | | /// whereas a [`Handle`] does not prevent that. This is because shutdown of the |
71 | | /// runtime happens when the destructor of the `Runtime` object runs. |
72 | | /// |
73 | | /// Calls to [`shutdown_background`] and [`shutdown_timeout`] require exclusive |
74 | | /// ownership of the `Runtime` type. When using an <code>[Arc]\<Runtime></code>, |
75 | | /// this can be achieved via [`Arc::try_unwrap`] when only one strong count |
76 | | /// reference is left over. |
77 | | /// |
78 | | /// The runtime context is entered using the [`Runtime::enter`] or |
79 | | /// [`Handle::enter`] methods, which use a thread-local variable to store the |
80 | | /// current runtime. Whenever you are inside the runtime context, methods such |
81 | | /// as [`tokio::spawn`] will use the runtime whose context you are inside. |
82 | | /// |
83 | | /// [timer]: crate::time |
84 | | /// [mod]: index.html |
85 | | /// [`new`]: method@Self::new |
86 | | /// [`Builder`]: struct@Builder |
87 | | /// [`Handle`]: struct@Handle |
88 | | /// [main]: macro@crate::main |
89 | | /// [`tokio::spawn`]: crate::spawn |
90 | | /// [`Arc::try_unwrap`]: std::sync::Arc::try_unwrap |
91 | | /// [Arc]: std::sync::Arc |
92 | | /// [`shutdown_background`]: method@Runtime::shutdown_background |
93 | | /// [`shutdown_timeout`]: method@Runtime::shutdown_timeout |
94 | | #[derive(Debug)] |
95 | | pub struct Runtime { |
96 | | /// Task scheduler |
97 | | scheduler: Scheduler, |
98 | | |
99 | | /// Handle to runtime, also contains driver handles |
100 | | handle: Handle, |
101 | | |
102 | | /// Blocking pool handle, used to signal shutdown |
103 | | blocking_pool: BlockingPool, |
104 | | } |
105 | | |
106 | | /// The flavor of a `Runtime`. |
107 | | /// |
108 | | /// This is the return type for [`Handle::runtime_flavor`](crate::runtime::Handle::runtime_flavor()). |
109 | | #[derive(Debug, PartialEq, Eq)] |
110 | | #[non_exhaustive] |
111 | | pub enum RuntimeFlavor { |
112 | | /// The flavor that executes all tasks on the current thread. |
113 | | CurrentThread, |
114 | | /// The flavor that executes tasks across multiple threads. |
115 | | MultiThread, |
116 | | } |
117 | | |
118 | | /// The runtime scheduler is either a multi-thread or a current-thread executor. |
119 | | #[derive(Debug)] |
120 | | pub(super) enum Scheduler { |
121 | | /// Execute all tasks on the current-thread. |
122 | | CurrentThread(CurrentThread), |
123 | | |
124 | | /// Execute tasks across multiple threads. |
125 | | #[cfg(feature = "rt-multi-thread")] |
126 | | MultiThread(MultiThread), |
127 | | } |
128 | | |
129 | | impl Runtime { |
130 | 17.3k | pub(super) fn from_parts( |
131 | 17.3k | scheduler: Scheduler, |
132 | 17.3k | handle: Handle, |
133 | 17.3k | blocking_pool: BlockingPool, |
134 | 17.3k | ) -> Runtime { |
135 | 17.3k | Runtime { |
136 | 17.3k | scheduler, |
137 | 17.3k | handle, |
138 | 17.3k | blocking_pool, |
139 | 17.3k | } |
140 | 17.3k | } |
141 | | |
142 | | /// Creates a new runtime instance with default configuration values. |
143 | | /// |
144 | | /// This results in the multi threaded scheduler, I/O driver, and time driver being |
145 | | /// initialized. |
146 | | /// |
147 | | /// Most applications will not need to call this function directly. Instead, |
148 | | /// they will use the [`#[tokio::main]` attribute][main]. When a more complex |
149 | | /// configuration is necessary, the [runtime builder] may be used. |
150 | | /// |
151 | | /// See [module level][mod] documentation for more details. |
152 | | /// |
153 | | /// # Examples |
154 | | /// |
155 | | /// Creating a new `Runtime` with default configuration values. |
156 | | /// |
157 | | /// ``` |
158 | | /// use tokio::runtime::Runtime; |
159 | | /// |
160 | | /// let rt = Runtime::new() |
161 | | /// .unwrap(); |
162 | | /// |
163 | | /// // Use the runtime... |
164 | | /// ``` |
165 | | /// |
166 | | /// [mod]: index.html |
167 | | /// [main]: ../attr.main.html |
168 | | /// [threaded scheduler]: index.html#threaded-scheduler |
169 | | /// [runtime builder]: crate::runtime::Builder |
170 | | #[cfg(feature = "rt-multi-thread")] |
171 | | #[cfg_attr(docsrs, doc(cfg(feature = "rt-multi-thread")))] |
172 | 17.3k | pub fn new() -> std::io::Result<Runtime> { |
173 | 17.3k | Builder::new_multi_thread().enable_all().build() |
174 | 17.3k | } |
175 | | |
176 | | /// Returns a handle to the runtime's spawner. |
177 | | /// |
178 | | /// The returned handle can be used to spawn tasks that run on this runtime, and can |
179 | | /// be cloned to allow moving the `Handle` to other threads. |
180 | | /// |
181 | | /// Calling [`Handle::block_on`] on a handle to a `current_thread` runtime is error-prone. |
182 | | /// Refer to the documentation of [`Handle::block_on`] for more. |
183 | | /// |
184 | | /// # Examples |
185 | | /// |
186 | | /// ``` |
187 | | /// use tokio::runtime::Runtime; |
188 | | /// |
189 | | /// let rt = Runtime::new() |
190 | | /// .unwrap(); |
191 | | /// |
192 | | /// let handle = rt.handle(); |
193 | | /// |
194 | | /// // Use the handle... |
195 | | /// ``` |
196 | 0 | pub fn handle(&self) -> &Handle { |
197 | 0 | &self.handle |
198 | 0 | } |
199 | | |
200 | | /// Spawns a future onto the Tokio runtime. |
201 | | /// |
202 | | /// This spawns the given future onto the runtime's executor, usually a |
203 | | /// thread pool. The thread pool is then responsible for polling the future |
204 | | /// until it completes. |
205 | | /// |
206 | | /// The provided future will start running in the background immediately |
207 | | /// when `spawn` is called, even if you don't await the returned |
208 | | /// `JoinHandle`. |
209 | | /// |
210 | | /// See [module level][mod] documentation for more details. |
211 | | /// |
212 | | /// [mod]: index.html |
213 | | /// |
214 | | /// # Examples |
215 | | /// |
216 | | /// ``` |
217 | | /// use tokio::runtime::Runtime; |
218 | | /// |
219 | | /// # fn dox() { |
220 | | /// // Create the runtime |
221 | | /// let rt = Runtime::new().unwrap(); |
222 | | /// |
223 | | /// // Spawn a future onto the runtime |
224 | | /// rt.spawn(async { |
225 | | /// println!("now running on a worker thread"); |
226 | | /// }); |
227 | | /// # } |
228 | | /// ``` |
229 | | #[track_caller] |
230 | 0 | pub fn spawn<F>(&self, future: F) -> JoinHandle<F::Output> |
231 | 0 | where |
232 | 0 | F: Future + Send + 'static, |
233 | 0 | F::Output: Send + 'static, |
234 | 0 | { |
235 | 0 | let fut_size = mem::size_of::<F>(); |
236 | 0 | if fut_size > BOX_FUTURE_THRESHOLD { |
237 | 0 | self.handle |
238 | 0 | .spawn_named(Box::pin(future), SpawnMeta::new_unnamed(fut_size)) |
239 | | } else { |
240 | 0 | self.handle |
241 | 0 | .spawn_named(future, SpawnMeta::new_unnamed(fut_size)) |
242 | | } |
243 | 0 | } |
244 | | |
245 | | /// Runs the provided function on an executor dedicated to blocking operations. |
246 | | /// |
247 | | /// # Examples |
248 | | /// |
249 | | /// ``` |
250 | | /// use tokio::runtime::Runtime; |
251 | | /// |
252 | | /// # fn dox() { |
253 | | /// // Create the runtime |
254 | | /// let rt = Runtime::new().unwrap(); |
255 | | /// |
256 | | /// // Spawn a blocking function onto the runtime |
257 | | /// rt.spawn_blocking(|| { |
258 | | /// println!("now running on a worker thread"); |
259 | | /// }); |
260 | | /// # } |
261 | | /// ``` |
262 | | #[track_caller] |
263 | 0 | pub fn spawn_blocking<F, R>(&self, func: F) -> JoinHandle<R> |
264 | 0 | where |
265 | 0 | F: FnOnce() -> R + Send + 'static, |
266 | 0 | R: Send + 'static, |
267 | 0 | { |
268 | 0 | self.handle.spawn_blocking(func) |
269 | 0 | } |
270 | | |
271 | | /// Runs a future to completion on the Tokio runtime. This is the |
272 | | /// runtime's entry point. |
273 | | /// |
274 | | /// This runs the given future on the current thread, blocking until it is |
275 | | /// complete, and yielding its resolved result. Any tasks or timers |
276 | | /// which the future spawns internally will be executed on the runtime. |
277 | | /// |
278 | | /// # Non-worker future |
279 | | /// |
280 | | /// Note that the future required by this function does not run as a |
281 | | /// worker. The expectation is that other tasks are spawned by the future here. |
282 | | /// Awaiting on other futures from the future provided here will not |
283 | | /// perform as fast as those spawned as workers. |
284 | | /// |
285 | | /// # Multi thread scheduler |
286 | | /// |
287 | | /// When the multi thread scheduler is used this will allow futures |
288 | | /// to run within the io driver and timer context of the overall runtime. |
289 | | /// |
290 | | /// Any spawned tasks will continue running after `block_on` returns. |
291 | | /// |
292 | | /// # Current thread scheduler |
293 | | /// |
294 | | /// When the current thread scheduler is enabled `block_on` |
295 | | /// can be called concurrently from multiple threads. The first call |
296 | | /// will take ownership of the io and timer drivers. This means |
297 | | /// other threads which do not own the drivers will hook into that one. |
298 | | /// When the first `block_on` completes, other threads will be able to |
299 | | /// "steal" the driver to allow continued execution of their futures. |
300 | | /// |
301 | | /// Any spawned tasks will be suspended after `block_on` returns. Calling |
302 | | /// `block_on` again will resume previously spawned tasks. |
303 | | /// |
304 | | /// # Panics |
305 | | /// |
306 | | /// This function panics if the provided future panics, or if called within an |
307 | | /// asynchronous execution context. |
308 | | /// |
309 | | /// # Examples |
310 | | /// |
311 | | /// ```no_run |
312 | | /// use tokio::runtime::Runtime; |
313 | | /// |
314 | | /// // Create the runtime |
315 | | /// let rt = Runtime::new().unwrap(); |
316 | | /// |
317 | | /// // Execute the future, blocking the current thread until completion |
318 | | /// rt.block_on(async { |
319 | | /// println!("hello"); |
320 | | /// }); |
321 | | /// ``` |
322 | | /// |
323 | | /// [handle]: fn@Handle::block_on |
324 | | #[track_caller] |
325 | 17.3k | pub fn block_on<F: Future>(&self, future: F) -> F::Output { |
326 | 17.3k | let fut_size = mem::size_of::<F>(); |
327 | 17.3k | if fut_size > BOX_FUTURE_THRESHOLD { |
328 | 0 | self.block_on_inner(Box::pin(future), SpawnMeta::new_unnamed(fut_size)) |
329 | | } else { |
330 | 17.3k | self.block_on_inner(future, SpawnMeta::new_unnamed(fut_size)) |
331 | | } |
332 | 17.3k | } Unexecuted instantiation: <tokio::runtime::runtime::Runtime>::block_on::<_> <tokio::runtime::runtime::Runtime>::block_on::<fuzz_client::fuzz_entry::{closure#0}> Line | Count | Source | 325 | 4.86k | pub fn block_on<F: Future>(&self, future: F) -> F::Output { | 326 | 4.86k | let fut_size = mem::size_of::<F>(); | 327 | 4.86k | if fut_size > BOX_FUTURE_THRESHOLD { | 328 | 0 | self.block_on_inner(Box::pin(future), SpawnMeta::new_unnamed(fut_size)) | 329 | | } else { | 330 | 4.86k | self.block_on_inner(future, SpawnMeta::new_unnamed(fut_size)) | 331 | | } | 332 | 4.86k | } |
<tokio::runtime::runtime::Runtime>::block_on::<fuzz_e2e::run::{closure#0}> Line | Count | Source | 325 | 12.5k | pub fn block_on<F: Future>(&self, future: F) -> F::Output { | 326 | 12.5k | let fut_size = mem::size_of::<F>(); | 327 | 12.5k | if fut_size > BOX_FUTURE_THRESHOLD { | 328 | 0 | self.block_on_inner(Box::pin(future), SpawnMeta::new_unnamed(fut_size)) | 329 | | } else { | 330 | 12.5k | self.block_on_inner(future, SpawnMeta::new_unnamed(fut_size)) | 331 | | } | 332 | 12.5k | } |
|
333 | | |
334 | | #[track_caller] |
335 | 17.3k | fn block_on_inner<F: Future>(&self, future: F, _meta: SpawnMeta<'_>) -> F::Output { |
336 | 17.3k | #[cfg(all( |
337 | 17.3k | tokio_unstable, |
338 | 17.3k | tokio_taskdump, |
339 | 17.3k | feature = "rt", |
340 | 17.3k | target_os = "linux", |
341 | 17.3k | any(target_arch = "aarch64", target_arch = "x86", target_arch = "x86_64") |
342 | 17.3k | ))] |
343 | 17.3k | let future = super::task::trace::Trace::root(future); |
344 | 17.3k | |
345 | 17.3k | #[cfg(all(tokio_unstable, feature = "tracing"))] |
346 | 17.3k | let future = crate::util::trace::task( |
347 | 17.3k | future, |
348 | 17.3k | "block_on", |
349 | 17.3k | _meta, |
350 | 17.3k | crate::runtime::task::Id::next().as_u64(), |
351 | 17.3k | ); |
352 | 17.3k | |
353 | 17.3k | let _enter = self.enter(); |
354 | 17.3k | |
355 | 17.3k | match &self.scheduler { |
356 | 0 | Scheduler::CurrentThread(exec) => exec.block_on(&self.handle.inner, future), |
357 | | #[cfg(feature = "rt-multi-thread")] |
358 | 17.3k | Scheduler::MultiThread(exec) => exec.block_on(&self.handle.inner, future), |
359 | | } |
360 | 17.3k | } Unexecuted instantiation: <tokio::runtime::runtime::Runtime>::block_on_inner::<_> Unexecuted instantiation: <tokio::runtime::runtime::Runtime>::block_on_inner::<core::pin::Pin<alloc::boxed::Box<fuzz_client::fuzz_entry::{closure#0}>>> <tokio::runtime::runtime::Runtime>::block_on_inner::<fuzz_client::fuzz_entry::{closure#0}> Line | Count | Source | 335 | 4.86k | fn block_on_inner<F: Future>(&self, future: F, _meta: SpawnMeta<'_>) -> F::Output { | 336 | 4.86k | #[cfg(all( | 337 | 4.86k | tokio_unstable, | 338 | 4.86k | tokio_taskdump, | 339 | 4.86k | feature = "rt", | 340 | 4.86k | target_os = "linux", | 341 | 4.86k | any(target_arch = "aarch64", target_arch = "x86", target_arch = "x86_64") | 342 | 4.86k | ))] | 343 | 4.86k | let future = super::task::trace::Trace::root(future); | 344 | 4.86k | | 345 | 4.86k | #[cfg(all(tokio_unstable, feature = "tracing"))] | 346 | 4.86k | let future = crate::util::trace::task( | 347 | 4.86k | future, | 348 | 4.86k | "block_on", | 349 | 4.86k | _meta, | 350 | 4.86k | crate::runtime::task::Id::next().as_u64(), | 351 | 4.86k | ); | 352 | 4.86k | | 353 | 4.86k | let _enter = self.enter(); | 354 | 4.86k | | 355 | 4.86k | match &self.scheduler { | 356 | 0 | Scheduler::CurrentThread(exec) => exec.block_on(&self.handle.inner, future), | 357 | | #[cfg(feature = "rt-multi-thread")] | 358 | 4.86k | Scheduler::MultiThread(exec) => exec.block_on(&self.handle.inner, future), | 359 | | } | 360 | 4.86k | } |
Unexecuted instantiation: <tokio::runtime::runtime::Runtime>::block_on_inner::<core::pin::Pin<alloc::boxed::Box<fuzz_e2e::run::{closure#0}>>> <tokio::runtime::runtime::Runtime>::block_on_inner::<fuzz_e2e::run::{closure#0}> Line | Count | Source | 335 | 12.5k | fn block_on_inner<F: Future>(&self, future: F, _meta: SpawnMeta<'_>) -> F::Output { | 336 | 12.5k | #[cfg(all( | 337 | 12.5k | tokio_unstable, | 338 | 12.5k | tokio_taskdump, | 339 | 12.5k | feature = "rt", | 340 | 12.5k | target_os = "linux", | 341 | 12.5k | any(target_arch = "aarch64", target_arch = "x86", target_arch = "x86_64") | 342 | 12.5k | ))] | 343 | 12.5k | let future = super::task::trace::Trace::root(future); | 344 | 12.5k | | 345 | 12.5k | #[cfg(all(tokio_unstable, feature = "tracing"))] | 346 | 12.5k | let future = crate::util::trace::task( | 347 | 12.5k | future, | 348 | 12.5k | "block_on", | 349 | 12.5k | _meta, | 350 | 12.5k | crate::runtime::task::Id::next().as_u64(), | 351 | 12.5k | ); | 352 | 12.5k | | 353 | 12.5k | let _enter = self.enter(); | 354 | 12.5k | | 355 | 12.5k | match &self.scheduler { | 356 | 0 | Scheduler::CurrentThread(exec) => exec.block_on(&self.handle.inner, future), | 357 | | #[cfg(feature = "rt-multi-thread")] | 358 | 12.5k | Scheduler::MultiThread(exec) => exec.block_on(&self.handle.inner, future), | 359 | | } | 360 | 12.5k | } |
|
361 | | |
362 | | /// Enters the runtime context. |
363 | | /// |
364 | | /// This allows you to construct types that must have an executor |
365 | | /// available on creation such as [`Sleep`] or [`TcpStream`]. It will |
366 | | /// also allow you to call methods such as [`tokio::spawn`]. |
367 | | /// |
368 | | /// [`Sleep`]: struct@crate::time::Sleep |
369 | | /// [`TcpStream`]: struct@crate::net::TcpStream |
370 | | /// [`tokio::spawn`]: fn@crate::spawn |
371 | | /// |
372 | | /// # Example |
373 | | /// |
374 | | /// ``` |
375 | | /// use tokio::runtime::Runtime; |
376 | | /// use tokio::task::JoinHandle; |
377 | | /// |
378 | | /// fn function_that_spawns(msg: String) -> JoinHandle<()> { |
379 | | /// // Had we not used `rt.enter` below, this would panic. |
380 | | /// tokio::spawn(async move { |
381 | | /// println!("{}", msg); |
382 | | /// }) |
383 | | /// } |
384 | | /// |
385 | | /// fn main() { |
386 | | /// let rt = Runtime::new().unwrap(); |
387 | | /// |
388 | | /// let s = "Hello World!".to_string(); |
389 | | /// |
390 | | /// // By entering the context, we tie `tokio::spawn` to this executor. |
391 | | /// let _guard = rt.enter(); |
392 | | /// let handle = function_that_spawns(s); |
393 | | /// |
394 | | /// // Wait for the task before we end the test. |
395 | | /// rt.block_on(handle).unwrap(); |
396 | | /// } |
397 | | /// ``` |
398 | 17.3k | pub fn enter(&self) -> EnterGuard<'_> { |
399 | 17.3k | self.handle.enter() |
400 | 17.3k | } |
401 | | |
402 | | /// Shuts down the runtime, waiting for at most `duration` for all spawned |
403 | | /// work to stop. |
404 | | /// |
405 | | /// See the [struct level documentation](Runtime#shutdown) for more details. |
406 | | /// |
407 | | /// # Examples |
408 | | /// |
409 | | /// ``` |
410 | | /// use tokio::runtime::Runtime; |
411 | | /// use tokio::task; |
412 | | /// |
413 | | /// use std::thread; |
414 | | /// use std::time::Duration; |
415 | | /// |
416 | | /// fn main() { |
417 | | /// # if cfg!(miri) { return } // Miri reports error when main thread terminated without waiting all remaining threads. |
418 | | /// let runtime = Runtime::new().unwrap(); |
419 | | /// |
420 | | /// runtime.block_on(async move { |
421 | | /// task::spawn_blocking(move || { |
422 | | /// thread::sleep(Duration::from_secs(10_000)); |
423 | | /// }); |
424 | | /// }); |
425 | | /// |
426 | | /// runtime.shutdown_timeout(Duration::from_millis(100)); |
427 | | /// } |
428 | | /// ``` |
429 | 0 | pub fn shutdown_timeout(mut self, duration: Duration) { |
430 | 0 | // Wakeup and shutdown all the worker threads |
431 | 0 | self.handle.inner.shutdown(); |
432 | 0 | self.blocking_pool.shutdown(Some(duration)); |
433 | 0 | } |
434 | | |
435 | | /// Shuts down the runtime, without waiting for any spawned work to stop. |
436 | | /// |
437 | | /// This can be useful if you want to drop a runtime from within another runtime. |
438 | | /// Normally, dropping a runtime will block indefinitely for spawned blocking tasks |
439 | | /// to complete, which would normally not be permitted within an asynchronous context. |
440 | | /// By calling `shutdown_background()`, you can drop the runtime from such a context. |
441 | | /// |
442 | | /// Note however, that because we do not wait for any blocking tasks to complete, this |
443 | | /// may result in a resource leak (in that any blocking tasks are still running until they |
444 | | /// return. |
445 | | /// |
446 | | /// See the [struct level documentation](Runtime#shutdown) for more details. |
447 | | /// |
448 | | /// This function is equivalent to calling `shutdown_timeout(Duration::from_nanos(0))`. |
449 | | /// |
450 | | /// ``` |
451 | | /// use tokio::runtime::Runtime; |
452 | | /// |
453 | | /// fn main() { |
454 | | /// let runtime = Runtime::new().unwrap(); |
455 | | /// |
456 | | /// runtime.block_on(async move { |
457 | | /// let inner_runtime = Runtime::new().unwrap(); |
458 | | /// // ... |
459 | | /// inner_runtime.shutdown_background(); |
460 | | /// }); |
461 | | /// } |
462 | | /// ``` |
463 | 0 | pub fn shutdown_background(self) { |
464 | 0 | self.shutdown_timeout(Duration::from_nanos(0)); |
465 | 0 | } |
466 | | |
467 | | /// Returns a view that lets you get information about how the runtime |
468 | | /// is performing. |
469 | 0 | pub fn metrics(&self) -> crate::runtime::RuntimeMetrics { |
470 | 0 | self.handle.metrics() |
471 | 0 | } |
472 | | } |
473 | | |
474 | | impl Drop for Runtime { |
475 | 17.3k | fn drop(&mut self) { |
476 | 17.3k | match &mut self.scheduler { |
477 | 0 | Scheduler::CurrentThread(current_thread) => { |
478 | 0 | // This ensures that tasks spawned on the current-thread |
479 | 0 | // runtime are dropped inside the runtime's context. |
480 | 0 | let _guard = context::try_set_current(&self.handle.inner); |
481 | 0 | current_thread.shutdown(&self.handle.inner); |
482 | 0 | } |
483 | | #[cfg(feature = "rt-multi-thread")] |
484 | 17.3k | Scheduler::MultiThread(multi_thread) => { |
485 | 17.3k | // The threaded scheduler drops its tasks on its worker threads, which is |
486 | 17.3k | // already in the runtime's context. |
487 | 17.3k | multi_thread.shutdown(&self.handle.inner); |
488 | 17.3k | } |
489 | | } |
490 | 17.3k | } |
491 | | } |
492 | | |
493 | | impl std::panic::UnwindSafe for Runtime {} |
494 | | |
495 | | impl std::panic::RefUnwindSafe for Runtime {} |