/src/icu/icu4c/source/i18n/regexcmp.cpp
Line | Count | Source (jump to first uncovered line) |
1 | | // © 2016 and later: Unicode, Inc. and others. |
2 | | // License & terms of use: http://www.unicode.org/copyright.html |
3 | | // |
4 | | // file: regexcmp.cpp |
5 | | // |
6 | | // Copyright (C) 2002-2016 International Business Machines Corporation and others. |
7 | | // All Rights Reserved. |
8 | | // |
9 | | // This file contains the ICU regular expression compiler, which is responsible |
10 | | // for processing a regular expression pattern into the compiled form that |
11 | | // is used by the match finding engine. |
12 | | // |
13 | | |
14 | | #include "unicode/utypes.h" |
15 | | |
16 | | #if !UCONFIG_NO_REGULAR_EXPRESSIONS |
17 | | |
18 | | #include "unicode/ustring.h" |
19 | | #include "unicode/unistr.h" |
20 | | #include "unicode/uniset.h" |
21 | | #include "unicode/uchar.h" |
22 | | #include "unicode/uchriter.h" |
23 | | #include "unicode/parsepos.h" |
24 | | #include "unicode/parseerr.h" |
25 | | #include "unicode/regex.h" |
26 | | #include "unicode/utf.h" |
27 | | #include "unicode/utf16.h" |
28 | | #include "patternprops.h" |
29 | | #include "putilimp.h" |
30 | | #include "cmemory.h" |
31 | | #include "cstr.h" |
32 | | #include "cstring.h" |
33 | | #include "uvectr32.h" |
34 | | #include "uvectr64.h" |
35 | | #include "uassert.h" |
36 | | #include "uinvchar.h" |
37 | | |
38 | | #include "regeximp.h" |
39 | | #include "regexcst.h" // Contains state table for the regex pattern parser. |
40 | | // generated by a Perl script. |
41 | | #include "regexcmp.h" |
42 | | #include "regexst.h" |
43 | | #include "regextxt.h" |
44 | | |
45 | | |
46 | | |
47 | | U_NAMESPACE_BEGIN |
48 | | |
49 | | |
50 | | //------------------------------------------------------------------------------ |
51 | | // |
52 | | // Constructor. |
53 | | // |
54 | | //------------------------------------------------------------------------------ |
55 | | RegexCompile::RegexCompile(RegexPattern *rxp, UErrorCode &status) : |
56 | | fParenStack(status), fSetStack(uprv_deleteUObject, nullptr, status), fSetOpStack(status) |
57 | 11.5k | { |
58 | | // Lazy init of all shared global sets (needed for init()'s empty text) |
59 | 11.5k | RegexStaticSets::initGlobals(&status); |
60 | | |
61 | 11.5k | fStatus = &status; |
62 | | |
63 | 11.5k | fRXPat = rxp; |
64 | 11.5k | fScanIndex = 0; |
65 | 11.5k | fLastChar = -1; |
66 | 11.5k | fPeekChar = -1; |
67 | 11.5k | fLineNum = 1; |
68 | 11.5k | fCharNum = 0; |
69 | 11.5k | fQuoteMode = false; |
70 | 11.5k | fInBackslashQuote = false; |
71 | 11.5k | fModeFlags = fRXPat->fFlags | 0x80000000; |
72 | 11.5k | fEOLComments = true; |
73 | | |
74 | 11.5k | fMatchOpenParen = -1; |
75 | 11.5k | fMatchCloseParen = -1; |
76 | 11.5k | fCaptureName = nullptr; |
77 | 11.5k | fLastSetLiteral = U_SENTINEL; |
78 | | |
79 | 11.5k | if (U_SUCCESS(status) && U_FAILURE(rxp->fDeferredStatus)) { |
80 | 0 | status = rxp->fDeferredStatus; |
81 | 0 | } |
82 | 11.5k | } |
83 | | |
84 | | static const char16_t chAmp = 0x26; // '&' |
85 | | static const char16_t chDash = 0x2d; // '-' |
86 | | |
87 | | |
88 | | //------------------------------------------------------------------------------ |
89 | | // |
90 | | // Destructor |
91 | | // |
92 | | //------------------------------------------------------------------------------ |
93 | 11.5k | RegexCompile::~RegexCompile() { |
94 | 11.5k | delete fCaptureName; // Normally will be nullptr, but can exist if pattern |
95 | | // compilation stops with a syntax error. |
96 | 11.5k | } |
97 | | |
98 | 580 | static inline void addCategory(UnicodeSet *set, int32_t value, UErrorCode& ec) { |
99 | 580 | set->addAll(UnicodeSet().applyIntPropertyValue(UCHAR_GENERAL_CATEGORY_MASK, value, ec)); |
100 | 580 | } |
101 | | |
102 | | //------------------------------------------------------------------------------ |
103 | | // |
104 | | // Compile regex pattern. The state machine for rexexp pattern parsing is here. |
105 | | // The state tables are hand-written in the file regexcst.txt, |
106 | | // and converted to the form used here by a perl |
107 | | // script regexcst.pl |
108 | | // |
109 | | //------------------------------------------------------------------------------ |
110 | | void RegexCompile::compile( |
111 | | const UnicodeString &pat, // Source pat to be compiled. |
112 | | UParseError &pp, // Error position info |
113 | | UErrorCode &e) // Error Code |
114 | 0 | { |
115 | 0 | fRXPat->fPatternString = new UnicodeString(pat); |
116 | 0 | UText patternText = UTEXT_INITIALIZER; |
117 | 0 | utext_openConstUnicodeString(&patternText, fRXPat->fPatternString, &e); |
118 | |
|
119 | 0 | if (U_SUCCESS(e)) { |
120 | 0 | compile(&patternText, pp, e); |
121 | 0 | utext_close(&patternText); |
122 | 0 | } |
123 | 0 | } |
124 | | |
125 | | // |
126 | | // compile, UText mode |
127 | | // All the work is actually done here. |
128 | | // |
129 | | void RegexCompile::compile( |
130 | | UText *pat, // Source pat to be compiled. |
131 | | UParseError &pp, // Error position info |
132 | | UErrorCode &e) // Error Code |
133 | 11.5k | { |
134 | 11.5k | fStatus = &e; |
135 | 11.5k | fParseErr = &pp; |
136 | 11.5k | fStackPtr = 0; |
137 | 11.5k | fStack[fStackPtr] = 0; |
138 | | |
139 | 11.5k | if (U_FAILURE(*fStatus)) { |
140 | 0 | return; |
141 | 0 | } |
142 | | |
143 | | // There should be no pattern stuff in the RegexPattern object. They can not be reused. |
144 | 11.5k | U_ASSERT(fRXPat->fPattern == nullptr || utext_nativeLength(fRXPat->fPattern) == 0); |
145 | | |
146 | | // Prepare the RegexPattern object to receive the compiled pattern. |
147 | 11.5k | fRXPat->fPattern = utext_clone(fRXPat->fPattern, pat, false, true, fStatus); |
148 | 11.5k | if (U_FAILURE(*fStatus)) { |
149 | 0 | return; |
150 | 0 | } |
151 | | |
152 | | // Initialize the pattern scanning state machine |
153 | 11.5k | fPatternLength = utext_nativeLength(pat); |
154 | 11.5k | uint16_t state = 1; |
155 | 11.5k | const RegexTableEl *tableEl; |
156 | | |
157 | | // UREGEX_LITERAL force entire pattern to be treated as a literal string. |
158 | 11.5k | if (fModeFlags & UREGEX_LITERAL) { |
159 | 0 | fQuoteMode = true; |
160 | 0 | } |
161 | | |
162 | 11.5k | nextChar(fC); // Fetch the first char from the pattern string. |
163 | | |
164 | | // |
165 | | // Main loop for the regex pattern parsing state machine. |
166 | | // Runs once per state transition. |
167 | | // Each time through optionally performs, depending on the state table, |
168 | | // - an advance to the the next pattern char |
169 | | // - an action to be performed. |
170 | | // - pushing or popping a state to/from the local state return stack. |
171 | | // file regexcst.txt is the source for the state table. The logic behind |
172 | | // recongizing the pattern syntax is there, not here. |
173 | | // |
174 | 100M | for (;;) { |
175 | | // Bail out if anything has gone wrong. |
176 | | // Regex pattern parsing stops on the first error encountered. |
177 | 100M | if (U_FAILURE(*fStatus)) { |
178 | 211 | break; |
179 | 211 | } |
180 | | |
181 | 100M | U_ASSERT(state != 0); |
182 | | |
183 | | // Find the state table element that matches the input char from the pattern, or the |
184 | | // class of the input character. Start with the first table row for this |
185 | | // state, then linearly scan forward until we find a row that matches the |
186 | | // character. The last row for each state always matches all characters, so |
187 | | // the search will stop there, if not before. |
188 | | // |
189 | 100M | tableEl = &gRuleParseStateTable[state]; |
190 | 100M | REGEX_SCAN_DEBUG_PRINTF(("char, line, col = (\'%c\', %d, %d) state=%s ", |
191 | 100M | fC.fChar, fLineNum, fCharNum, RegexStateNames[state])); |
192 | | |
193 | 527M | for (;;) { // loop through table rows belonging to this state, looking for one |
194 | | // that matches the current input char. |
195 | 527M | REGEX_SCAN_DEBUG_PRINTF((".")); |
196 | 527M | if (tableEl->fCharClass < 127 && fC.fQuoted == false && tableEl->fCharClass == fC.fChar) { |
197 | | // Table row specified an individual character, not a set, and |
198 | | // the input character is not quoted, and |
199 | | // the input character matched it. |
200 | 29.2M | break; |
201 | 29.2M | } |
202 | 497M | if (tableEl->fCharClass == 255) { |
203 | | // Table row specified default, match anything character class. |
204 | 51.1M | break; |
205 | 51.1M | } |
206 | 446M | if (tableEl->fCharClass == 254 && fC.fQuoted) { |
207 | | // Table row specified "quoted" and the char was quoted. |
208 | 66.2k | break; |
209 | 66.2k | } |
210 | 446M | if (tableEl->fCharClass == 253 && fC.fChar == (UChar32)-1) { |
211 | | // Table row specified eof and we hit eof on the input. |
212 | 8.35k | break; |
213 | 8.35k | } |
214 | | |
215 | 446M | if (tableEl->fCharClass >= 128 && tableEl->fCharClass < 240 && // Table specs a char class && |
216 | 446M | fC.fQuoted == false && // char is not escaped && |
217 | 446M | fC.fChar != (UChar32)-1) { // char is not EOF |
218 | 47.2M | U_ASSERT(tableEl->fCharClass <= 137); |
219 | 47.2M | if (RegexStaticSets::gStaticSets->fRuleSets[tableEl->fCharClass-128].contains(fC.fChar)) { |
220 | | // Table row specified a character class, or set of characters, |
221 | | // and the current char matches it. |
222 | 20.1M | break; |
223 | 20.1M | } |
224 | 47.2M | } |
225 | | |
226 | | // No match on this row, advance to the next row for this state, |
227 | 426M | tableEl++; |
228 | 426M | } |
229 | 100M | REGEX_SCAN_DEBUG_PRINTF(("\n")); |
230 | | |
231 | | // |
232 | | // We've found the row of the state table that matches the current input |
233 | | // character from the rules string. |
234 | | // Perform any action specified by this row in the state table. |
235 | 100M | if (doParseActions(tableEl->fAction) == false) { |
236 | | // Break out of the state machine loop if the |
237 | | // the action signalled some kind of error, or |
238 | | // the action was to exit, occurs on normal end-of-rules-input. |
239 | 11.3k | break; |
240 | 11.3k | } |
241 | | |
242 | 100M | if (tableEl->fPushState != 0) { |
243 | 1.03M | fStackPtr++; |
244 | 1.03M | if (fStackPtr >= kStackSize) { |
245 | 5 | error(U_REGEX_INTERNAL_ERROR); |
246 | 5 | REGEX_SCAN_DEBUG_PRINTF(("RegexCompile::parse() - state stack overflow.\n")); |
247 | 5 | fStackPtr--; |
248 | 5 | } |
249 | 1.03M | fStack[fStackPtr] = tableEl->fPushState; |
250 | 1.03M | } |
251 | | |
252 | | // |
253 | | // NextChar. This is where characters are actually fetched from the pattern. |
254 | | // Happens under control of the 'n' tag in the state table. |
255 | | // |
256 | 100M | if (tableEl->fNextChar) { |
257 | 57.4M | nextChar(fC); |
258 | 57.4M | } |
259 | | |
260 | | // Get the next state from the table entry, or from the |
261 | | // state stack if the next state was specified as "pop". |
262 | 100M | if (tableEl->fNextState != 255) { |
263 | 99.5M | state = tableEl->fNextState; |
264 | 99.5M | } else { |
265 | 1.01M | state = fStack[fStackPtr]; |
266 | 1.01M | fStackPtr--; |
267 | 1.01M | if (fStackPtr < 0) { |
268 | | // state stack underflow |
269 | | // This will occur if the user pattern has mis-matched parentheses, |
270 | | // with extra close parens. |
271 | | // |
272 | 0 | fStackPtr++; |
273 | 0 | error(U_REGEX_MISMATCHED_PAREN); |
274 | 0 | } |
275 | 1.01M | } |
276 | | |
277 | 100M | } |
278 | | |
279 | 11.5k | if (U_FAILURE(*fStatus)) { |
280 | | // Bail out if the pattern had errors. |
281 | 6.91k | return; |
282 | 6.91k | } |
283 | | |
284 | | // |
285 | | // The pattern has now been read and processed, and the compiled code generated. |
286 | | // |
287 | | |
288 | | // |
289 | | // The pattern's fFrameSize so far has accumulated the requirements for |
290 | | // storage for capture parentheses, counters, etc. that are encountered |
291 | | // in the pattern. Add space for the two variables that are always |
292 | | // present in the saved state: the input string position (int64_t) and |
293 | | // the position in the compiled pattern. |
294 | | // |
295 | 4.64k | allocateStackData(RESTACKFRAME_HDRCOUNT); |
296 | | |
297 | | // |
298 | | // Optimization pass 1: NOPs, back-references, and case-folding |
299 | | // |
300 | 4.64k | stripNOPs(); |
301 | | |
302 | | // |
303 | | // Get bounds for the minimum and maximum length of a string that this |
304 | | // pattern can match. Used to avoid looking for matches in strings that |
305 | | // are too short. |
306 | | // |
307 | 4.64k | fRXPat->fMinMatchLen = minMatchLength(3, fRXPat->fCompiledPat->size()-1); |
308 | | |
309 | | // |
310 | | // Optimization pass 2: match start type |
311 | | // |
312 | 4.64k | matchStartType(); |
313 | | |
314 | | // |
315 | | // Set up fast latin-1 range sets |
316 | | // |
317 | 4.64k | int32_t numSets = fRXPat->fSets->size(); |
318 | 4.64k | fRXPat->fSets8 = new Regex8BitSet[numSets]; |
319 | | // Null pointer check. |
320 | 4.64k | if (fRXPat->fSets8 == nullptr) { |
321 | 0 | e = *fStatus = U_MEMORY_ALLOCATION_ERROR; |
322 | 0 | return; |
323 | 0 | } |
324 | 4.64k | int32_t i; |
325 | 403k | for (i=0; i<numSets; i++) { |
326 | 398k | UnicodeSet *s = (UnicodeSet *)fRXPat->fSets->elementAt(i); |
327 | 398k | fRXPat->fSets8[i].init(s); |
328 | 398k | } |
329 | | |
330 | 4.64k | } |
331 | | |
332 | | |
333 | | |
334 | | |
335 | | |
336 | | //------------------------------------------------------------------------------ |
337 | | // |
338 | | // doParseAction Do some action during regex pattern parsing. |
339 | | // Called by the parse state machine. |
340 | | // |
341 | | // Generation of the match engine PCode happens here, or |
342 | | // in functions called from the parse actions defined here. |
343 | | // |
344 | | // |
345 | | //------------------------------------------------------------------------------ |
346 | | UBool RegexCompile::doParseActions(int32_t action) |
347 | 100M | { |
348 | 100M | UBool returnVal = true; |
349 | | |
350 | 100M | switch ((Regex_PatternParseAction)action) { |
351 | | |
352 | 11.4k | case doPatStart: |
353 | | // Start of pattern compiles to: |
354 | | //0 SAVE 2 Fall back to position of FAIL |
355 | | //1 jmp 3 |
356 | | //2 FAIL Stop if we ever reach here. |
357 | | //3 NOP Dummy, so start of pattern looks the same as |
358 | | // the start of an ( grouping. |
359 | | //4 NOP Resreved, will be replaced by a save if there are |
360 | | // OR | operators at the top level |
361 | 11.4k | appendOp(URX_STATE_SAVE, 2); |
362 | 11.4k | appendOp(URX_JMP, 3); |
363 | 11.4k | appendOp(URX_FAIL, 0); |
364 | | |
365 | | // Standard open nonCapture paren action emits the two NOPs and |
366 | | // sets up the paren stack frame. |
367 | 11.4k | doParseActions(doOpenNonCaptureParen); |
368 | 11.4k | break; |
369 | | |
370 | 6.75k | case doPatFinish: |
371 | | // We've scanned to the end of the pattern |
372 | | // The end of pattern compiles to: |
373 | | // URX_END |
374 | | // which will stop the runtime match engine. |
375 | | // Encountering end of pattern also behaves like a close paren, |
376 | | // and forces fixups of the State Save at the beginning of the compiled pattern |
377 | | // and of any OR operations at the top level. |
378 | | // |
379 | 6.75k | handleCloseParen(); |
380 | 6.75k | if (fParenStack.size() > 0) { |
381 | | // Missing close paren in pattern. |
382 | 2.11k | error(U_REGEX_MISMATCHED_PAREN); |
383 | 2.11k | } |
384 | | |
385 | | // add the END operation to the compiled pattern. |
386 | 6.75k | appendOp(URX_END, 0); |
387 | | |
388 | | // Terminate the pattern compilation state machine. |
389 | 6.75k | returnVal = false; |
390 | 6.75k | break; |
391 | | |
392 | | |
393 | | |
394 | 26.2M | case doOrOperator: |
395 | | // Scanning a '|', as in (A|B) |
396 | 26.2M | { |
397 | | // Generate code for any pending literals preceding the '|' |
398 | 26.2M | fixLiterals(false); |
399 | | |
400 | | // Insert a SAVE operation at the start of the pattern section preceding |
401 | | // this OR at this level. This SAVE will branch the match forward |
402 | | // to the right hand side of the OR in the event that the left hand |
403 | | // side fails to match and backtracks. Locate the position for the |
404 | | // save from the location on the top of the parentheses stack. |
405 | 26.2M | int32_t savePosition = fParenStack.popi(); |
406 | 26.2M | int32_t op = (int32_t)fRXPat->fCompiledPat->elementAti(savePosition); |
407 | 26.2M | U_ASSERT(URX_TYPE(op) == URX_NOP); // original contents of reserved location |
408 | 26.2M | op = buildOp(URX_STATE_SAVE, fRXPat->fCompiledPat->size()+1); |
409 | 26.2M | fRXPat->fCompiledPat->setElementAt(op, savePosition); |
410 | | |
411 | | // Append an JMP operation into the compiled pattern. The operand for |
412 | | // the JMP will eventually be the location following the ')' for the |
413 | | // group. This will be patched in later, when the ')' is encountered. |
414 | 26.2M | appendOp(URX_JMP, 0); |
415 | | |
416 | | // Push the position of the newly added JMP op onto the parentheses stack. |
417 | | // This registers if for fixup when this block's close paren is encountered. |
418 | 26.2M | fParenStack.push(fRXPat->fCompiledPat->size()-1, *fStatus); |
419 | | |
420 | | // Append a NOP to the compiled pattern. This is the slot reserved |
421 | | // for a SAVE in the event that there is yet another '|' following |
422 | | // this one. |
423 | 26.2M | appendOp(URX_NOP, 0); |
424 | 26.2M | fParenStack.push(fRXPat->fCompiledPat->size()-1, *fStatus); |
425 | 26.2M | } |
426 | 26.2M | break; |
427 | | |
428 | | |
429 | 595 | case doBeginNamedCapture: |
430 | | // Scanning (?<letter. |
431 | | // The first letter of the name will come through again under doConinueNamedCapture. |
432 | 595 | fCaptureName = new UnicodeString(); |
433 | 595 | if (fCaptureName == nullptr) { |
434 | 0 | error(U_MEMORY_ALLOCATION_ERROR); |
435 | 0 | } |
436 | 595 | break; |
437 | | |
438 | 2.17k | case doContinueNamedCapture: |
439 | 2.17k | fCaptureName->append(fC.fChar); |
440 | 2.17k | break; |
441 | | |
442 | 34 | case doBadNamedCapture: |
443 | 34 | error(U_REGEX_INVALID_CAPTURE_GROUP_NAME); |
444 | 34 | break; |
445 | | |
446 | 307k | case doOpenCaptureParen: |
447 | | // Open Capturing Paren, possibly named. |
448 | | // Compile to a |
449 | | // - NOP, which later may be replaced by a save-state if the |
450 | | // parenthesized group gets a * quantifier, followed by |
451 | | // - START_CAPTURE n where n is stack frame offset to the capture group variables. |
452 | | // - NOP, which may later be replaced by a save-state if there |
453 | | // is an '|' alternation within the parens. |
454 | | // |
455 | | // Each capture group gets three slots in the save stack frame: |
456 | | // 0: Capture Group start position (in input string being matched.) |
457 | | // 1: Capture Group end position. |
458 | | // 2: Start of Match-in-progress. |
459 | | // The first two locations are for a completed capture group, and are |
460 | | // referred to by back references and the like. |
461 | | // The third location stores the capture start position when an START_CAPTURE is |
462 | | // encountered. This will be promoted to a completed capture when (and if) the corresponding |
463 | | // END_CAPTURE is encountered. |
464 | 307k | { |
465 | 307k | fixLiterals(); |
466 | 307k | appendOp(URX_NOP, 0); |
467 | 307k | int32_t varsLoc = allocateStackData(3); // Reserve three slots in match stack frame. |
468 | 307k | appendOp(URX_START_CAPTURE, varsLoc); |
469 | 307k | appendOp(URX_NOP, 0); |
470 | | |
471 | | // On the Parentheses stack, start a new frame and add the positions |
472 | | // of the two NOPs. Depending on what follows in the pattern, the |
473 | | // NOPs may be changed to SAVE_STATE or JMP ops, with a target |
474 | | // address of the end of the parenthesized group. |
475 | 307k | fParenStack.push(fModeFlags, *fStatus); // Match mode state |
476 | 307k | fParenStack.push(capturing, *fStatus); // Frame type. |
477 | 307k | fParenStack.push(fRXPat->fCompiledPat->size()-3, *fStatus); // The first NOP location |
478 | 307k | fParenStack.push(fRXPat->fCompiledPat->size()-1, *fStatus); // The second NOP loc |
479 | | |
480 | | // Save the mapping from group number to stack frame variable position. |
481 | 307k | fRXPat->fGroupMap->addElement(varsLoc, *fStatus); |
482 | | |
483 | | // If this is a named capture group, add the name->group number mapping. |
484 | 307k | if (fCaptureName != nullptr) { |
485 | 582 | if (!fRXPat->initNamedCaptureMap()) { |
486 | 0 | if (U_SUCCESS(*fStatus)) { |
487 | 0 | error(fRXPat->fDeferredStatus); |
488 | 0 | } |
489 | 0 | break; |
490 | 0 | } |
491 | 582 | int32_t groupNumber = fRXPat->fGroupMap->size(); |
492 | 582 | int32_t previousMapping = uhash_puti(fRXPat->fNamedCaptureMap, fCaptureName, groupNumber, fStatus); |
493 | 582 | fCaptureName = nullptr; // hash table takes ownership of the name (key) string. |
494 | 582 | if (previousMapping > 0 && U_SUCCESS(*fStatus)) { |
495 | 30 | error(U_REGEX_INVALID_CAPTURE_GROUP_NAME); |
496 | 30 | } |
497 | 582 | } |
498 | 307k | } |
499 | 307k | break; |
500 | | |
501 | 307k | case doOpenNonCaptureParen: |
502 | | // Open non-caputuring (grouping only) Paren. |
503 | | // Compile to a |
504 | | // - NOP, which later may be replaced by a save-state if the |
505 | | // parenthesized group gets a * quantifier, followed by |
506 | | // - NOP, which may later be replaced by a save-state if there |
507 | | // is an '|' alternation within the parens. |
508 | 12.1k | { |
509 | 12.1k | fixLiterals(); |
510 | 12.1k | appendOp(URX_NOP, 0); |
511 | 12.1k | appendOp(URX_NOP, 0); |
512 | | |
513 | | // On the Parentheses stack, start a new frame and add the positions |
514 | | // of the two NOPs. |
515 | 12.1k | fParenStack.push(fModeFlags, *fStatus); // Match mode state |
516 | 12.1k | fParenStack.push(plain, *fStatus); // Begin a new frame. |
517 | 12.1k | fParenStack.push(fRXPat->fCompiledPat->size()-2, *fStatus); // The first NOP location |
518 | 12.1k | fParenStack.push(fRXPat->fCompiledPat->size()-1, *fStatus); // The second NOP loc |
519 | 12.1k | } |
520 | 12.1k | break; |
521 | | |
522 | | |
523 | 614 | case doOpenAtomicParen: |
524 | | // Open Atomic Paren. (?> |
525 | | // Compile to a |
526 | | // - NOP, which later may be replaced if the parenthesized group |
527 | | // has a quantifier, followed by |
528 | | // - STO_SP save state stack position, so it can be restored at the ")" |
529 | | // - NOP, which may later be replaced by a save-state if there |
530 | | // is an '|' alternation within the parens. |
531 | 614 | { |
532 | 614 | fixLiterals(); |
533 | 614 | appendOp(URX_NOP, 0); |
534 | 614 | int32_t varLoc = allocateData(1); // Reserve a data location for saving the state stack ptr. |
535 | 614 | appendOp(URX_STO_SP, varLoc); |
536 | 614 | appendOp(URX_NOP, 0); |
537 | | |
538 | | // On the Parentheses stack, start a new frame and add the positions |
539 | | // of the two NOPs. Depending on what follows in the pattern, the |
540 | | // NOPs may be changed to SAVE_STATE or JMP ops, with a target |
541 | | // address of the end of the parenthesized group. |
542 | 614 | fParenStack.push(fModeFlags, *fStatus); // Match mode state |
543 | 614 | fParenStack.push(atomic, *fStatus); // Frame type. |
544 | 614 | fParenStack.push(fRXPat->fCompiledPat->size()-3, *fStatus); // The first NOP |
545 | 614 | fParenStack.push(fRXPat->fCompiledPat->size()-1, *fStatus); // The second NOP |
546 | 614 | } |
547 | 614 | break; |
548 | | |
549 | | |
550 | 60.1k | case doOpenLookAhead: |
551 | | // Positive Look-ahead (?= stuff ) |
552 | | // |
553 | | // Note: Addition of transparent input regions, with the need to |
554 | | // restore the original regions when failing out of a lookahead |
555 | | // block, complicated this sequence. Some combined opcodes |
556 | | // might make sense - or might not, lookahead aren't that common. |
557 | | // |
558 | | // Caution: min match length optimization knows about this |
559 | | // sequence; don't change without making updates there too. |
560 | | // |
561 | | // Compiles to |
562 | | // 1 LA_START dataLoc Saves SP, Input Pos, Active input region. |
563 | | // 2. STATE_SAVE 4 on failure of lookahead, goto 4 |
564 | | // 3 JMP 6 continue ... |
565 | | // |
566 | | // 4. LA_END Look Ahead failed. Restore regions. |
567 | | // 5. BACKTRACK and back track again. |
568 | | // |
569 | | // 6. NOP reserved for use by quantifiers on the block. |
570 | | // Look-ahead can't have quantifiers, but paren stack |
571 | | // compile time conventions require the slot anyhow. |
572 | | // 7. NOP may be replaced if there is are '|' ops in the block. |
573 | | // 8. code for parenthesized stuff. |
574 | | // 9. LA_END |
575 | | // |
576 | | // Four data slots are reserved, for saving state on entry to the look-around |
577 | | // 0: stack pointer on entry. |
578 | | // 1: input position on entry. |
579 | | // 2: fActiveStart, the active bounds start on entry. |
580 | | // 3: fActiveLimit, the active bounds limit on entry. |
581 | 60.1k | { |
582 | 60.1k | fixLiterals(); |
583 | 60.1k | int32_t dataLoc = allocateData(4); |
584 | 60.1k | appendOp(URX_LA_START, dataLoc); |
585 | 60.1k | appendOp(URX_STATE_SAVE, fRXPat->fCompiledPat->size()+ 2); |
586 | 60.1k | appendOp(URX_JMP, fRXPat->fCompiledPat->size()+ 3); |
587 | 60.1k | appendOp(URX_LA_END, dataLoc); |
588 | 60.1k | appendOp(URX_BACKTRACK, 0); |
589 | 60.1k | appendOp(URX_NOP, 0); |
590 | 60.1k | appendOp(URX_NOP, 0); |
591 | | |
592 | | // On the Parentheses stack, start a new frame and add the positions |
593 | | // of the NOPs. |
594 | 60.1k | fParenStack.push(fModeFlags, *fStatus); // Match mode state |
595 | 60.1k | fParenStack.push(lookAhead, *fStatus); // Frame type. |
596 | 60.1k | fParenStack.push(fRXPat->fCompiledPat->size()-2, *fStatus); // The first NOP location |
597 | 60.1k | fParenStack.push(fRXPat->fCompiledPat->size()-1, *fStatus); // The second NOP location |
598 | 60.1k | } |
599 | 60.1k | break; |
600 | | |
601 | 919 | case doOpenLookAheadNeg: |
602 | | // Negated Lookahead. (?! stuff ) |
603 | | // Compiles to |
604 | | // 1. LA_START dataloc |
605 | | // 2. SAVE_STATE 7 // Fail within look-ahead block restores to this state, |
606 | | // // which continues with the match. |
607 | | // 3. NOP // Std. Open Paren sequence, for possible '|' |
608 | | // 4. code for parenthesized stuff. |
609 | | // 5. LA_END // Cut back stack, remove saved state from step 2. |
610 | | // 6. BACKTRACK // code in block succeeded, so neg. lookahead fails. |
611 | | // 7. END_LA // Restore match region, in case look-ahead was using |
612 | | // an alternate (transparent) region. |
613 | | // Four data slots are reserved, for saving state on entry to the look-around |
614 | | // 0: stack pointer on entry. |
615 | | // 1: input position on entry. |
616 | | // 2: fActiveStart, the active bounds start on entry. |
617 | | // 3: fActiveLimit, the active bounds limit on entry. |
618 | 919 | { |
619 | 919 | fixLiterals(); |
620 | 919 | int32_t dataLoc = allocateData(4); |
621 | 919 | appendOp(URX_LA_START, dataLoc); |
622 | 919 | appendOp(URX_STATE_SAVE, 0); // dest address will be patched later. |
623 | 919 | appendOp(URX_NOP, 0); |
624 | | |
625 | | // On the Parentheses stack, start a new frame and add the positions |
626 | | // of the StateSave and NOP. |
627 | 919 | fParenStack.push(fModeFlags, *fStatus); // Match mode state |
628 | 919 | fParenStack.push(negLookAhead, *fStatus); // Frame type |
629 | 919 | fParenStack.push(fRXPat->fCompiledPat->size()-2, *fStatus); // The STATE_SAVE location |
630 | 919 | fParenStack.push(fRXPat->fCompiledPat->size()-1, *fStatus); // The second NOP location |
631 | | |
632 | | // Instructions #5 - #7 will be added when the ')' is encountered. |
633 | 919 | } |
634 | 919 | break; |
635 | | |
636 | 1.68k | case doOpenLookBehind: |
637 | 1.68k | { |
638 | | // Compile a (?<= look-behind open paren. |
639 | | // |
640 | | // Compiles to |
641 | | // 0 URX_LB_START dataLoc |
642 | | // 1 URX_LB_CONT dataLoc |
643 | | // 2 MinMatchLen |
644 | | // 3 MaxMatchLen |
645 | | // 4 URX_NOP Standard '(' boilerplate. |
646 | | // 5 URX_NOP Reserved slot for use with '|' ops within (block). |
647 | | // 6 <code for LookBehind expression> |
648 | | // 7 URX_LB_END dataLoc # Check match len, restore input len |
649 | | // 8 URX_LA_END dataLoc # Restore stack, input pos |
650 | | // |
651 | | // Allocate a block of matcher data, to contain (when running a match) |
652 | | // 0: Stack ptr on entry |
653 | | // 1: Input Index on entry |
654 | | // 2: fActiveStart, the active bounds start on entry. |
655 | | // 3: fActiveLimit, the active bounds limit on entry. |
656 | | // 4: Start index of match current match attempt. |
657 | | // The first four items must match the layout of data for LA_START / LA_END |
658 | | |
659 | | // Generate match code for any pending literals. |
660 | 1.68k | fixLiterals(); |
661 | | |
662 | | // Allocate data space |
663 | 1.68k | int32_t dataLoc = allocateData(5); |
664 | | |
665 | | // Emit URX_LB_START |
666 | 1.68k | appendOp(URX_LB_START, dataLoc); |
667 | | |
668 | | // Emit URX_LB_CONT |
669 | 1.68k | appendOp(URX_LB_CONT, dataLoc); |
670 | 1.68k | appendOp(URX_RESERVED_OP, 0); // MinMatchLength. To be filled later. |
671 | 1.68k | appendOp(URX_RESERVED_OP, 0); // MaxMatchLength. To be filled later. |
672 | | |
673 | | // Emit the NOPs |
674 | 1.68k | appendOp(URX_NOP, 0); |
675 | 1.68k | appendOp(URX_NOP, 0); |
676 | | |
677 | | // On the Parentheses stack, start a new frame and add the positions |
678 | | // of the URX_LB_CONT and the NOP. |
679 | 1.68k | fParenStack.push(fModeFlags, *fStatus); // Match mode state |
680 | 1.68k | fParenStack.push(lookBehind, *fStatus); // Frame type |
681 | 1.68k | fParenStack.push(fRXPat->fCompiledPat->size()-2, *fStatus); // The first NOP location |
682 | 1.68k | fParenStack.push(fRXPat->fCompiledPat->size()-1, *fStatus); // The 2nd NOP location |
683 | | |
684 | | // The final two instructions will be added when the ')' is encountered. |
685 | 1.68k | } |
686 | | |
687 | 1.68k | break; |
688 | | |
689 | 1.82k | case doOpenLookBehindNeg: |
690 | 1.82k | { |
691 | | // Compile a (?<! negated look-behind open paren. |
692 | | // |
693 | | // Compiles to |
694 | | // 0 URX_LB_START dataLoc # Save entry stack, input len |
695 | | // 1 URX_LBN_CONT dataLoc # Iterate possible match positions |
696 | | // 2 MinMatchLen |
697 | | // 3 MaxMatchLen |
698 | | // 4 continueLoc (9) |
699 | | // 5 URX_NOP Standard '(' boilerplate. |
700 | | // 6 URX_NOP Reserved slot for use with '|' ops within (block). |
701 | | // 7 <code for LookBehind expression> |
702 | | // 8 URX_LBN_END dataLoc # Check match len, cause a FAIL |
703 | | // 9 ... |
704 | | // |
705 | | // Allocate a block of matcher data, to contain (when running a match) |
706 | | // 0: Stack ptr on entry |
707 | | // 1: Input Index on entry |
708 | | // 2: fActiveStart, the active bounds start on entry. |
709 | | // 3: fActiveLimit, the active bounds limit on entry. |
710 | | // 4: Start index of match current match attempt. |
711 | | // The first four items must match the layout of data for LA_START / LA_END |
712 | | |
713 | | // Generate match code for any pending literals. |
714 | 1.82k | fixLiterals(); |
715 | | |
716 | | // Allocate data space |
717 | 1.82k | int32_t dataLoc = allocateData(5); |
718 | | |
719 | | // Emit URX_LB_START |
720 | 1.82k | appendOp(URX_LB_START, dataLoc); |
721 | | |
722 | | // Emit URX_LBN_CONT |
723 | 1.82k | appendOp(URX_LBN_CONT, dataLoc); |
724 | 1.82k | appendOp(URX_RESERVED_OP, 0); // MinMatchLength. To be filled later. |
725 | 1.82k | appendOp(URX_RESERVED_OP, 0); // MaxMatchLength. To be filled later. |
726 | 1.82k | appendOp(URX_RESERVED_OP, 0); // Continue Loc. To be filled later. |
727 | | |
728 | | // Emit the NOPs |
729 | 1.82k | appendOp(URX_NOP, 0); |
730 | 1.82k | appendOp(URX_NOP, 0); |
731 | | |
732 | | // On the Parentheses stack, start a new frame and add the positions |
733 | | // of the URX_LB_CONT and the NOP. |
734 | 1.82k | fParenStack.push(fModeFlags, *fStatus); // Match mode state |
735 | 1.82k | fParenStack.push(lookBehindN, *fStatus); // Frame type |
736 | 1.82k | fParenStack.push(fRXPat->fCompiledPat->size()-2, *fStatus); // The first NOP location |
737 | 1.82k | fParenStack.push(fRXPat->fCompiledPat->size()-1, *fStatus); // The 2nd NOP location |
738 | | |
739 | | // The final two instructions will be added when the ')' is encountered. |
740 | 1.82k | } |
741 | 1.82k | break; |
742 | | |
743 | 1 | case doConditionalExpr: |
744 | | // Conditionals such as (?(1)a:b) |
745 | 2 | case doPerlInline: |
746 | | // Perl inline-conditionals. (?{perl code}a|b) We're not perl, no way to do them. |
747 | 2 | error(U_REGEX_UNIMPLEMENTED); |
748 | 2 | break; |
749 | | |
750 | | |
751 | 371k | case doCloseParen: |
752 | 371k | handleCloseParen(); |
753 | 371k | if (fParenStack.size() <= 0) { |
754 | | // Extra close paren, or missing open paren. |
755 | 40 | error(U_REGEX_MISMATCHED_PAREN); |
756 | 40 | } |
757 | 371k | break; |
758 | | |
759 | 42.7M | case doNOP: |
760 | 42.7M | break; |
761 | | |
762 | | |
763 | 22 | case doBadOpenParenType: |
764 | 74 | case doRuleError: |
765 | 74 | error(U_REGEX_RULE_SYNTAX); |
766 | 74 | break; |
767 | | |
768 | | |
769 | 8 | case doMismatchedParenErr: |
770 | 8 | error(U_REGEX_MISMATCHED_PAREN); |
771 | 8 | break; |
772 | | |
773 | 12.1k | case doPlus: |
774 | | // Normal '+' compiles to |
775 | | // 1. stuff to be repeated (already built) |
776 | | // 2. jmp-sav 1 |
777 | | // 3. ... |
778 | | // |
779 | | // Or, if the item to be repeated can match a zero length string, |
780 | | // 1. STO_INP_LOC data-loc |
781 | | // 2. body of stuff to be repeated |
782 | | // 3. JMP_SAV_X 2 |
783 | | // 4. ... |
784 | | |
785 | | // |
786 | | // Or, if the item to be repeated is simple |
787 | | // 1. Item to be repeated. |
788 | | // 2. LOOP_SR_I set number (assuming repeated item is a set ref) |
789 | | // 3. LOOP_C stack location |
790 | 12.1k | { |
791 | 12.1k | int32_t topLoc = blockTopLoc(false); // location of item #1 |
792 | 12.1k | int32_t frameLoc; |
793 | | |
794 | | // Check for simple constructs, which may get special optimized code. |
795 | 12.1k | if (topLoc == fRXPat->fCompiledPat->size() - 1) { |
796 | 11.4k | int32_t repeatedOp = (int32_t)fRXPat->fCompiledPat->elementAti(topLoc); |
797 | | |
798 | 11.4k | if (URX_TYPE(repeatedOp) == URX_SETREF) { |
799 | | // Emit optimized code for [char set]+ |
800 | 2.49k | appendOp(URX_LOOP_SR_I, URX_VAL(repeatedOp)); |
801 | 2.49k | frameLoc = allocateStackData(1); |
802 | 2.49k | appendOp(URX_LOOP_C, frameLoc); |
803 | 2.49k | break; |
804 | 2.49k | } |
805 | | |
806 | 8.96k | if (URX_TYPE(repeatedOp) == URX_DOTANY || |
807 | 8.96k | URX_TYPE(repeatedOp) == URX_DOTANY_ALL || |
808 | 8.96k | URX_TYPE(repeatedOp) == URX_DOTANY_UNIX) { |
809 | | // Emit Optimized code for .+ operations. |
810 | 2.92k | int32_t loopOpI = buildOp(URX_LOOP_DOT_I, 0); |
811 | 2.92k | if (URX_TYPE(repeatedOp) == URX_DOTANY_ALL) { |
812 | | // URX_LOOP_DOT_I operand is a flag indicating ". matches any" mode. |
813 | 1.37k | loopOpI |= 1; |
814 | 1.37k | } |
815 | 2.92k | if (fModeFlags & UREGEX_UNIX_LINES) { |
816 | 303 | loopOpI |= 2; |
817 | 303 | } |
818 | 2.92k | appendOp(loopOpI); |
819 | 2.92k | frameLoc = allocateStackData(1); |
820 | 2.92k | appendOp(URX_LOOP_C, frameLoc); |
821 | 2.92k | break; |
822 | 2.92k | } |
823 | | |
824 | 8.96k | } |
825 | | |
826 | | // General case. |
827 | | |
828 | | // Check for minimum match length of zero, which requires |
829 | | // extra loop-breaking code. |
830 | 6.77k | if (minMatchLength(topLoc, fRXPat->fCompiledPat->size()-1) == 0) { |
831 | | // Zero length match is possible. |
832 | | // Emit the code sequence that can handle it. |
833 | 1.01k | insertOp(topLoc); |
834 | 1.01k | frameLoc = allocateStackData(1); |
835 | | |
836 | 1.01k | int32_t op = buildOp(URX_STO_INP_LOC, frameLoc); |
837 | 1.01k | fRXPat->fCompiledPat->setElementAt(op, topLoc); |
838 | | |
839 | 1.01k | appendOp(URX_JMP_SAV_X, topLoc+1); |
840 | 5.76k | } else { |
841 | | // Simpler code when the repeated body must match something non-empty |
842 | 5.76k | appendOp(URX_JMP_SAV, topLoc); |
843 | 5.76k | } |
844 | 6.77k | } |
845 | 0 | break; |
846 | | |
847 | 1.25k | case doNGPlus: |
848 | | // Non-greedy '+?' compiles to |
849 | | // 1. stuff to be repeated (already built) |
850 | | // 2. state-save 1 |
851 | | // 3. ... |
852 | 1.25k | { |
853 | 1.25k | int32_t topLoc = blockTopLoc(false); |
854 | 1.25k | appendOp(URX_STATE_SAVE, topLoc); |
855 | 1.25k | } |
856 | 1.25k | break; |
857 | | |
858 | | |
859 | 4.73k | case doOpt: |
860 | | // Normal (greedy) ? quantifier. |
861 | | // Compiles to |
862 | | // 1. state save 3 |
863 | | // 2. body of optional block |
864 | | // 3. ... |
865 | | // Insert the state save into the compiled pattern, and we're done. |
866 | 4.73k | { |
867 | 4.73k | int32_t saveStateLoc = blockTopLoc(true); |
868 | 4.73k | int32_t saveStateOp = buildOp(URX_STATE_SAVE, fRXPat->fCompiledPat->size()); |
869 | 4.73k | fRXPat->fCompiledPat->setElementAt(saveStateOp, saveStateLoc); |
870 | 4.73k | } |
871 | 4.73k | break; |
872 | | |
873 | 780 | case doNGOpt: |
874 | | // Non-greedy ?? quantifier |
875 | | // compiles to |
876 | | // 1. jmp 4 |
877 | | // 2. body of optional block |
878 | | // 3 jmp 5 |
879 | | // 4. state save 2 |
880 | | // 5 ... |
881 | | // This code is less than ideal, with two jmps instead of one, because we can only |
882 | | // insert one instruction at the top of the block being iterated. |
883 | 780 | { |
884 | 780 | int32_t jmp1_loc = blockTopLoc(true); |
885 | 780 | int32_t jmp2_loc = fRXPat->fCompiledPat->size(); |
886 | | |
887 | 780 | int32_t jmp1_op = buildOp(URX_JMP, jmp2_loc+1); |
888 | 780 | fRXPat->fCompiledPat->setElementAt(jmp1_op, jmp1_loc); |
889 | | |
890 | 780 | appendOp(URX_JMP, jmp2_loc+2); |
891 | | |
892 | 780 | appendOp(URX_STATE_SAVE, jmp1_loc+1); |
893 | 780 | } |
894 | 780 | break; |
895 | | |
896 | | |
897 | 171k | case doStar: |
898 | | // Normal (greedy) * quantifier. |
899 | | // Compiles to |
900 | | // 1. STATE_SAVE 4 |
901 | | // 2. body of stuff being iterated over |
902 | | // 3. JMP_SAV 2 |
903 | | // 4. ... |
904 | | // |
905 | | // Or, if the body is a simple [Set], |
906 | | // 1. LOOP_SR_I set number |
907 | | // 2. LOOP_C stack location |
908 | | // ... |
909 | | // |
910 | | // Or if this is a .* |
911 | | // 1. LOOP_DOT_I (. matches all mode flag) |
912 | | // 2. LOOP_C stack location |
913 | | // |
914 | | // Or, if the body can match a zero-length string, to inhibit infinite loops, |
915 | | // 1. STATE_SAVE 5 |
916 | | // 2. STO_INP_LOC data-loc |
917 | | // 3. body of stuff |
918 | | // 4. JMP_SAV_X 2 |
919 | | // 5. ... |
920 | 171k | { |
921 | | // location of item #1, the STATE_SAVE |
922 | 171k | int32_t topLoc = blockTopLoc(false); |
923 | 171k | int32_t dataLoc = -1; |
924 | | |
925 | | // Check for simple *, where the construct being repeated |
926 | | // compiled to single opcode, and might be optimizable. |
927 | 171k | if (topLoc == fRXPat->fCompiledPat->size() - 1) { |
928 | 21.2k | int32_t repeatedOp = (int32_t)fRXPat->fCompiledPat->elementAti(topLoc); |
929 | | |
930 | 21.2k | if (URX_TYPE(repeatedOp) == URX_SETREF) { |
931 | | // Emit optimized code for a [char set]* |
932 | 355 | int32_t loopOpI = buildOp(URX_LOOP_SR_I, URX_VAL(repeatedOp)); |
933 | 355 | fRXPat->fCompiledPat->setElementAt(loopOpI, topLoc); |
934 | 355 | dataLoc = allocateStackData(1); |
935 | 355 | appendOp(URX_LOOP_C, dataLoc); |
936 | 355 | break; |
937 | 355 | } |
938 | | |
939 | 20.9k | if (URX_TYPE(repeatedOp) == URX_DOTANY || |
940 | 20.9k | URX_TYPE(repeatedOp) == URX_DOTANY_ALL || |
941 | 20.9k | URX_TYPE(repeatedOp) == URX_DOTANY_UNIX) { |
942 | | // Emit Optimized code for .* operations. |
943 | 1.38k | int32_t loopOpI = buildOp(URX_LOOP_DOT_I, 0); |
944 | 1.38k | if (URX_TYPE(repeatedOp) == URX_DOTANY_ALL) { |
945 | | // URX_LOOP_DOT_I operand is a flag indicating . matches any mode. |
946 | 348 | loopOpI |= 1; |
947 | 348 | } |
948 | 1.38k | if ((fModeFlags & UREGEX_UNIX_LINES) != 0) { |
949 | 214 | loopOpI |= 2; |
950 | 214 | } |
951 | 1.38k | fRXPat->fCompiledPat->setElementAt(loopOpI, topLoc); |
952 | 1.38k | dataLoc = allocateStackData(1); |
953 | 1.38k | appendOp(URX_LOOP_C, dataLoc); |
954 | 1.38k | break; |
955 | 1.38k | } |
956 | 20.9k | } |
957 | | |
958 | | // Emit general case code for this * |
959 | | // The optimizations did not apply. |
960 | | |
961 | 169k | int32_t saveStateLoc = blockTopLoc(true); |
962 | 169k | int32_t jmpOp = buildOp(URX_JMP_SAV, saveStateLoc+1); |
963 | | |
964 | | // Check for minimum match length of zero, which requires |
965 | | // extra loop-breaking code. |
966 | 169k | if (minMatchLength(saveStateLoc, fRXPat->fCompiledPat->size()-1) == 0) { |
967 | 1.99k | insertOp(saveStateLoc); |
968 | 1.99k | dataLoc = allocateStackData(1); |
969 | | |
970 | 1.99k | int32_t op = buildOp(URX_STO_INP_LOC, dataLoc); |
971 | 1.99k | fRXPat->fCompiledPat->setElementAt(op, saveStateLoc+1); |
972 | 1.99k | jmpOp = buildOp(URX_JMP_SAV_X, saveStateLoc+2); |
973 | 1.99k | } |
974 | | |
975 | | // Locate the position in the compiled pattern where the match will continue |
976 | | // after completing the *. (4 or 5 in the comment above) |
977 | 169k | int32_t continueLoc = fRXPat->fCompiledPat->size()+1; |
978 | | |
979 | | // Put together the save state op and store it into the compiled code. |
980 | 169k | int32_t saveStateOp = buildOp(URX_STATE_SAVE, continueLoc); |
981 | 169k | fRXPat->fCompiledPat->setElementAt(saveStateOp, saveStateLoc); |
982 | | |
983 | | // Append the URX_JMP_SAV or URX_JMPX operation to the compiled pattern. |
984 | 169k | appendOp(jmpOp); |
985 | 169k | } |
986 | 0 | break; |
987 | | |
988 | 221 | case doNGStar: |
989 | | // Non-greedy *? quantifier |
990 | | // compiles to |
991 | | // 1. JMP 3 |
992 | | // 2. body of stuff being iterated over |
993 | | // 3. STATE_SAVE 2 |
994 | | // 4 ... |
995 | 221 | { |
996 | 221 | int32_t jmpLoc = blockTopLoc(true); // loc 1. |
997 | 221 | int32_t saveLoc = fRXPat->fCompiledPat->size(); // loc 3. |
998 | 221 | int32_t jmpOp = buildOp(URX_JMP, saveLoc); |
999 | 221 | fRXPat->fCompiledPat->setElementAt(jmpOp, jmpLoc); |
1000 | 221 | appendOp(URX_STATE_SAVE, jmpLoc+1); |
1001 | 221 | } |
1002 | 221 | break; |
1003 | | |
1004 | | |
1005 | 110k | case doIntervalInit: |
1006 | | // The '{' opening an interval quantifier was just scanned. |
1007 | | // Init the counter variables that will accumulate the values as the digits |
1008 | | // are scanned. |
1009 | 110k | fIntervalLow = 0; |
1010 | 110k | fIntervalUpper = -1; |
1011 | 110k | break; |
1012 | | |
1013 | 114k | case doIntevalLowerDigit: |
1014 | | // Scanned a digit from the lower value of an {lower,upper} interval |
1015 | 114k | { |
1016 | 114k | int32_t digitValue = u_charDigitValue(fC.fChar); |
1017 | 114k | U_ASSERT(digitValue >= 0); |
1018 | 114k | int64_t val = (int64_t)fIntervalLow*10 + digitValue; |
1019 | 114k | if (val > INT32_MAX) { |
1020 | 1 | error(U_REGEX_NUMBER_TOO_BIG); |
1021 | 114k | } else { |
1022 | 114k | fIntervalLow = (int32_t)val; |
1023 | 114k | } |
1024 | 114k | } |
1025 | 114k | break; |
1026 | | |
1027 | 97.4k | case doIntervalUpperDigit: |
1028 | | // Scanned a digit from the upper value of an {lower,upper} interval |
1029 | 97.4k | { |
1030 | 97.4k | if (fIntervalUpper < 0) { |
1031 | 96.7k | fIntervalUpper = 0; |
1032 | 96.7k | } |
1033 | 97.4k | int32_t digitValue = u_charDigitValue(fC.fChar); |
1034 | 97.4k | U_ASSERT(digitValue >= 0); |
1035 | 97.4k | int64_t val = (int64_t)fIntervalUpper*10 + digitValue; |
1036 | 97.4k | if (val > INT32_MAX) { |
1037 | 8 | error(U_REGEX_NUMBER_TOO_BIG); |
1038 | 97.4k | } else { |
1039 | 97.4k | fIntervalUpper = (int32_t)val; |
1040 | 97.4k | } |
1041 | 97.4k | } |
1042 | 97.4k | break; |
1043 | | |
1044 | 12.3k | case doIntervalSame: |
1045 | | // Scanned a single value interval like {27}. Upper = Lower. |
1046 | 12.3k | fIntervalUpper = fIntervalLow; |
1047 | 12.3k | break; |
1048 | | |
1049 | 104k | case doInterval: |
1050 | | // Finished scanning a normal {lower,upper} interval. Generate the code for it. |
1051 | 104k | if (compileInlineInterval() == false) { |
1052 | 3.71k | compileInterval(URX_CTR_INIT, URX_CTR_LOOP); |
1053 | 3.71k | } |
1054 | 104k | break; |
1055 | | |
1056 | 2.72k | case doPossessiveInterval: |
1057 | | // Finished scanning a Possessive {lower,upper}+ interval. Generate the code for it. |
1058 | 2.72k | { |
1059 | | // Remember the loc for the top of the block being looped over. |
1060 | | // (Can not reserve a slot in the compiled pattern at this time, because |
1061 | | // compileInterval needs to reserve also, and blockTopLoc can only reserve |
1062 | | // once per block.) |
1063 | 2.72k | int32_t topLoc = blockTopLoc(false); |
1064 | | |
1065 | | // Produce normal looping code. |
1066 | 2.72k | compileInterval(URX_CTR_INIT, URX_CTR_LOOP); |
1067 | | |
1068 | | // Surround the just-emitted normal looping code with a STO_SP ... LD_SP |
1069 | | // just as if the loop was inclosed in atomic parentheses. |
1070 | | |
1071 | | // First the STO_SP before the start of the loop |
1072 | 2.72k | insertOp(topLoc); |
1073 | | |
1074 | 2.72k | int32_t varLoc = allocateData(1); // Reserve a data location for saving the |
1075 | 2.72k | int32_t op = buildOp(URX_STO_SP, varLoc); |
1076 | 2.72k | fRXPat->fCompiledPat->setElementAt(op, topLoc); |
1077 | | |
1078 | 2.72k | int32_t loopOp = (int32_t)fRXPat->fCompiledPat->popi(); |
1079 | 2.72k | U_ASSERT(URX_TYPE(loopOp) == URX_CTR_LOOP && URX_VAL(loopOp) == topLoc); |
1080 | 2.72k | loopOp++; // point LoopOp after the just-inserted STO_SP |
1081 | 2.72k | fRXPat->fCompiledPat->push(loopOp, *fStatus); |
1082 | | |
1083 | | // Then the LD_SP after the end of the loop |
1084 | 2.72k | appendOp(URX_LD_SP, varLoc); |
1085 | 2.72k | } |
1086 | | |
1087 | 2.72k | break; |
1088 | | |
1089 | 2.44k | case doNGInterval: |
1090 | | // Finished scanning a non-greedy {lower,upper}? interval. Generate the code for it. |
1091 | 2.44k | compileInterval(URX_CTR_INIT_NG, URX_CTR_LOOP_NG); |
1092 | 2.44k | break; |
1093 | | |
1094 | 95 | case doIntervalError: |
1095 | 95 | error(U_REGEX_BAD_INTERVAL); |
1096 | 95 | break; |
1097 | | |
1098 | 19.9M | case doLiteralChar: |
1099 | | // We've just scanned a "normal" character from the pattern, |
1100 | 19.9M | literalChar(fC.fChar); |
1101 | 19.9M | break; |
1102 | | |
1103 | | |
1104 | 4.30k | case doEscapedLiteralChar: |
1105 | | // We've just scanned an backslashed escaped character with no |
1106 | | // special meaning. It represents itself. |
1107 | 4.30k | if ((fModeFlags & UREGEX_ERROR_ON_UNKNOWN_ESCAPES) != 0 && |
1108 | 4.30k | ((fC.fChar >= 0x41 && fC.fChar<= 0x5A) || // in [A-Z] |
1109 | 0 | (fC.fChar >= 0x61 && fC.fChar <= 0x7a))) { // in [a-z] |
1110 | 0 | error(U_REGEX_BAD_ESCAPE_SEQUENCE); |
1111 | 0 | } |
1112 | 4.30k | literalChar(fC.fChar); |
1113 | 4.30k | break; |
1114 | | |
1115 | | |
1116 | 9.80k | case doDotAny: |
1117 | | // scanned a ".", match any single character. |
1118 | 9.80k | { |
1119 | 9.80k | fixLiterals(false); |
1120 | 9.80k | if (fModeFlags & UREGEX_DOTALL) { |
1121 | 2.54k | appendOp(URX_DOTANY_ALL, 0); |
1122 | 7.26k | } else if (fModeFlags & UREGEX_UNIX_LINES) { |
1123 | 866 | appendOp(URX_DOTANY_UNIX, 0); |
1124 | 6.39k | } else { |
1125 | 6.39k | appendOp(URX_DOTANY, 0); |
1126 | 6.39k | } |
1127 | 9.80k | } |
1128 | 9.80k | break; |
1129 | | |
1130 | 5.42k | case doCaret: |
1131 | 5.42k | { |
1132 | 5.42k | fixLiterals(false); |
1133 | 5.42k | if ( (fModeFlags & UREGEX_MULTILINE) == 0 && (fModeFlags & UREGEX_UNIX_LINES) == 0) { |
1134 | 4.23k | appendOp(URX_CARET, 0); |
1135 | 4.23k | } else if ((fModeFlags & UREGEX_MULTILINE) != 0 && (fModeFlags & UREGEX_UNIX_LINES) == 0) { |
1136 | 584 | appendOp(URX_CARET_M, 0); |
1137 | 598 | } else if ((fModeFlags & UREGEX_MULTILINE) == 0 && (fModeFlags & UREGEX_UNIX_LINES) != 0) { |
1138 | 194 | appendOp(URX_CARET, 0); // Only testing true start of input. |
1139 | 404 | } else if ((fModeFlags & UREGEX_MULTILINE) != 0 && (fModeFlags & UREGEX_UNIX_LINES) != 0) { |
1140 | 404 | appendOp(URX_CARET_M_UNIX, 0); |
1141 | 404 | } |
1142 | 5.42k | } |
1143 | 5.42k | break; |
1144 | | |
1145 | 2.02k | case doDollar: |
1146 | 2.02k | { |
1147 | 2.02k | fixLiterals(false); |
1148 | 2.02k | if ( (fModeFlags & UREGEX_MULTILINE) == 0 && (fModeFlags & UREGEX_UNIX_LINES) == 0) { |
1149 | 1.16k | appendOp(URX_DOLLAR, 0); |
1150 | 1.16k | } else if ((fModeFlags & UREGEX_MULTILINE) != 0 && (fModeFlags & UREGEX_UNIX_LINES) == 0) { |
1151 | 269 | appendOp(URX_DOLLAR_M, 0); |
1152 | 593 | } else if ((fModeFlags & UREGEX_MULTILINE) == 0 && (fModeFlags & UREGEX_UNIX_LINES) != 0) { |
1153 | 345 | appendOp(URX_DOLLAR_D, 0); |
1154 | 345 | } else if ((fModeFlags & UREGEX_MULTILINE) != 0 && (fModeFlags & UREGEX_UNIX_LINES) != 0) { |
1155 | 248 | appendOp(URX_DOLLAR_MD, 0); |
1156 | 248 | } |
1157 | 2.02k | } |
1158 | 2.02k | break; |
1159 | | |
1160 | 194 | case doBackslashA: |
1161 | 194 | fixLiterals(false); |
1162 | 194 | appendOp(URX_CARET, 0); |
1163 | 194 | break; |
1164 | | |
1165 | 197 | case doBackslashB: |
1166 | 197 | { |
1167 | | #if UCONFIG_NO_BREAK_ITERATION==1 |
1168 | | if (fModeFlags & UREGEX_UWORD) { |
1169 | | error(U_UNSUPPORTED_ERROR); |
1170 | | } |
1171 | | #endif |
1172 | 197 | fixLiterals(false); |
1173 | 197 | int32_t op = (fModeFlags & UREGEX_UWORD)? URX_BACKSLASH_BU : URX_BACKSLASH_B; |
1174 | 197 | appendOp(op, 1); |
1175 | 197 | } |
1176 | 197 | break; |
1177 | | |
1178 | 797 | case doBackslashb: |
1179 | 797 | { |
1180 | | #if UCONFIG_NO_BREAK_ITERATION==1 |
1181 | | if (fModeFlags & UREGEX_UWORD) { |
1182 | | error(U_UNSUPPORTED_ERROR); |
1183 | | } |
1184 | | #endif |
1185 | 797 | fixLiterals(false); |
1186 | 797 | int32_t op = (fModeFlags & UREGEX_UWORD)? URX_BACKSLASH_BU : URX_BACKSLASH_B; |
1187 | 797 | appendOp(op, 0); |
1188 | 797 | } |
1189 | 797 | break; |
1190 | | |
1191 | 784 | case doBackslashD: |
1192 | 784 | fixLiterals(false); |
1193 | 784 | appendOp(URX_BACKSLASH_D, 1); |
1194 | 784 | break; |
1195 | | |
1196 | 549 | case doBackslashd: |
1197 | 549 | fixLiterals(false); |
1198 | 549 | appendOp(URX_BACKSLASH_D, 0); |
1199 | 549 | break; |
1200 | | |
1201 | 792 | case doBackslashG: |
1202 | 792 | fixLiterals(false); |
1203 | 792 | appendOp(URX_BACKSLASH_G, 0); |
1204 | 792 | break; |
1205 | | |
1206 | 1.16k | case doBackslashH: |
1207 | 1.16k | fixLiterals(false); |
1208 | 1.16k | appendOp(URX_BACKSLASH_H, 1); |
1209 | 1.16k | break; |
1210 | | |
1211 | 667 | case doBackslashh: |
1212 | 667 | fixLiterals(false); |
1213 | 667 | appendOp(URX_BACKSLASH_H, 0); |
1214 | 667 | break; |
1215 | | |
1216 | 473 | case doBackslashR: |
1217 | 473 | fixLiterals(false); |
1218 | 473 | appendOp(URX_BACKSLASH_R, 0); |
1219 | 473 | break; |
1220 | | |
1221 | 692 | case doBackslashS: |
1222 | 692 | fixLiterals(false); |
1223 | 692 | appendOp(URX_STAT_SETREF_N, URX_ISSPACE_SET); |
1224 | 692 | break; |
1225 | | |
1226 | 1.71k | case doBackslashs: |
1227 | 1.71k | fixLiterals(false); |
1228 | 1.71k | appendOp(URX_STATIC_SETREF, URX_ISSPACE_SET); |
1229 | 1.71k | break; |
1230 | | |
1231 | 1.00k | case doBackslashV: |
1232 | 1.00k | fixLiterals(false); |
1233 | 1.00k | appendOp(URX_BACKSLASH_V, 1); |
1234 | 1.00k | break; |
1235 | | |
1236 | 1.02k | case doBackslashv: |
1237 | 1.02k | fixLiterals(false); |
1238 | 1.02k | appendOp(URX_BACKSLASH_V, 0); |
1239 | 1.02k | break; |
1240 | | |
1241 | 806 | case doBackslashW: |
1242 | 806 | fixLiterals(false); |
1243 | 806 | appendOp(URX_STAT_SETREF_N, URX_ISWORD_SET); |
1244 | 806 | break; |
1245 | | |
1246 | 383 | case doBackslashw: |
1247 | 383 | fixLiterals(false); |
1248 | 383 | appendOp(URX_STATIC_SETREF, URX_ISWORD_SET); |
1249 | 383 | break; |
1250 | | |
1251 | 1.09k | case doBackslashX: |
1252 | | #if UCONFIG_NO_BREAK_ITERATION==1 |
1253 | | // Grapheme Cluster Boundary requires ICU break iteration. |
1254 | | error(U_UNSUPPORTED_ERROR); |
1255 | | #endif |
1256 | 1.09k | fixLiterals(false); |
1257 | 1.09k | appendOp(URX_BACKSLASH_X, 0); |
1258 | 1.09k | break; |
1259 | | |
1260 | 196 | case doBackslashZ: |
1261 | 196 | fixLiterals(false); |
1262 | 196 | appendOp(URX_DOLLAR, 0); |
1263 | 196 | break; |
1264 | | |
1265 | 411 | case doBackslashz: |
1266 | 411 | fixLiterals(false); |
1267 | 411 | appendOp(URX_BACKSLASH_Z, 0); |
1268 | 411 | break; |
1269 | | |
1270 | 25 | case doEscapeError: |
1271 | 25 | error(U_REGEX_BAD_ESCAPE_SEQUENCE); |
1272 | 25 | break; |
1273 | | |
1274 | 0 | case doExit: |
1275 | 0 | fixLiterals(false); |
1276 | 0 | returnVal = false; |
1277 | 0 | break; |
1278 | | |
1279 | 868 | case doProperty: |
1280 | 868 | { |
1281 | 868 | fixLiterals(false); |
1282 | 868 | UnicodeSet *theSet = scanProp(); |
1283 | 868 | compileSet(theSet); |
1284 | 868 | } |
1285 | 868 | break; |
1286 | | |
1287 | 1.70k | case doNamedChar: |
1288 | 1.70k | { |
1289 | 1.70k | UChar32 c = scanNamedChar(); |
1290 | 1.70k | literalChar(c); |
1291 | 1.70k | } |
1292 | 1.70k | break; |
1293 | | |
1294 | | |
1295 | 5.90k | case doBackRef: |
1296 | | // BackReference. Somewhat unusual in that the front-end can not completely parse |
1297 | | // the regular expression, because the number of digits to be consumed |
1298 | | // depends on the number of capture groups that have been defined. So |
1299 | | // we have to do it here instead. |
1300 | 5.90k | { |
1301 | 5.90k | int32_t numCaptureGroups = fRXPat->fGroupMap->size(); |
1302 | 5.90k | int32_t groupNum = 0; |
1303 | 5.90k | UChar32 c = fC.fChar; |
1304 | | |
1305 | 6.19k | for (;;) { |
1306 | | // Loop once per digit, for max allowed number of digits in a back reference. |
1307 | 6.19k | int32_t digit = u_charDigitValue(c); |
1308 | 6.19k | groupNum = groupNum * 10 + digit; |
1309 | 6.19k | if (groupNum >= numCaptureGroups) { |
1310 | 1.64k | break; |
1311 | 1.64k | } |
1312 | 4.55k | c = peekCharLL(); |
1313 | 4.55k | if (RegexStaticSets::gStaticSets->fRuleDigitsAlias->contains(c) == false) { |
1314 | 4.25k | break; |
1315 | 4.25k | } |
1316 | 293 | nextCharLL(); |
1317 | 293 | } |
1318 | | |
1319 | | // Scan of the back reference in the source regexp is complete. Now generate |
1320 | | // the compiled code for it. |
1321 | | // Because capture groups can be forward-referenced by back-references, |
1322 | | // we fill the operand with the capture group number. At the end |
1323 | | // of compilation, it will be changed to the variable's location. |
1324 | 5.90k | U_ASSERT(groupNum > 0); // Shouldn't happen. '\0' begins an octal escape sequence, |
1325 | | // and shouldn't enter this code path at all. |
1326 | 5.90k | fixLiterals(false); |
1327 | 5.90k | if (fModeFlags & UREGEX_CASE_INSENSITIVE) { |
1328 | 2.42k | appendOp(URX_BACKREF_I, groupNum); |
1329 | 3.48k | } else { |
1330 | 3.48k | appendOp(URX_BACKREF, groupNum); |
1331 | 3.48k | } |
1332 | 5.90k | } |
1333 | 5.90k | break; |
1334 | | |
1335 | 900 | case doBeginNamedBackRef: |
1336 | 900 | U_ASSERT(fCaptureName == nullptr); |
1337 | 900 | fCaptureName = new UnicodeString; |
1338 | 900 | if (fCaptureName == nullptr) { |
1339 | 0 | error(U_MEMORY_ALLOCATION_ERROR); |
1340 | 0 | } |
1341 | 900 | break; |
1342 | | |
1343 | 3.16k | case doContinueNamedBackRef: |
1344 | 3.16k | fCaptureName->append(fC.fChar); |
1345 | 3.16k | break; |
1346 | | |
1347 | 884 | case doCompleteNamedBackRef: |
1348 | 884 | { |
1349 | 884 | int32_t groupNumber = |
1350 | 884 | fRXPat->fNamedCaptureMap ? uhash_geti(fRXPat->fNamedCaptureMap, fCaptureName) : 0; |
1351 | 884 | if (groupNumber == 0) { |
1352 | | // Group name has not been defined. |
1353 | | // Could be a forward reference. If we choose to support them at some |
1354 | | // future time, extra mechanism will be required at this point. |
1355 | 42 | error(U_REGEX_INVALID_CAPTURE_GROUP_NAME); |
1356 | 842 | } else { |
1357 | | // Given the number, handle identically to a \n numbered back reference. |
1358 | | // See comments above, under doBackRef |
1359 | 842 | fixLiterals(false); |
1360 | 842 | if (fModeFlags & UREGEX_CASE_INSENSITIVE) { |
1361 | 197 | appendOp(URX_BACKREF_I, groupNumber); |
1362 | 645 | } else { |
1363 | 645 | appendOp(URX_BACKREF, groupNumber); |
1364 | 645 | } |
1365 | 842 | } |
1366 | 884 | delete fCaptureName; |
1367 | 884 | fCaptureName = nullptr; |
1368 | 884 | break; |
1369 | 171k | } |
1370 | | |
1371 | 2.19k | case doPossessivePlus: |
1372 | | // Possessive ++ quantifier. |
1373 | | // Compiles to |
1374 | | // 1. STO_SP |
1375 | | // 2. body of stuff being iterated over |
1376 | | // 3. STATE_SAVE 5 |
1377 | | // 4. JMP 2 |
1378 | | // 5. LD_SP |
1379 | | // 6. ... |
1380 | | // |
1381 | | // Note: TODO: This is pretty inefficient. A mass of saved state is built up |
1382 | | // then unconditionally discarded. Perhaps introduce a new opcode. Ticket 6056 |
1383 | | // |
1384 | 2.19k | { |
1385 | | // Emit the STO_SP |
1386 | 2.19k | int32_t topLoc = blockTopLoc(true); |
1387 | 2.19k | int32_t stoLoc = allocateData(1); // Reserve the data location for storing save stack ptr. |
1388 | 2.19k | int32_t op = buildOp(URX_STO_SP, stoLoc); |
1389 | 2.19k | fRXPat->fCompiledPat->setElementAt(op, topLoc); |
1390 | | |
1391 | | // Emit the STATE_SAVE |
1392 | 2.19k | appendOp(URX_STATE_SAVE, fRXPat->fCompiledPat->size()+2); |
1393 | | |
1394 | | // Emit the JMP |
1395 | 2.19k | appendOp(URX_JMP, topLoc+1); |
1396 | | |
1397 | | // Emit the LD_SP |
1398 | 2.19k | appendOp(URX_LD_SP, stoLoc); |
1399 | 2.19k | } |
1400 | 2.19k | break; |
1401 | | |
1402 | 384 | case doPossessiveStar: |
1403 | | // Possessive *+ quantifier. |
1404 | | // Compiles to |
1405 | | // 1. STO_SP loc |
1406 | | // 2. STATE_SAVE 5 |
1407 | | // 3. body of stuff being iterated over |
1408 | | // 4. JMP 2 |
1409 | | // 5. LD_SP loc |
1410 | | // 6 ... |
1411 | | // TODO: do something to cut back the state stack each time through the loop. |
1412 | 384 | { |
1413 | | // Reserve two slots at the top of the block. |
1414 | 384 | int32_t topLoc = blockTopLoc(true); |
1415 | 384 | insertOp(topLoc); |
1416 | | |
1417 | | // emit STO_SP loc |
1418 | 384 | int32_t stoLoc = allocateData(1); // Reserve the data location for storing save stack ptr. |
1419 | 384 | int32_t op = buildOp(URX_STO_SP, stoLoc); |
1420 | 384 | fRXPat->fCompiledPat->setElementAt(op, topLoc); |
1421 | | |
1422 | | // Emit the SAVE_STATE 5 |
1423 | 384 | int32_t L7 = fRXPat->fCompiledPat->size()+1; |
1424 | 384 | op = buildOp(URX_STATE_SAVE, L7); |
1425 | 384 | fRXPat->fCompiledPat->setElementAt(op, topLoc+1); |
1426 | | |
1427 | | // Append the JMP operation. |
1428 | 384 | appendOp(URX_JMP, topLoc+1); |
1429 | | |
1430 | | // Emit the LD_SP loc |
1431 | 384 | appendOp(URX_LD_SP, stoLoc); |
1432 | 384 | } |
1433 | 384 | break; |
1434 | | |
1435 | 251 | case doPossessiveOpt: |
1436 | | // Possessive ?+ quantifier. |
1437 | | // Compiles to |
1438 | | // 1. STO_SP loc |
1439 | | // 2. SAVE_STATE 5 |
1440 | | // 3. body of optional block |
1441 | | // 4. LD_SP loc |
1442 | | // 5. ... |
1443 | | // |
1444 | 251 | { |
1445 | | // Reserve two slots at the top of the block. |
1446 | 251 | int32_t topLoc = blockTopLoc(true); |
1447 | 251 | insertOp(topLoc); |
1448 | | |
1449 | | // Emit the STO_SP |
1450 | 251 | int32_t stoLoc = allocateData(1); // Reserve the data location for storing save stack ptr. |
1451 | 251 | int32_t op = buildOp(URX_STO_SP, stoLoc); |
1452 | 251 | fRXPat->fCompiledPat->setElementAt(op, topLoc); |
1453 | | |
1454 | | // Emit the SAVE_STATE |
1455 | 251 | int32_t continueLoc = fRXPat->fCompiledPat->size()+1; |
1456 | 251 | op = buildOp(URX_STATE_SAVE, continueLoc); |
1457 | 251 | fRXPat->fCompiledPat->setElementAt(op, topLoc+1); |
1458 | | |
1459 | | // Emit the LD_SP |
1460 | 251 | appendOp(URX_LD_SP, stoLoc); |
1461 | 251 | } |
1462 | 251 | break; |
1463 | | |
1464 | | |
1465 | 8.33k | case doBeginMatchMode: |
1466 | 8.33k | fNewModeFlags = fModeFlags; |
1467 | 8.33k | fSetModeFlag = true; |
1468 | 8.33k | break; |
1469 | | |
1470 | 9.64k | case doMatchMode: // (?i) and similar |
1471 | 9.64k | { |
1472 | 9.64k | int32_t bit = 0; |
1473 | 9.64k | switch (fC.fChar) { |
1474 | 3.69k | case 0x69: /* 'i' */ bit = UREGEX_CASE_INSENSITIVE; break; |
1475 | 304 | case 0x64: /* 'd' */ bit = UREGEX_UNIX_LINES; break; |
1476 | 498 | case 0x6d: /* 'm' */ bit = UREGEX_MULTILINE; break; |
1477 | 258 | case 0x73: /* 's' */ bit = UREGEX_DOTALL; break; |
1478 | 73 | case 0x75: /* 'u' */ bit = 0; /* Unicode casing */ break; |
1479 | 213 | case 0x77: /* 'w' */ bit = UREGEX_UWORD; break; |
1480 | 4.40k | case 0x78: /* 'x' */ bit = UREGEX_COMMENTS; break; |
1481 | 202 | case 0x2d: /* '-' */ fSetModeFlag = false; break; |
1482 | 0 | default: |
1483 | 0 | UPRV_UNREACHABLE_EXIT; // Should never happen. Other chars are filtered out |
1484 | | // by the scanner. |
1485 | 9.64k | } |
1486 | 9.64k | if (fSetModeFlag) { |
1487 | 9.23k | fNewModeFlags |= bit; |
1488 | 9.23k | } else { |
1489 | 413 | fNewModeFlags &= ~bit; |
1490 | 413 | } |
1491 | 9.64k | } |
1492 | 0 | break; |
1493 | | |
1494 | 2.67k | case doSetMatchMode: |
1495 | | // Emit code to match any pending literals, using the not-yet changed match mode. |
1496 | 2.67k | fixLiterals(); |
1497 | | |
1498 | | // We've got a (?i) or similar. The match mode is being changed, but |
1499 | | // the change is not scoped to a parenthesized block. |
1500 | 2.67k | U_ASSERT(fNewModeFlags < 0); |
1501 | 2.67k | fModeFlags = fNewModeFlags; |
1502 | | |
1503 | 2.67k | break; |
1504 | | |
1505 | | |
1506 | 5.58k | case doMatchModeParen: |
1507 | | // We've got a (?i: or similar. Begin a parenthesized block, save old |
1508 | | // mode flags so they can be restored at the close of the block. |
1509 | | // |
1510 | | // Compile to a |
1511 | | // - NOP, which later may be replaced by a save-state if the |
1512 | | // parenthesized group gets a * quantifier, followed by |
1513 | | // - NOP, which may later be replaced by a save-state if there |
1514 | | // is an '|' alternation within the parens. |
1515 | 5.58k | { |
1516 | 5.58k | fixLiterals(false); |
1517 | 5.58k | appendOp(URX_NOP, 0); |
1518 | 5.58k | appendOp(URX_NOP, 0); |
1519 | | |
1520 | | // On the Parentheses stack, start a new frame and add the positions |
1521 | | // of the two NOPs (a normal non-capturing () frame, except for the |
1522 | | // saving of the original mode flags.) |
1523 | 5.58k | fParenStack.push(fModeFlags, *fStatus); |
1524 | 5.58k | fParenStack.push(flags, *fStatus); // Frame Marker |
1525 | 5.58k | fParenStack.push(fRXPat->fCompiledPat->size()-2, *fStatus); // The first NOP |
1526 | 5.58k | fParenStack.push(fRXPat->fCompiledPat->size()-1, *fStatus); // The second NOP |
1527 | | |
1528 | | // Set the current mode flags to the new values. |
1529 | 5.58k | U_ASSERT(fNewModeFlags < 0); |
1530 | 5.58k | fModeFlags = fNewModeFlags; |
1531 | 5.58k | } |
1532 | 5.58k | break; |
1533 | | |
1534 | 68 | case doBadModeFlag: |
1535 | 68 | error(U_REGEX_INVALID_FLAG); |
1536 | 68 | break; |
1537 | | |
1538 | 75.1k | case doSuppressComments: |
1539 | | // We have just scanned a '(?'. We now need to prevent the character scanner from |
1540 | | // treating a '#' as a to-the-end-of-line comment. |
1541 | | // (This Perl compatibility just gets uglier and uglier to do...) |
1542 | 75.1k | fEOLComments = false; |
1543 | 75.1k | break; |
1544 | | |
1545 | | |
1546 | 547 | case doSetAddAmp: |
1547 | 547 | { |
1548 | 547 | UnicodeSet *set = (UnicodeSet *)fSetStack.peek(); |
1549 | 547 | set->add(chAmp); |
1550 | 547 | } |
1551 | 547 | break; |
1552 | | |
1553 | 1.51k | case doSetAddDash: |
1554 | 1.51k | { |
1555 | 1.51k | UnicodeSet *set = (UnicodeSet *)fSetStack.peek(); |
1556 | 1.51k | set->add(chDash); |
1557 | 1.51k | } |
1558 | 1.51k | break; |
1559 | | |
1560 | 240 | case doSetBackslash_s: |
1561 | 240 | { |
1562 | 240 | UnicodeSet *set = (UnicodeSet *)fSetStack.peek(); |
1563 | 240 | set->addAll(RegexStaticSets::gStaticSets->fPropSets[URX_ISSPACE_SET]); |
1564 | 240 | break; |
1565 | 9.64k | } |
1566 | | |
1567 | 697 | case doSetBackslash_S: |
1568 | 697 | { |
1569 | 697 | UnicodeSet *set = (UnicodeSet *)fSetStack.peek(); |
1570 | 697 | UnicodeSet SSet; |
1571 | 697 | SSet.addAll(RegexStaticSets::gStaticSets->fPropSets[URX_ISSPACE_SET]).complement(); |
1572 | 697 | set->addAll(SSet); |
1573 | 697 | break; |
1574 | 9.64k | } |
1575 | | |
1576 | 580 | case doSetBackslash_d: |
1577 | 580 | { |
1578 | 580 | UnicodeSet *set = (UnicodeSet *)fSetStack.peek(); |
1579 | | // TODO - make a static set, ticket 6058. |
1580 | 580 | addCategory(set, U_GC_ND_MASK, *fStatus); |
1581 | 580 | break; |
1582 | 9.64k | } |
1583 | | |
1584 | 763 | case doSetBackslash_D: |
1585 | 763 | { |
1586 | 763 | UnicodeSet *set = (UnicodeSet *)fSetStack.peek(); |
1587 | 763 | UnicodeSet digits; |
1588 | | // TODO - make a static set, ticket 6058. |
1589 | 763 | digits.applyIntPropertyValue(UCHAR_GENERAL_CATEGORY_MASK, U_GC_ND_MASK, *fStatus); |
1590 | 763 | digits.complement(); |
1591 | 763 | set->addAll(digits); |
1592 | 763 | break; |
1593 | 9.64k | } |
1594 | | |
1595 | 659 | case doSetBackslash_h: |
1596 | 659 | { |
1597 | 659 | UnicodeSet *set = (UnicodeSet *)fSetStack.peek(); |
1598 | 659 | UnicodeSet h; |
1599 | 659 | h.applyIntPropertyValue(UCHAR_GENERAL_CATEGORY_MASK, U_GC_ZS_MASK, *fStatus); |
1600 | 659 | h.add((UChar32)9); // Tab |
1601 | 659 | set->addAll(h); |
1602 | 659 | break; |
1603 | 9.64k | } |
1604 | | |
1605 | 878 | case doSetBackslash_H: |
1606 | 878 | { |
1607 | 878 | UnicodeSet *set = (UnicodeSet *)fSetStack.peek(); |
1608 | 878 | UnicodeSet h; |
1609 | 878 | h.applyIntPropertyValue(UCHAR_GENERAL_CATEGORY_MASK, U_GC_ZS_MASK, *fStatus); |
1610 | 878 | h.add((UChar32)9); // Tab |
1611 | 878 | h.complement(); |
1612 | 878 | set->addAll(h); |
1613 | 878 | break; |
1614 | 9.64k | } |
1615 | | |
1616 | 554 | case doSetBackslash_v: |
1617 | 554 | { |
1618 | 554 | UnicodeSet *set = (UnicodeSet *)fSetStack.peek(); |
1619 | 554 | set->add((UChar32)0x0a, (UChar32)0x0d); // add range |
1620 | 554 | set->add((UChar32)0x85); |
1621 | 554 | set->add((UChar32)0x2028, (UChar32)0x2029); |
1622 | 554 | break; |
1623 | 9.64k | } |
1624 | | |
1625 | 360 | case doSetBackslash_V: |
1626 | 360 | { |
1627 | 360 | UnicodeSet *set = (UnicodeSet *)fSetStack.peek(); |
1628 | 360 | UnicodeSet v; |
1629 | 360 | v.add((UChar32)0x0a, (UChar32)0x0d); // add range |
1630 | 360 | v.add((UChar32)0x85); |
1631 | 360 | v.add((UChar32)0x2028, (UChar32)0x2029); |
1632 | 360 | v.complement(); |
1633 | 360 | set->addAll(v); |
1634 | 360 | break; |
1635 | 9.64k | } |
1636 | | |
1637 | 1.84k | case doSetBackslash_w: |
1638 | 1.84k | { |
1639 | 1.84k | UnicodeSet *set = (UnicodeSet *)fSetStack.peek(); |
1640 | 1.84k | set->addAll(RegexStaticSets::gStaticSets->fPropSets[URX_ISWORD_SET]); |
1641 | 1.84k | break; |
1642 | 9.64k | } |
1643 | | |
1644 | 2.12k | case doSetBackslash_W: |
1645 | 2.12k | { |
1646 | 2.12k | UnicodeSet *set = (UnicodeSet *)fSetStack.peek(); |
1647 | 2.12k | UnicodeSet SSet; |
1648 | 2.12k | SSet.addAll(RegexStaticSets::gStaticSets->fPropSets[URX_ISWORD_SET]).complement(); |
1649 | 2.12k | set->addAll(SSet); |
1650 | 2.12k | break; |
1651 | 9.64k | } |
1652 | | |
1653 | 576k | case doSetBegin: |
1654 | 576k | { |
1655 | 576k | fixLiterals(false); |
1656 | 576k | LocalPointer<UnicodeSet> lpSet(new UnicodeSet(), *fStatus); |
1657 | 576k | fSetStack.push(lpSet.orphan(), *fStatus); |
1658 | 576k | fSetOpStack.push(setStart, *fStatus); |
1659 | 576k | if ((fModeFlags & UREGEX_CASE_INSENSITIVE) != 0) { |
1660 | 539k | fSetOpStack.push(setCaseClose, *fStatus); |
1661 | 539k | } |
1662 | 576k | break; |
1663 | 9.64k | } |
1664 | | |
1665 | 1.69k | case doSetBeginDifference1: |
1666 | | // We have scanned something like [[abc]-[ |
1667 | | // Set up a new UnicodeSet for the set beginning with the just-scanned '[' |
1668 | | // Push a Difference operator, which will cause the new set to be subtracted from what |
1669 | | // went before once it is created. |
1670 | 1.69k | setPushOp(setDifference1); |
1671 | 1.69k | fSetOpStack.push(setStart, *fStatus); |
1672 | 1.69k | if ((fModeFlags & UREGEX_CASE_INSENSITIVE) != 0) { |
1673 | 469 | fSetOpStack.push(setCaseClose, *fStatus); |
1674 | 469 | } |
1675 | 1.69k | break; |
1676 | | |
1677 | 534 | case doSetBeginIntersection1: |
1678 | | // We have scanned something like [[abc]&[ |
1679 | | // Need both the '&' operator and the open '[' operator. |
1680 | 534 | setPushOp(setIntersection1); |
1681 | 534 | fSetOpStack.push(setStart, *fStatus); |
1682 | 534 | if ((fModeFlags & UREGEX_CASE_INSENSITIVE) != 0) { |
1683 | 223 | fSetOpStack.push(setCaseClose, *fStatus); |
1684 | 223 | } |
1685 | 534 | break; |
1686 | | |
1687 | 77.7k | case doSetBeginUnion: |
1688 | | // We have scanned something like [[abc][ |
1689 | | // Need to handle the union operation explicitly [[abc] | [ |
1690 | 77.7k | setPushOp(setUnion); |
1691 | 77.7k | fSetOpStack.push(setStart, *fStatus); |
1692 | 77.7k | if ((fModeFlags & UREGEX_CASE_INSENSITIVE) != 0) { |
1693 | 21.4k | fSetOpStack.push(setCaseClose, *fStatus); |
1694 | 21.4k | } |
1695 | 77.7k | break; |
1696 | | |
1697 | 642 | case doSetDifference2: |
1698 | | // We have scanned something like [abc-- |
1699 | | // Consider this to unambiguously be a set difference operator. |
1700 | 642 | setPushOp(setDifference2); |
1701 | 642 | break; |
1702 | | |
1703 | 645k | case doSetEnd: |
1704 | | // Have encountered the ']' that closes a set. |
1705 | | // Force the evaluation of any pending operations within this set, |
1706 | | // leave the completed set on the top of the set stack. |
1707 | 645k | setEval(setEnd); |
1708 | 645k | U_ASSERT(fSetOpStack.peeki()==setStart); |
1709 | 645k | fSetOpStack.popi(); |
1710 | 645k | break; |
1711 | | |
1712 | 573k | case doSetFinish: |
1713 | 573k | { |
1714 | | // Finished a complete set expression, including all nested sets. |
1715 | | // The close bracket has already triggered clearing out pending set operators, |
1716 | | // the operator stack should be empty and the operand stack should have just |
1717 | | // one entry, the result set. |
1718 | 573k | U_ASSERT(fSetOpStack.empty()); |
1719 | 573k | UnicodeSet *theSet = (UnicodeSet *)fSetStack.pop(); |
1720 | 573k | U_ASSERT(fSetStack.empty()); |
1721 | 573k | compileSet(theSet); |
1722 | 573k | break; |
1723 | 9.64k | } |
1724 | | |
1725 | 1.63k | case doSetIntersection2: |
1726 | | // Have scanned something like [abc&& |
1727 | 1.63k | setPushOp(setIntersection2); |
1728 | 1.63k | break; |
1729 | | |
1730 | 8.14M | case doSetLiteral: |
1731 | | // Union the just-scanned literal character into the set being built. |
1732 | | // This operation is the highest precedence set operation, so we can always do |
1733 | | // it immediately, without waiting to see what follows. It is necessary to perform |
1734 | | // any pending '-' or '&' operation first, because these have the same precedence |
1735 | | // as union-ing in a literal' |
1736 | 8.14M | { |
1737 | 8.14M | setEval(setUnion); |
1738 | 8.14M | UnicodeSet *s = (UnicodeSet *)fSetStack.peek(); |
1739 | 8.14M | s->add(fC.fChar); |
1740 | 8.14M | fLastSetLiteral = fC.fChar; |
1741 | 8.14M | break; |
1742 | 9.64k | } |
1743 | | |
1744 | 38.8k | case doSetLiteralEscaped: |
1745 | | // A back-slash escaped literal character was encountered. |
1746 | | // Processing is the same as with setLiteral, above, with the addition of |
1747 | | // the optional check for errors on escaped ASCII letters. |
1748 | 38.8k | { |
1749 | 38.8k | if ((fModeFlags & UREGEX_ERROR_ON_UNKNOWN_ESCAPES) != 0 && |
1750 | 38.8k | ((fC.fChar >= 0x41 && fC.fChar<= 0x5A) || // in [A-Z] |
1751 | 0 | (fC.fChar >= 0x61 && fC.fChar <= 0x7a))) { // in [a-z] |
1752 | 0 | error(U_REGEX_BAD_ESCAPE_SEQUENCE); |
1753 | 0 | } |
1754 | 38.8k | setEval(setUnion); |
1755 | 38.8k | UnicodeSet *s = (UnicodeSet *)fSetStack.peek(); |
1756 | 38.8k | s->add(fC.fChar); |
1757 | 38.8k | fLastSetLiteral = fC.fChar; |
1758 | 38.8k | break; |
1759 | 9.64k | } |
1760 | | |
1761 | 1.14k | case doSetNamedChar: |
1762 | | // Scanning a \N{UNICODE CHARACTER NAME} |
1763 | | // Aside from the source of the character, the processing is identical to doSetLiteral, |
1764 | | // above. |
1765 | 1.14k | { |
1766 | 1.14k | UChar32 c = scanNamedChar(); |
1767 | 1.14k | setEval(setUnion); |
1768 | 1.14k | UnicodeSet *s = (UnicodeSet *)fSetStack.peek(); |
1769 | 1.14k | s->add(c); |
1770 | 1.14k | fLastSetLiteral = c; |
1771 | 1.14k | break; |
1772 | 9.64k | } |
1773 | | |
1774 | 222 | case doSetNamedRange: |
1775 | | // We have scanned literal-\N{CHAR NAME}. Add the range to the set. |
1776 | | // The left character is already in the set, and is saved in fLastSetLiteral. |
1777 | | // The right side needs to be picked up, the scan is at the 'N'. |
1778 | | // Lower Limit > Upper limit being an error matches both Java |
1779 | | // and ICU UnicodeSet behavior. |
1780 | 222 | { |
1781 | 222 | UChar32 c = scanNamedChar(); |
1782 | 222 | if (U_SUCCESS(*fStatus) && (fLastSetLiteral == U_SENTINEL || fLastSetLiteral > c)) { |
1783 | 10 | error(U_REGEX_INVALID_RANGE); |
1784 | 10 | } |
1785 | 222 | UnicodeSet *s = (UnicodeSet *)fSetStack.peek(); |
1786 | 222 | s->add(fLastSetLiteral, c); |
1787 | 222 | fLastSetLiteral = c; |
1788 | 222 | break; |
1789 | 9.64k | } |
1790 | | |
1791 | | |
1792 | 931 | case doSetNegate: |
1793 | | // Scanned a '^' at the start of a set. |
1794 | | // Push the negation operator onto the set op stack. |
1795 | | // A twist for case-insensitive matching: |
1796 | | // the case closure operation must happen _before_ negation. |
1797 | | // But the case closure operation will already be on the stack if it's required. |
1798 | | // This requires checking for case closure, and swapping the stack order |
1799 | | // if it is present. |
1800 | 931 | { |
1801 | 931 | int32_t tosOp = fSetOpStack.peeki(); |
1802 | 931 | if (tosOp == setCaseClose) { |
1803 | 470 | fSetOpStack.popi(); |
1804 | 470 | fSetOpStack.push(setNegation, *fStatus); |
1805 | 470 | fSetOpStack.push(setCaseClose, *fStatus); |
1806 | 470 | } else { |
1807 | 461 | fSetOpStack.push(setNegation, *fStatus); |
1808 | 461 | } |
1809 | 931 | } |
1810 | 931 | break; |
1811 | | |
1812 | 1.56k | case doSetNoCloseError: |
1813 | 1.56k | error(U_REGEX_MISSING_CLOSE_BRACKET); |
1814 | 1.56k | break; |
1815 | | |
1816 | 1 | case doSetOpError: |
1817 | 1 | error(U_REGEX_RULE_SYNTAX); // -- or && at the end of a set. Illegal. |
1818 | 1 | break; |
1819 | | |
1820 | 91.1k | case doSetPosixProp: |
1821 | 91.1k | { |
1822 | 91.1k | UnicodeSet *s = scanPosixProp(); |
1823 | 91.1k | if (s != nullptr) { |
1824 | 67.7k | UnicodeSet *tos = (UnicodeSet *)fSetStack.peek(); |
1825 | 67.7k | tos->addAll(*s); |
1826 | 67.7k | delete s; |
1827 | 67.7k | } // else error. scanProp() reported the error status already. |
1828 | 91.1k | } |
1829 | 91.1k | break; |
1830 | | |
1831 | 366 | case doSetProp: |
1832 | | // Scanned a \p \P within [brackets]. |
1833 | 366 | { |
1834 | 366 | UnicodeSet *s = scanProp(); |
1835 | 366 | if (s != nullptr) { |
1836 | 357 | UnicodeSet *tos = (UnicodeSet *)fSetStack.peek(); |
1837 | 357 | tos->addAll(*s); |
1838 | 357 | delete s; |
1839 | 357 | } // else error. scanProp() reported the error status already. |
1840 | 366 | } |
1841 | 366 | break; |
1842 | | |
1843 | | |
1844 | 1.53k | case doSetRange: |
1845 | | // We have scanned literal-literal. Add the range to the set. |
1846 | | // The left character is already in the set, and is saved in fLastSetLiteral. |
1847 | | // The right side is the current character. |
1848 | | // Lower Limit > Upper limit being an error matches both Java |
1849 | | // and ICU UnicodeSet behavior. |
1850 | 1.53k | { |
1851 | | |
1852 | 1.53k | if (fLastSetLiteral == U_SENTINEL || fLastSetLiteral > fC.fChar) { |
1853 | 56 | error(U_REGEX_INVALID_RANGE); |
1854 | 56 | } |
1855 | 1.53k | UnicodeSet *s = (UnicodeSet *)fSetStack.peek(); |
1856 | 1.53k | s->add(fLastSetLiteral, fC.fChar); |
1857 | 1.53k | break; |
1858 | 9.64k | } |
1859 | | |
1860 | 0 | default: |
1861 | 0 | UPRV_UNREACHABLE_EXIT; |
1862 | 100M | } |
1863 | | |
1864 | 100M | if (U_FAILURE(*fStatus)) { |
1865 | 6.70k | returnVal = false; |
1866 | 6.70k | } |
1867 | | |
1868 | 100M | return returnVal; |
1869 | 100M | } |
1870 | | |
1871 | | |
1872 | | |
1873 | | //------------------------------------------------------------------------------ |
1874 | | // |
1875 | | // literalChar We've encountered a literal character from the pattern, |
1876 | | // or an escape sequence that reduces to a character. |
1877 | | // Add it to the string containing all literal chars/strings from |
1878 | | // the pattern. |
1879 | | // |
1880 | | //------------------------------------------------------------------------------ |
1881 | 20.2M | void RegexCompile::literalChar(UChar32 c) { |
1882 | 20.2M | fLiteralChars.append(c); |
1883 | 20.2M | } |
1884 | | |
1885 | | |
1886 | | //------------------------------------------------------------------------------ |
1887 | | // |
1888 | | // fixLiterals When compiling something that can follow a literal |
1889 | | // string in a pattern, emit the code to match the |
1890 | | // accumulated literal string. |
1891 | | // |
1892 | | // Optionally, split the last char of the string off into |
1893 | | // a single "ONE_CHAR" operation, so that quantifiers can |
1894 | | // apply to that char alone. Example: abc* |
1895 | | // The * must apply to the 'c' only. |
1896 | | // |
1897 | | //------------------------------------------------------------------------------ |
1898 | 28.6M | void RegexCompile::fixLiterals(UBool split) { |
1899 | | |
1900 | | // If no literal characters have been scanned but not yet had code generated |
1901 | | // for them, nothing needs to be done. |
1902 | 28.6M | if (fLiteralChars.length() == 0) { |
1903 | 27.6M | return; |
1904 | 27.6M | } |
1905 | | |
1906 | 1.05M | int32_t indexOfLastCodePoint = fLiteralChars.moveIndex32(fLiteralChars.length(), -1); |
1907 | 1.05M | UChar32 lastCodePoint = fLiteralChars.char32At(indexOfLastCodePoint); |
1908 | | |
1909 | | // Split: We need to ensure that the last item in the compiled pattern |
1910 | | // refers only to the last literal scanned in the pattern, so that |
1911 | | // quantifiers (*, +, etc.) affect only it, and not a longer string. |
1912 | | // Split before case folding for case insensitive matches. |
1913 | | |
1914 | 1.05M | if (split) { |
1915 | 283k | fLiteralChars.truncate(indexOfLastCodePoint); |
1916 | 283k | fixLiterals(false); // Recursive call, emit code to match the first part of the string. |
1917 | | // Note that the truncated literal string may be empty, in which case |
1918 | | // nothing will be emitted. |
1919 | | |
1920 | 283k | literalChar(lastCodePoint); // Re-add the last code point as if it were a new literal. |
1921 | 283k | fixLiterals(false); // Second recursive call, code for the final code point. |
1922 | 283k | return; |
1923 | 283k | } |
1924 | | |
1925 | | // If we are doing case-insensitive matching, case fold the string. This may expand |
1926 | | // the string, e.g. the German sharp-s turns into "ss" |
1927 | 769k | if (fModeFlags & UREGEX_CASE_INSENSITIVE) { |
1928 | 464k | fLiteralChars.foldCase(); |
1929 | 464k | indexOfLastCodePoint = fLiteralChars.moveIndex32(fLiteralChars.length(), -1); |
1930 | 464k | lastCodePoint = fLiteralChars.char32At(indexOfLastCodePoint); |
1931 | 464k | } |
1932 | | |
1933 | 769k | if (indexOfLastCodePoint == 0) { |
1934 | | // Single character, emit a URX_ONECHAR op to match it. |
1935 | 340k | if ((fModeFlags & UREGEX_CASE_INSENSITIVE) && |
1936 | 340k | u_hasBinaryProperty(lastCodePoint, UCHAR_CASE_SENSITIVE)) { |
1937 | 16.3k | appendOp(URX_ONECHAR_I, lastCodePoint); |
1938 | 324k | } else { |
1939 | 324k | appendOp(URX_ONECHAR, lastCodePoint); |
1940 | 324k | } |
1941 | 428k | } else { |
1942 | | // Two or more chars, emit a URX_STRING to match them. |
1943 | 428k | if (fLiteralChars.length() > 0x00ffffff || fRXPat->fLiteralText.length() > 0x00ffffff) { |
1944 | 0 | error(U_REGEX_PATTERN_TOO_BIG); |
1945 | 0 | } |
1946 | 428k | if (fModeFlags & UREGEX_CASE_INSENSITIVE) { |
1947 | 323k | appendOp(URX_STRING_I, fRXPat->fLiteralText.length()); |
1948 | 323k | } else { |
1949 | | // TODO here: add optimization to split case sensitive strings of length two |
1950 | | // into two single char ops, for efficiency. |
1951 | 105k | appendOp(URX_STRING, fRXPat->fLiteralText.length()); |
1952 | 105k | } |
1953 | 428k | appendOp(URX_STRING_LEN, fLiteralChars.length()); |
1954 | | |
1955 | | // Add this string into the accumulated strings of the compiled pattern. |
1956 | 428k | fRXPat->fLiteralText.append(fLiteralChars); |
1957 | 428k | } |
1958 | | |
1959 | 769k | fLiteralChars.remove(); |
1960 | 769k | } |
1961 | | |
1962 | | |
1963 | 115M | int32_t RegexCompile::buildOp(int32_t type, int32_t val) { |
1964 | 115M | if (U_FAILURE(*fStatus)) { |
1965 | 2.92k | return 0; |
1966 | 2.92k | } |
1967 | 115M | if (type < 0 || type > 255) { |
1968 | 0 | UPRV_UNREACHABLE_EXIT; |
1969 | 0 | } |
1970 | 115M | if (val > 0x00ffffff) { |
1971 | 0 | UPRV_UNREACHABLE_EXIT; |
1972 | 0 | } |
1973 | 115M | if (val < 0) { |
1974 | 0 | if (!(type == URX_RESERVED_OP_N || type == URX_RESERVED_OP)) { |
1975 | 0 | UPRV_UNREACHABLE_EXIT; |
1976 | 0 | } |
1977 | 0 | if (URX_TYPE(val) != 0xff) { |
1978 | 0 | UPRV_UNREACHABLE_EXIT; |
1979 | 0 | } |
1980 | 0 | type = URX_RESERVED_OP_N; |
1981 | 0 | } |
1982 | 115M | return (type << 24) | val; |
1983 | 115M | } |
1984 | | |
1985 | | |
1986 | | //------------------------------------------------------------------------------ |
1987 | | // |
1988 | | // appendOp() Append a new instruction onto the compiled pattern |
1989 | | // Includes error checking, limiting the size of the |
1990 | | // pattern to lengths that can be represented in the |
1991 | | // 24 bit operand field of an instruction. |
1992 | | // |
1993 | | //------------------------------------------------------------------------------ |
1994 | 57.8M | void RegexCompile::appendOp(int32_t op) { |
1995 | 57.8M | if (U_FAILURE(*fStatus)) { |
1996 | 2.13k | return; |
1997 | 2.13k | } |
1998 | 57.8M | fRXPat->fCompiledPat->addElement(op, *fStatus); |
1999 | 57.8M | if ((fRXPat->fCompiledPat->size() > 0x00fffff0) && U_SUCCESS(*fStatus)) { |
2000 | 0 | error(U_REGEX_PATTERN_TOO_BIG); |
2001 | 0 | } |
2002 | 57.8M | } |
2003 | | |
2004 | 56.1M | void RegexCompile::appendOp(int32_t type, int32_t val) { |
2005 | 56.1M | appendOp(buildOp(type, val)); |
2006 | 56.1M | } |
2007 | | |
2008 | | |
2009 | | //------------------------------------------------------------------------------ |
2010 | | // |
2011 | | // insertOp() Insert a slot for a new opcode into the already |
2012 | | // compiled pattern code. |
2013 | | // |
2014 | | // Fill the slot with a NOP. Our caller will replace it |
2015 | | // with what they really wanted. |
2016 | | // |
2017 | | //------------------------------------------------------------------------------ |
2018 | 128k | void RegexCompile::insertOp(int32_t where) { |
2019 | 128k | UVector64 *code = fRXPat->fCompiledPat; |
2020 | 128k | U_ASSERT(where>0 && where < code->size()); |
2021 | | |
2022 | 128k | int32_t nop = buildOp(URX_NOP, 0); |
2023 | 128k | code->insertElementAt(nop, where, *fStatus); |
2024 | | |
2025 | | // Walk through the pattern, looking for any ops with targets that |
2026 | | // were moved down by the insert. Fix them. |
2027 | 128k | int32_t loc; |
2028 | 3.54G | for (loc=0; loc<code->size(); loc++) { |
2029 | 3.54G | int32_t op = (int32_t)code->elementAti(loc); |
2030 | 3.54G | int32_t opType = URX_TYPE(op); |
2031 | 3.54G | int32_t opValue = URX_VAL(op); |
2032 | 3.54G | if ((opType == URX_JMP || |
2033 | 3.54G | opType == URX_JMPX || |
2034 | 3.54G | opType == URX_STATE_SAVE || |
2035 | 3.54G | opType == URX_CTR_LOOP || |
2036 | 3.54G | opType == URX_CTR_LOOP_NG || |
2037 | 3.54G | opType == URX_JMP_SAV || |
2038 | 3.54G | opType == URX_JMP_SAV_X || |
2039 | 3.54G | opType == URX_RELOC_OPRND) && opValue > where) { |
2040 | | // Target location for this opcode is after the insertion point and |
2041 | | // needs to be incremented to adjust for the insertion. |
2042 | 6.16M | opValue++; |
2043 | 6.16M | op = buildOp(opType, opValue); |
2044 | 6.16M | code->setElementAt(op, loc); |
2045 | 6.16M | } |
2046 | 3.54G | } |
2047 | | |
2048 | | // Now fix up the parentheses stack. All positive values in it are locations in |
2049 | | // the compiled pattern. (Negative values are frame boundaries, and don't need fixing.) |
2050 | 897M | for (loc=0; loc<fParenStack.size(); loc++) { |
2051 | 897M | int32_t x = fParenStack.elementAti(loc); |
2052 | 897M | U_ASSERT(x < code->size()); |
2053 | 897M | if (x>where) { |
2054 | 0 | x++; |
2055 | 0 | fParenStack.setElementAt(x, loc); |
2056 | 0 | } |
2057 | 897M | } |
2058 | | |
2059 | 128k | if (fMatchCloseParen > where) { |
2060 | 10.2k | fMatchCloseParen++; |
2061 | 10.2k | } |
2062 | 128k | if (fMatchOpenParen > where) { |
2063 | 0 | fMatchOpenParen++; |
2064 | 0 | } |
2065 | 128k | } |
2066 | | |
2067 | | |
2068 | | //------------------------------------------------------------------------------ |
2069 | | // |
2070 | | // allocateData() Allocate storage in the matcher's static data area. |
2071 | | // Return the index for the newly allocated data. |
2072 | | // The storage won't actually exist until we are running a match |
2073 | | // operation, but the storage indexes are inserted into various |
2074 | | // opcodes while compiling the pattern. |
2075 | | // |
2076 | | //------------------------------------------------------------------------------ |
2077 | 70.7k | int32_t RegexCompile::allocateData(int32_t size) { |
2078 | 70.7k | if (U_FAILURE(*fStatus)) { |
2079 | 12 | return 0; |
2080 | 12 | } |
2081 | 70.7k | if (size <= 0 || size > 0x100 || fRXPat->fDataSize < 0) { |
2082 | 0 | error(U_REGEX_INTERNAL_ERROR); |
2083 | 0 | return 0; |
2084 | 0 | } |
2085 | 70.7k | int32_t dataIndex = fRXPat->fDataSize; |
2086 | 70.7k | fRXPat->fDataSize += size; |
2087 | 70.7k | if (fRXPat->fDataSize >= 0x00fffff0) { |
2088 | 0 | error(U_REGEX_INTERNAL_ERROR); |
2089 | 0 | } |
2090 | 70.7k | return dataIndex; |
2091 | 70.7k | } |
2092 | | |
2093 | | |
2094 | | //------------------------------------------------------------------------------ |
2095 | | // |
2096 | | // allocateStackData() Allocate space in the back-tracking stack frame. |
2097 | | // Return the index for the newly allocated data. |
2098 | | // The frame indexes are inserted into various |
2099 | | // opcodes while compiling the pattern, meaning that frame |
2100 | | // size must be restricted to the size that will fit |
2101 | | // as an operand (24 bits). |
2102 | | // |
2103 | | //------------------------------------------------------------------------------ |
2104 | 330k | int32_t RegexCompile::allocateStackData(int32_t size) { |
2105 | 330k | if (U_FAILURE(*fStatus)) { |
2106 | 0 | return 0; |
2107 | 0 | } |
2108 | 330k | if (size <= 0 || size > 0x100 || fRXPat->fFrameSize < 0) { |
2109 | 0 | error(U_REGEX_INTERNAL_ERROR); |
2110 | 0 | return 0; |
2111 | 0 | } |
2112 | 330k | int32_t dataIndex = fRXPat->fFrameSize; |
2113 | 330k | fRXPat->fFrameSize += size; |
2114 | 330k | if (fRXPat->fFrameSize >= 0x00fffff0) { |
2115 | 0 | error(U_REGEX_PATTERN_TOO_BIG); |
2116 | 0 | } |
2117 | 330k | return dataIndex; |
2118 | 330k | } |
2119 | | |
2120 | | |
2121 | | //------------------------------------------------------------------------------ |
2122 | | // |
2123 | | // blockTopLoc() Find or create a location in the compiled pattern |
2124 | | // at the start of the operation or block that has |
2125 | | // just been compiled. Needed when a quantifier (* or |
2126 | | // whatever) appears, and we need to add an operation |
2127 | | // at the start of the thing being quantified. |
2128 | | // |
2129 | | // (Parenthesized Blocks) have a slot with a NOP that |
2130 | | // is reserved for this purpose. .* or similar don't |
2131 | | // and a slot needs to be added. |
2132 | | // |
2133 | | // parameter reserveLoc : true - ensure that there is space to add an opcode |
2134 | | // at the returned location. |
2135 | | // false - just return the address, |
2136 | | // do not reserve a location there. |
2137 | | // |
2138 | | //------------------------------------------------------------------------------ |
2139 | 476k | int32_t RegexCompile::blockTopLoc(UBool reserveLoc) { |
2140 | 476k | int32_t theLoc; |
2141 | 476k | fixLiterals(true); // Emit code for any pending literals. |
2142 | | // If last item was a string, emit separate op for the its last char. |
2143 | 476k | if (fRXPat->fCompiledPat->size() == fMatchCloseParen) |
2144 | 8.04k | { |
2145 | | // The item just processed is a parenthesized block. |
2146 | 8.04k | theLoc = fMatchOpenParen; // A slot is already reserved for us. |
2147 | 8.04k | U_ASSERT(theLoc > 0); |
2148 | 8.04k | U_ASSERT(URX_TYPE(((uint32_t)fRXPat->fCompiledPat->elementAti(theLoc))) == URX_NOP); |
2149 | 8.04k | } |
2150 | 468k | else { |
2151 | | // Item just compiled is a single thing, a ".", or a single char, a string or a set reference. |
2152 | | // No slot for STATE_SAVE was pre-reserved in the compiled code. |
2153 | | // We need to make space now. |
2154 | 468k | theLoc = fRXPat->fCompiledPat->size()-1; |
2155 | 468k | int32_t opAtTheLoc = (int32_t)fRXPat->fCompiledPat->elementAti(theLoc); |
2156 | 468k | if (URX_TYPE(opAtTheLoc) == URX_STRING_LEN) { |
2157 | | // Strings take two opcode, we want the position of the first one. |
2158 | | // We can have a string at this point if a single character case-folded to two. |
2159 | 299k | theLoc--; |
2160 | 299k | } |
2161 | 468k | if (reserveLoc) { |
2162 | 183k | int32_t nop = buildOp(URX_NOP, 0); |
2163 | 183k | fRXPat->fCompiledPat->insertElementAt(nop, theLoc, *fStatus); |
2164 | 183k | } |
2165 | 468k | } |
2166 | 476k | return theLoc; |
2167 | 476k | } |
2168 | | |
2169 | | |
2170 | | |
2171 | | //------------------------------------------------------------------------------ |
2172 | | // |
2173 | | // handleCloseParen When compiling a close paren, we need to go back |
2174 | | // and fix up any JMP or SAVE operations within the |
2175 | | // parenthesized block that need to target the end |
2176 | | // of the block. The locations of these are kept on |
2177 | | // the paretheses stack. |
2178 | | // |
2179 | | // This function is called both when encountering a |
2180 | | // real ) and at the end of the pattern. |
2181 | | // |
2182 | | //------------------------------------------------------------------------------ |
2183 | 378k | void RegexCompile::handleCloseParen() { |
2184 | 378k | int32_t patIdx; |
2185 | 378k | int32_t patOp; |
2186 | 378k | if (fParenStack.size() <= 0) { |
2187 | 0 | error(U_REGEX_MISMATCHED_PAREN); |
2188 | 0 | return; |
2189 | 0 | } |
2190 | | |
2191 | | // Emit code for any pending literals. |
2192 | 378k | fixLiterals(false); |
2193 | | |
2194 | | // Fixup any operations within the just-closed parenthesized group |
2195 | | // that need to reference the end of the (block). |
2196 | | // (The first one popped from the stack is an unused slot for |
2197 | | // alternation (OR) state save, but applying the fixup to it does no harm.) |
2198 | 18.8M | for (;;) { |
2199 | 18.8M | patIdx = fParenStack.popi(); |
2200 | 18.8M | if (patIdx < 0) { |
2201 | | // value < 0 flags the start of the frame on the paren stack. |
2202 | 378k | break; |
2203 | 378k | } |
2204 | 18.4M | U_ASSERT(patIdx>0 && patIdx <= fRXPat->fCompiledPat->size()); |
2205 | 18.4M | patOp = (int32_t)fRXPat->fCompiledPat->elementAti(patIdx); |
2206 | 18.4M | U_ASSERT(URX_VAL(patOp) == 0); // Branch target for JMP should not be set. |
2207 | 18.4M | patOp |= fRXPat->fCompiledPat->size(); // Set it now. |
2208 | 18.4M | fRXPat->fCompiledPat->setElementAt(patOp, patIdx); |
2209 | 18.4M | fMatchOpenParen = patIdx; |
2210 | 18.4M | } |
2211 | | |
2212 | | // At the close of any parenthesized block, restore the match mode flags to |
2213 | | // the value they had at the open paren. Saved value is |
2214 | | // at the top of the paren stack. |
2215 | 378k | fModeFlags = fParenStack.popi(); |
2216 | 378k | U_ASSERT(fModeFlags < 0); |
2217 | | |
2218 | | // DO any additional fixups, depending on the specific kind of |
2219 | | // parentesized grouping this is |
2220 | | |
2221 | 378k | switch (patIdx) { |
2222 | 5.29k | case plain: |
2223 | 9.97k | case flags: |
2224 | | // No additional fixups required. |
2225 | | // (Grouping-only parentheses) |
2226 | 9.97k | break; |
2227 | 303k | case capturing: |
2228 | | // Capturing Parentheses. |
2229 | | // Insert a End Capture op into the pattern. |
2230 | | // The frame offset of the variables for this cg is obtained from the |
2231 | | // start capture op and put it into the end-capture op. |
2232 | 303k | { |
2233 | 303k | int32_t captureOp = (int32_t)fRXPat->fCompiledPat->elementAti(fMatchOpenParen+1); |
2234 | 303k | U_ASSERT(URX_TYPE(captureOp) == URX_START_CAPTURE); |
2235 | | |
2236 | 303k | int32_t frameVarLocation = URX_VAL(captureOp); |
2237 | 303k | appendOp(URX_END_CAPTURE, frameVarLocation); |
2238 | 303k | } |
2239 | 303k | break; |
2240 | 581 | case atomic: |
2241 | | // Atomic Parenthesis. |
2242 | | // Insert a LD_SP operation to restore the state stack to the position |
2243 | | // it was when the atomic parens were entered. |
2244 | 581 | { |
2245 | 581 | int32_t stoOp = (int32_t)fRXPat->fCompiledPat->elementAti(fMatchOpenParen+1); |
2246 | 581 | U_ASSERT(URX_TYPE(stoOp) == URX_STO_SP); |
2247 | 581 | int32_t stoLoc = URX_VAL(stoOp); |
2248 | 581 | appendOp(URX_LD_SP, stoLoc); |
2249 | 581 | } |
2250 | 581 | break; |
2251 | | |
2252 | 60.1k | case lookAhead: |
2253 | 60.1k | { |
2254 | 60.1k | int32_t startOp = (int32_t)fRXPat->fCompiledPat->elementAti(fMatchOpenParen-5); |
2255 | 60.1k | U_ASSERT(URX_TYPE(startOp) == URX_LA_START); |
2256 | 60.1k | int32_t dataLoc = URX_VAL(startOp); |
2257 | 60.1k | appendOp(URX_LA_END, dataLoc); |
2258 | 60.1k | } |
2259 | 60.1k | break; |
2260 | | |
2261 | 851 | case negLookAhead: |
2262 | 851 | { |
2263 | | // See comment at doOpenLookAheadNeg |
2264 | 851 | int32_t startOp = (int32_t)fRXPat->fCompiledPat->elementAti(fMatchOpenParen-1); |
2265 | 851 | U_ASSERT(URX_TYPE(startOp) == URX_LA_START); |
2266 | 851 | int32_t dataLoc = URX_VAL(startOp); |
2267 | 851 | appendOp(URX_LA_END, dataLoc); |
2268 | 851 | appendOp(URX_BACKTRACK, 0); |
2269 | 851 | appendOp(URX_LA_END, dataLoc); |
2270 | | |
2271 | | // Patch the URX_SAVE near the top of the block. |
2272 | | // The destination of the SAVE is the final LA_END that was just added. |
2273 | 851 | int32_t saveOp = (int32_t)fRXPat->fCompiledPat->elementAti(fMatchOpenParen); |
2274 | 851 | U_ASSERT(URX_TYPE(saveOp) == URX_STATE_SAVE); |
2275 | 851 | int32_t dest = fRXPat->fCompiledPat->size()-1; |
2276 | 851 | saveOp = buildOp(URX_STATE_SAVE, dest); |
2277 | 851 | fRXPat->fCompiledPat->setElementAt(saveOp, fMatchOpenParen); |
2278 | 851 | } |
2279 | 851 | break; |
2280 | | |
2281 | 1.52k | case lookBehind: |
2282 | 1.52k | { |
2283 | | // See comment at doOpenLookBehind. |
2284 | | |
2285 | | // Append the URX_LB_END and URX_LA_END to the compiled pattern. |
2286 | 1.52k | int32_t startOp = (int32_t)fRXPat->fCompiledPat->elementAti(fMatchOpenParen-4); |
2287 | 1.52k | U_ASSERT(URX_TYPE(startOp) == URX_LB_START); |
2288 | 1.52k | int32_t dataLoc = URX_VAL(startOp); |
2289 | 1.52k | appendOp(URX_LB_END, dataLoc); |
2290 | 1.52k | appendOp(URX_LA_END, dataLoc); |
2291 | | |
2292 | | // Determine the min and max bounds for the length of the |
2293 | | // string that the pattern can match. |
2294 | | // An unbounded upper limit is an error. |
2295 | 1.52k | int32_t patEnd = fRXPat->fCompiledPat->size() - 1; |
2296 | 1.52k | int32_t minML = minMatchLength(fMatchOpenParen, patEnd); |
2297 | 1.52k | int32_t maxML = maxMatchLength(fMatchOpenParen, patEnd); |
2298 | 1.52k | if (URX_TYPE(maxML) != 0) { |
2299 | 143 | error(U_REGEX_LOOK_BEHIND_LIMIT); |
2300 | 143 | break; |
2301 | 143 | } |
2302 | 1.37k | if (maxML == INT32_MAX) { |
2303 | 0 | error(U_REGEX_LOOK_BEHIND_LIMIT); |
2304 | 0 | break; |
2305 | 0 | } |
2306 | 1.37k | if (minML == INT32_MAX) { |
2307 | | // This condition happens when no match is possible, such as with a |
2308 | | // [set] expression containing no elements. |
2309 | | // In principle, the generated code to evaluate the expression could be deleted, |
2310 | | // but it's probably not worth the complication. |
2311 | 249 | minML = 0; |
2312 | 249 | } |
2313 | 1.37k | U_ASSERT(minML <= maxML); |
2314 | | |
2315 | | // Insert the min and max match len bounds into the URX_LB_CONT op that |
2316 | | // appears at the top of the look-behind block, at location fMatchOpenParen+1 |
2317 | 1.37k | fRXPat->fCompiledPat->setElementAt(minML, fMatchOpenParen-2); |
2318 | 1.37k | fRXPat->fCompiledPat->setElementAt(maxML, fMatchOpenParen-1); |
2319 | | |
2320 | 1.37k | } |
2321 | 0 | break; |
2322 | | |
2323 | | |
2324 | | |
2325 | 1.64k | case lookBehindN: |
2326 | 1.64k | { |
2327 | | // See comment at doOpenLookBehindNeg. |
2328 | | |
2329 | | // Append the URX_LBN_END to the compiled pattern. |
2330 | 1.64k | int32_t startOp = (int32_t)fRXPat->fCompiledPat->elementAti(fMatchOpenParen-5); |
2331 | 1.64k | U_ASSERT(URX_TYPE(startOp) == URX_LB_START); |
2332 | 1.64k | int32_t dataLoc = URX_VAL(startOp); |
2333 | 1.64k | appendOp(URX_LBN_END, dataLoc); |
2334 | | |
2335 | | // Determine the min and max bounds for the length of the |
2336 | | // string that the pattern can match. |
2337 | | // An unbounded upper limit is an error. |
2338 | 1.64k | int32_t patEnd = fRXPat->fCompiledPat->size() - 1; |
2339 | 1.64k | int32_t minML = minMatchLength(fMatchOpenParen, patEnd); |
2340 | 1.64k | int32_t maxML = maxMatchLength(fMatchOpenParen, patEnd); |
2341 | 1.64k | if (URX_TYPE(maxML) != 0) { |
2342 | 180 | error(U_REGEX_LOOK_BEHIND_LIMIT); |
2343 | 180 | break; |
2344 | 180 | } |
2345 | 1.46k | if (maxML == INT32_MAX) { |
2346 | 0 | error(U_REGEX_LOOK_BEHIND_LIMIT); |
2347 | 0 | break; |
2348 | 0 | } |
2349 | 1.46k | if (minML == INT32_MAX) { |
2350 | | // This condition happens when no match is possible, such as with a |
2351 | | // [set] expression containing no elements. |
2352 | | // In principle, the generated code to evaluate the expression could be deleted, |
2353 | | // but it's probably not worth the complication. |
2354 | 216 | minML = 0; |
2355 | 216 | } |
2356 | | |
2357 | 1.46k | U_ASSERT(minML <= maxML); |
2358 | | |
2359 | | // Insert the min and max match len bounds into the URX_LB_CONT op that |
2360 | | // appears at the top of the look-behind block, at location fMatchOpenParen+1 |
2361 | 1.46k | fRXPat->fCompiledPat->setElementAt(minML, fMatchOpenParen-3); |
2362 | 1.46k | fRXPat->fCompiledPat->setElementAt(maxML, fMatchOpenParen-2); |
2363 | | |
2364 | | // Insert the pattern location to continue at after a successful match |
2365 | | // as the last operand of the URX_LBN_CONT |
2366 | 1.46k | int32_t op = buildOp(URX_RELOC_OPRND, fRXPat->fCompiledPat->size()); |
2367 | 1.46k | fRXPat->fCompiledPat->setElementAt(op, fMatchOpenParen-1); |
2368 | 1.46k | } |
2369 | 0 | break; |
2370 | | |
2371 | | |
2372 | | |
2373 | 0 | default: |
2374 | 0 | UPRV_UNREACHABLE_EXIT; |
2375 | 378k | } |
2376 | | |
2377 | | // remember the next location in the compiled pattern. |
2378 | | // The compilation of Quantifiers will look at this to see whether its looping |
2379 | | // over a parenthesized block or a single item |
2380 | 378k | fMatchCloseParen = fRXPat->fCompiledPat->size(); |
2381 | 378k | } |
2382 | | |
2383 | | |
2384 | | |
2385 | | //------------------------------------------------------------------------------ |
2386 | | // |
2387 | | // compileSet Compile the pattern operations for a reference to a |
2388 | | // UnicodeSet. |
2389 | | // |
2390 | | //------------------------------------------------------------------------------ |
2391 | | void RegexCompile::compileSet(UnicodeSet *theSet) |
2392 | 573k | { |
2393 | 573k | if (theSet == nullptr) { |
2394 | 110 | return; |
2395 | 110 | } |
2396 | | // Remove any strings from the set. |
2397 | | // There shouldn't be any, but just in case. |
2398 | | // (Case Closure can add them; if we had a simple case closure available that |
2399 | | // ignored strings, that would be better.) |
2400 | 573k | theSet->removeAllStrings(); |
2401 | 573k | int32_t setSize = theSet->size(); |
2402 | | |
2403 | 573k | switch (setSize) { |
2404 | 4.47k | case 0: |
2405 | 4.47k | { |
2406 | | // Set of no elements. Always fails to match. |
2407 | 4.47k | appendOp(URX_BACKTRACK, 0); |
2408 | 4.47k | delete theSet; |
2409 | 4.47k | } |
2410 | 4.47k | break; |
2411 | | |
2412 | 6.51k | case 1: |
2413 | 6.51k | { |
2414 | | // The set contains only a single code point. Put it into |
2415 | | // the compiled pattern as a single char operation rather |
2416 | | // than a set, and discard the set itself. |
2417 | 6.51k | literalChar(theSet->charAt(0)); |
2418 | 6.51k | delete theSet; |
2419 | 6.51k | } |
2420 | 6.51k | break; |
2421 | | |
2422 | 562k | default: |
2423 | 562k | { |
2424 | | // The set contains two or more chars. (the normal case) |
2425 | | // Put it into the compiled pattern as a set. |
2426 | 562k | theSet->freeze(); |
2427 | 562k | int32_t setNumber = fRXPat->fSets->size(); |
2428 | 562k | fRXPat->fSets->addElement(theSet, *fStatus); |
2429 | 562k | if (U_SUCCESS(*fStatus)) { |
2430 | 562k | appendOp(URX_SETREF, setNumber); |
2431 | 562k | } else { |
2432 | 3 | delete theSet; |
2433 | 3 | } |
2434 | 562k | } |
2435 | 573k | } |
2436 | 573k | } |
2437 | | |
2438 | | |
2439 | | //------------------------------------------------------------------------------ |
2440 | | // |
2441 | | // compileInterval Generate the code for a {min, max} style interval quantifier. |
2442 | | // Except for the specific opcodes used, the code is the same |
2443 | | // for all three types (greedy, non-greedy, possessive) of |
2444 | | // intervals. The opcodes are supplied as parameters. |
2445 | | // (There are two sets of opcodes - greedy & possessive use the |
2446 | | // same ones, while non-greedy has it's own.) |
2447 | | // |
2448 | | // The code for interval loops has this form: |
2449 | | // 0 CTR_INIT counter loc (in stack frame) |
2450 | | // 1 5 patt address of CTR_LOOP at bottom of block |
2451 | | // 2 min count |
2452 | | // 3 max count (-1 for unbounded) |
2453 | | // 4 ... block to be iterated over |
2454 | | // 5 CTR_LOOP |
2455 | | // |
2456 | | // In |
2457 | | //------------------------------------------------------------------------------ |
2458 | | void RegexCompile::compileInterval(int32_t InitOp, int32_t LoopOp) |
2459 | 8.88k | { |
2460 | | // The CTR_INIT op at the top of the block with the {n,m} quantifier takes |
2461 | | // four slots in the compiled code. Reserve them. |
2462 | 8.88k | int32_t topOfBlock = blockTopLoc(true); |
2463 | 8.88k | insertOp(topOfBlock); |
2464 | 8.88k | insertOp(topOfBlock); |
2465 | 8.88k | insertOp(topOfBlock); |
2466 | | |
2467 | | // The operands for the CTR_INIT opcode include the index in the matcher data |
2468 | | // of the counter. Allocate it now. There are two data items |
2469 | | // counterLoc --> Loop counter |
2470 | | // +1 --> Input index (for breaking non-progressing loops) |
2471 | | // (Only present if unbounded upper limit on loop) |
2472 | 8.88k | int32_t dataSize = fIntervalUpper < 0 ? 2 : 1; |
2473 | 8.88k | int32_t counterLoc = allocateStackData(dataSize); |
2474 | | |
2475 | 8.88k | int32_t op = buildOp(InitOp, counterLoc); |
2476 | 8.88k | fRXPat->fCompiledPat->setElementAt(op, topOfBlock); |
2477 | | |
2478 | | // The second operand of CTR_INIT is the location following the end of the loop. |
2479 | | // Must put in as a URX_RELOC_OPRND so that the value will be adjusted if the |
2480 | | // compilation of something later on causes the code to grow and the target |
2481 | | // position to move. |
2482 | 8.88k | int32_t loopEnd = fRXPat->fCompiledPat->size(); |
2483 | 8.88k | op = buildOp(URX_RELOC_OPRND, loopEnd); |
2484 | 8.88k | fRXPat->fCompiledPat->setElementAt(op, topOfBlock+1); |
2485 | | |
2486 | | // Followed by the min and max counts. |
2487 | 8.88k | fRXPat->fCompiledPat->setElementAt(fIntervalLow, topOfBlock+2); |
2488 | 8.88k | fRXPat->fCompiledPat->setElementAt(fIntervalUpper, topOfBlock+3); |
2489 | | |
2490 | | // Append the CTR_LOOP op. The operand is the location of the CTR_INIT op. |
2491 | | // Goes at end of the block being looped over, so just append to the code so far. |
2492 | 8.88k | appendOp(LoopOp, topOfBlock); |
2493 | | |
2494 | 8.88k | if ((fIntervalLow & 0xff000000) != 0 || |
2495 | 8.88k | (fIntervalUpper > 0 && (fIntervalUpper & 0xff000000) != 0)) { |
2496 | 31 | error(U_REGEX_NUMBER_TOO_BIG); |
2497 | 31 | } |
2498 | | |
2499 | 8.88k | if (fIntervalLow > fIntervalUpper && fIntervalUpper != -1) { |
2500 | 16 | error(U_REGEX_MAX_LT_MIN); |
2501 | 16 | } |
2502 | 8.88k | } |
2503 | | |
2504 | | |
2505 | | |
2506 | 104k | UBool RegexCompile::compileInlineInterval() { |
2507 | 104k | if (fIntervalUpper > 10 || fIntervalUpper < fIntervalLow) { |
2508 | | // Too big to inline. Fail, which will cause looping code to be generated. |
2509 | | // (Upper < Lower picks up unbounded upper and errors, both.) |
2510 | 2.87k | return false; |
2511 | 2.87k | } |
2512 | | |
2513 | 101k | int32_t topOfBlock = blockTopLoc(false); |
2514 | 101k | if (fIntervalUpper == 0) { |
2515 | | // Pathological case. Attempt no matches, as if the block doesn't exist. |
2516 | | // Discard the generated code for the block. |
2517 | | // If the block included parens, discard the info pertaining to them as well. |
2518 | 1.88k | fRXPat->fCompiledPat->setSize(topOfBlock); |
2519 | 1.88k | if (fMatchOpenParen >= topOfBlock) { |
2520 | 398 | fMatchOpenParen = -1; |
2521 | 398 | } |
2522 | 1.88k | if (fMatchCloseParen >= topOfBlock) { |
2523 | 398 | fMatchCloseParen = -1; |
2524 | 398 | } |
2525 | 1.88k | return true; |
2526 | 1.88k | } |
2527 | | |
2528 | 99.9k | if (topOfBlock != fRXPat->fCompiledPat->size()-1 && fIntervalUpper != 1) { |
2529 | | // The thing being repeated is not a single op, but some |
2530 | | // more complex block. Do it as a loop, not inlines. |
2531 | | // Note that things "repeated" a max of once are handled as inline, because |
2532 | | // the one copy of the code already generated is just fine. |
2533 | 838 | return false; |
2534 | 838 | } |
2535 | | |
2536 | | // Pick up the opcode that is to be repeated |
2537 | | // |
2538 | 99.1k | int32_t op = (int32_t)fRXPat->fCompiledPat->elementAti(topOfBlock); |
2539 | | |
2540 | | // Compute the pattern location where the inline sequence |
2541 | | // will end, and set up the state save op that will be needed. |
2542 | | // |
2543 | 99.1k | int32_t endOfSequenceLoc = fRXPat->fCompiledPat->size()-1 |
2544 | 99.1k | + fIntervalUpper + (fIntervalUpper-fIntervalLow); |
2545 | 99.1k | int32_t saveOp = buildOp(URX_STATE_SAVE, endOfSequenceLoc); |
2546 | 99.1k | if (fIntervalLow == 0) { |
2547 | 95.2k | insertOp(topOfBlock); |
2548 | 95.2k | fRXPat->fCompiledPat->setElementAt(saveOp, topOfBlock); |
2549 | 95.2k | } |
2550 | | |
2551 | | |
2552 | | |
2553 | | // Loop, emitting the op for the thing being repeated each time. |
2554 | | // Loop starts at 1 because one instance of the op already exists in the pattern, |
2555 | | // it was put there when it was originally encountered. |
2556 | 99.1k | int32_t i; |
2557 | 883k | for (i=1; i<fIntervalUpper; i++ ) { |
2558 | 784k | if (i >= fIntervalLow) { |
2559 | 766k | appendOp(saveOp); |
2560 | 766k | } |
2561 | 784k | appendOp(op); |
2562 | 784k | } |
2563 | 99.1k | return true; |
2564 | 99.9k | } |
2565 | | |
2566 | | |
2567 | | |
2568 | | //------------------------------------------------------------------------------ |
2569 | | // |
2570 | | // caseInsensitiveStart given a single code point from a pattern string, determine the |
2571 | | // set of characters that could potentially begin a case-insensitive |
2572 | | // match of a string beginning with that character, using full Unicode |
2573 | | // case insensitive matching. |
2574 | | // |
2575 | | // This is used in optimizing find(). |
2576 | | // |
2577 | | // closeOver(USET_CASE_INSENSITIVE) does most of what is needed, but |
2578 | | // misses cases like this: |
2579 | | // A string from the pattern begins with 'ss' (although all we know |
2580 | | // in this context is that it begins with 's') |
2581 | | // The pattern could match a string beginning with a German sharp-s |
2582 | | // |
2583 | | // To the ordinary case closure for a character c, we add all other |
2584 | | // characters cx where the case closure of cx includes a string form that begins |
2585 | | // with the original character c. |
2586 | | // |
2587 | | // This function could be made smarter. The full pattern string is available |
2588 | | // and it would be possible to verify that the extra characters being added |
2589 | | // to the starting set fully match, rather than having just a first-char of the |
2590 | | // folded form match. |
2591 | | // |
2592 | | //------------------------------------------------------------------------------ |
2593 | 64.3k | void RegexCompile::findCaseInsensitiveStarters(UChar32 c, UnicodeSet *starterChars) { |
2594 | | |
2595 | | // Machine Generated below. |
2596 | | // It may need updating with new versions of Unicode. |
2597 | | // Intltest test RegexTest::TestCaseInsensitiveStarters will fail if an update is needed. |
2598 | | // The update tool is here: |
2599 | | // https://github.com/unicode-org/icu/tree/main/tools/unicode/c/genregexcasing |
2600 | | |
2601 | | // Machine Generated Data. Do not hand edit. |
2602 | 64.3k | static const UChar32 RECaseFixCodePoints[] = { |
2603 | 64.3k | 0x61, 0x66, 0x68, 0x69, 0x6a, 0x73, 0x74, 0x77, 0x79, 0x2bc, |
2604 | 64.3k | 0x3ac, 0x3ae, 0x3b1, 0x3b7, 0x3b9, 0x3c1, 0x3c5, 0x3c9, 0x3ce, 0x565, |
2605 | 64.3k | 0x574, 0x57e, 0x1f00, 0x1f01, 0x1f02, 0x1f03, 0x1f04, 0x1f05, 0x1f06, 0x1f07, |
2606 | 64.3k | 0x1f20, 0x1f21, 0x1f22, 0x1f23, 0x1f24, 0x1f25, 0x1f26, 0x1f27, 0x1f60, 0x1f61, |
2607 | 64.3k | 0x1f62, 0x1f63, 0x1f64, 0x1f65, 0x1f66, 0x1f67, 0x1f70, 0x1f74, 0x1f7c, 0x110000}; |
2608 | | |
2609 | 64.3k | static const int16_t RECaseFixStringOffsets[] = { |
2610 | 64.3k | 0x0, 0x1, 0x6, 0x7, 0x8, 0x9, 0xd, 0xe, 0xf, 0x10, |
2611 | 64.3k | 0x11, 0x12, 0x13, 0x17, 0x1b, 0x20, 0x21, 0x2a, 0x2e, 0x2f, |
2612 | 64.3k | 0x30, 0x34, 0x35, 0x37, 0x39, 0x3b, 0x3d, 0x3f, 0x41, 0x43, |
2613 | 64.3k | 0x45, 0x47, 0x49, 0x4b, 0x4d, 0x4f, 0x51, 0x53, 0x55, 0x57, |
2614 | 64.3k | 0x59, 0x5b, 0x5d, 0x5f, 0x61, 0x63, 0x65, 0x66, 0x67, 0}; |
2615 | | |
2616 | 64.3k | static const int16_t RECaseFixCounts[] = { |
2617 | 64.3k | 0x1, 0x5, 0x1, 0x1, 0x1, 0x4, 0x1, 0x1, 0x1, 0x1, |
2618 | 64.3k | 0x1, 0x1, 0x4, 0x4, 0x5, 0x1, 0x9, 0x4, 0x1, 0x1, |
2619 | 64.3k | 0x4, 0x1, 0x2, 0x2, 0x2, 0x2, 0x2, 0x2, 0x2, 0x2, |
2620 | 64.3k | 0x2, 0x2, 0x2, 0x2, 0x2, 0x2, 0x2, 0x2, 0x2, 0x2, |
2621 | 64.3k | 0x2, 0x2, 0x2, 0x2, 0x2, 0x2, 0x1, 0x1, 0x1, 0}; |
2622 | | |
2623 | 64.3k | static const char16_t RECaseFixData[] = { |
2624 | 64.3k | 0x1e9a, 0xfb00, 0xfb01, 0xfb02, 0xfb03, 0xfb04, 0x1e96, 0x130, 0x1f0, 0xdf, |
2625 | 64.3k | 0x1e9e, 0xfb05, 0xfb06, 0x1e97, 0x1e98, 0x1e99, 0x149, 0x1fb4, 0x1fc4, 0x1fb3, |
2626 | 64.3k | 0x1fb6, 0x1fb7, 0x1fbc, 0x1fc3, 0x1fc6, 0x1fc7, 0x1fcc, 0x390, 0x1fd2, 0x1fd3, |
2627 | 64.3k | 0x1fd6, 0x1fd7, 0x1fe4, 0x3b0, 0x1f50, 0x1f52, 0x1f54, 0x1f56, 0x1fe2, 0x1fe3, |
2628 | 64.3k | 0x1fe6, 0x1fe7, 0x1ff3, 0x1ff6, 0x1ff7, 0x1ffc, 0x1ff4, 0x587, 0xfb13, 0xfb14, |
2629 | 64.3k | 0xfb15, 0xfb17, 0xfb16, 0x1f80, 0x1f88, 0x1f81, 0x1f89, 0x1f82, 0x1f8a, 0x1f83, |
2630 | 64.3k | 0x1f8b, 0x1f84, 0x1f8c, 0x1f85, 0x1f8d, 0x1f86, 0x1f8e, 0x1f87, 0x1f8f, 0x1f90, |
2631 | 64.3k | 0x1f98, 0x1f91, 0x1f99, 0x1f92, 0x1f9a, 0x1f93, 0x1f9b, 0x1f94, 0x1f9c, 0x1f95, |
2632 | 64.3k | 0x1f9d, 0x1f96, 0x1f9e, 0x1f97, 0x1f9f, 0x1fa0, 0x1fa8, 0x1fa1, 0x1fa9, 0x1fa2, |
2633 | 64.3k | 0x1faa, 0x1fa3, 0x1fab, 0x1fa4, 0x1fac, 0x1fa5, 0x1fad, 0x1fa6, 0x1fae, 0x1fa7, |
2634 | 64.3k | 0x1faf, 0x1fb2, 0x1fc2, 0x1ff2, 0}; |
2635 | | |
2636 | | // End of machine generated data. |
2637 | | |
2638 | 64.3k | if (c < UCHAR_MIN_VALUE || c > UCHAR_MAX_VALUE) { |
2639 | | // This function should never be called with an invalid input character. |
2640 | 0 | UPRV_UNREACHABLE_EXIT; |
2641 | 64.3k | } else if (u_hasBinaryProperty(c, UCHAR_CASE_SENSITIVE)) { |
2642 | 14.4k | UChar32 caseFoldedC = u_foldCase(c, U_FOLD_CASE_DEFAULT); |
2643 | 14.4k | starterChars->set(caseFoldedC, caseFoldedC); |
2644 | | |
2645 | 14.4k | int32_t i; |
2646 | 425k | for (i=0; RECaseFixCodePoints[i]<c ; i++) { |
2647 | | // Simple linear search through the sorted list of interesting code points. |
2648 | 410k | } |
2649 | | |
2650 | 14.4k | if (RECaseFixCodePoints[i] == c) { |
2651 | 7.77k | int32_t dataIndex = RECaseFixStringOffsets[i]; |
2652 | 7.77k | int32_t numCharsToAdd = RECaseFixCounts[i]; |
2653 | 7.77k | UChar32 cpToAdd = 0; |
2654 | 42.8k | for (int32_t j=0; j<numCharsToAdd; j++) { |
2655 | 35.1k | U16_NEXT_UNSAFE(RECaseFixData, dataIndex, cpToAdd); |
2656 | 35.1k | starterChars->add(cpToAdd); |
2657 | 35.1k | } |
2658 | 7.77k | } |
2659 | | |
2660 | 14.4k | starterChars->closeOver(USET_CASE_INSENSITIVE); |
2661 | 14.4k | starterChars->removeAllStrings(); |
2662 | 49.9k | } else { |
2663 | | // Not a cased character. Just return it alone. |
2664 | 49.9k | starterChars->set(c, c); |
2665 | 49.9k | } |
2666 | 64.3k | } |
2667 | | |
2668 | | |
2669 | | // Increment with overflow check. |
2670 | | // val and delta will both be positive. |
2671 | | |
2672 | 3.38M | static int32_t safeIncrement(int32_t val, int32_t delta) { |
2673 | 3.38M | if (INT32_MAX - val > delta) { |
2674 | 3.33M | return val + delta; |
2675 | 3.33M | } else { |
2676 | 49.1k | return INT32_MAX; |
2677 | 49.1k | } |
2678 | 3.38M | } |
2679 | | |
2680 | | |
2681 | | //------------------------------------------------------------------------------ |
2682 | | // |
2683 | | // matchStartType Determine how a match can start. |
2684 | | // Used to optimize find() operations. |
2685 | | // |
2686 | | // Operation is very similar to minMatchLength(). Walk the compiled |
2687 | | // pattern, keeping an on-going minimum-match-length. For any |
2688 | | // op where the min match coming in is zero, add that ops possible |
2689 | | // starting matches to the possible starts for the overall pattern. |
2690 | | // |
2691 | | //------------------------------------------------------------------------------ |
2692 | 4.64k | void RegexCompile::matchStartType() { |
2693 | 4.64k | if (U_FAILURE(*fStatus)) { |
2694 | 45 | return; |
2695 | 45 | } |
2696 | | |
2697 | | |
2698 | 4.59k | int32_t loc; // Location in the pattern of the current op being processed. |
2699 | 4.59k | int32_t op; // The op being processed |
2700 | 4.59k | int32_t opType; // The opcode type of the op |
2701 | 4.59k | int32_t currentLen = 0; // Minimum length of a match to this point (loc) in the pattern |
2702 | 4.59k | int32_t numInitialStrings = 0; // Number of strings encountered that could match at start. |
2703 | | |
2704 | 4.59k | UBool atStart = true; // True if no part of the pattern yet encountered |
2705 | | // could have advanced the position in a match. |
2706 | | // (Maximum match length so far == 0) |
2707 | | |
2708 | | // forwardedLength is a vector holding minimum-match-length values that |
2709 | | // are propagated forward in the pattern by JMP or STATE_SAVE operations. |
2710 | | // It must be one longer than the pattern being checked because some ops |
2711 | | // will jmp to a end-of-block+1 location from within a block, and we must |
2712 | | // count those when checking the block. |
2713 | 4.59k | int32_t end = fRXPat->fCompiledPat->size(); |
2714 | 4.59k | UVector32 forwardedLength(end+1, *fStatus); |
2715 | 4.59k | forwardedLength.setSize(end+1); |
2716 | 27.7M | for (loc=3; loc<end; loc++) { |
2717 | 27.7M | forwardedLength.setElementAt(INT32_MAX, loc); |
2718 | 27.7M | } |
2719 | | |
2720 | 19.4M | for (loc = 3; loc<end; loc++) { |
2721 | 19.4M | op = (int32_t)fRXPat->fCompiledPat->elementAti(loc); |
2722 | 19.4M | opType = URX_TYPE(op); |
2723 | | |
2724 | | // The loop is advancing linearly through the pattern. |
2725 | | // If the op we are now at was the destination of a branch in the pattern, |
2726 | | // and that path has a shorter minimum length than the current accumulated value, |
2727 | | // replace the current accumulated value. |
2728 | 19.4M | if (forwardedLength.elementAti(loc) < currentLen) { |
2729 | 334k | currentLen = forwardedLength.elementAti(loc); |
2730 | 334k | U_ASSERT(currentLen>=0 && currentLen < INT32_MAX); |
2731 | 334k | } |
2732 | | |
2733 | 19.4M | switch (opType) { |
2734 | | // Ops that don't change the total length matched |
2735 | 0 | case URX_RESERVED_OP: |
2736 | 4.59k | case URX_END: |
2737 | 4.59k | case URX_FAIL: |
2738 | 4.59k | case URX_STRING_LEN: |
2739 | 4.59k | case URX_NOP: |
2740 | 76.7k | case URX_START_CAPTURE: |
2741 | 148k | case URX_END_CAPTURE: |
2742 | 149k | case URX_BACKSLASH_B: |
2743 | 149k | case URX_BACKSLASH_BU: |
2744 | 149k | case URX_BACKSLASH_G: |
2745 | 149k | case URX_BACKSLASH_Z: |
2746 | 150k | case URX_DOLLAR: |
2747 | 151k | case URX_DOLLAR_M: |
2748 | 151k | case URX_DOLLAR_D: |
2749 | 151k | case URX_DOLLAR_MD: |
2750 | 151k | case URX_RELOC_OPRND: |
2751 | 153k | case URX_STO_INP_LOC: |
2752 | 154k | case URX_BACKREF: // BackRef. Must assume that it might be a zero length match |
2753 | 154k | case URX_BACKREF_I: |
2754 | | |
2755 | 157k | case URX_STO_SP: // Setup for atomic or possessive blocks. Doesn't change what can match. |
2756 | 160k | case URX_LD_SP: |
2757 | 160k | break; |
2758 | | |
2759 | 3.37k | case URX_CARET: |
2760 | 3.37k | if (atStart) { |
2761 | 389 | fRXPat->fStartType = START_START; |
2762 | 389 | } |
2763 | 3.37k | break; |
2764 | | |
2765 | 586 | case URX_CARET_M: |
2766 | 1.04k | case URX_CARET_M_UNIX: |
2767 | 1.04k | if (atStart) { |
2768 | 269 | fRXPat->fStartType = START_LINE; |
2769 | 269 | } |
2770 | 1.04k | break; |
2771 | | |
2772 | 709k | case URX_ONECHAR: |
2773 | 709k | if (currentLen == 0) { |
2774 | | // This character could appear at the start of a match. |
2775 | | // Add it to the set of possible starting characters. |
2776 | 116k | fRXPat->fInitialChars->add(URX_VAL(op)); |
2777 | 116k | numInitialStrings += 2; |
2778 | 116k | } |
2779 | 709k | currentLen = safeIncrement(currentLen, 1); |
2780 | 709k | atStart = false; |
2781 | 709k | break; |
2782 | | |
2783 | | |
2784 | 393k | case URX_SETREF: |
2785 | 393k | if (currentLen == 0) { |
2786 | 1.42k | int32_t sn = URX_VAL(op); |
2787 | 1.42k | U_ASSERT(sn > 0 && sn < fRXPat->fSets->size()); |
2788 | 1.42k | const UnicodeSet *s = (UnicodeSet *)fRXPat->fSets->elementAt(sn); |
2789 | 1.42k | fRXPat->fInitialChars->addAll(*s); |
2790 | 1.42k | numInitialStrings += 2; |
2791 | 1.42k | } |
2792 | 393k | currentLen = safeIncrement(currentLen, 1); |
2793 | 393k | atStart = false; |
2794 | 393k | break; |
2795 | | |
2796 | 2.59k | case URX_LOOP_SR_I: |
2797 | | // [Set]*, like a SETREF, above, in what it can match, |
2798 | | // but may not match at all, so currentLen is not incremented. |
2799 | 2.59k | if (currentLen == 0) { |
2800 | 200 | int32_t sn = URX_VAL(op); |
2801 | 200 | U_ASSERT(sn > 0 && sn < fRXPat->fSets->size()); |
2802 | 200 | const UnicodeSet *s = (UnicodeSet *)fRXPat->fSets->elementAt(sn); |
2803 | 200 | fRXPat->fInitialChars->addAll(*s); |
2804 | 200 | numInitialStrings += 2; |
2805 | 200 | } |
2806 | 2.59k | atStart = false; |
2807 | 2.59k | break; |
2808 | | |
2809 | 1.82k | case URX_LOOP_DOT_I: |
2810 | 1.82k | if (currentLen == 0) { |
2811 | | // .* at the start of a pattern. |
2812 | | // Any character can begin the match. |
2813 | 333 | fRXPat->fInitialChars->clear(); |
2814 | 333 | fRXPat->fInitialChars->complement(); |
2815 | 333 | numInitialStrings += 2; |
2816 | 333 | } |
2817 | 1.82k | atStart = false; |
2818 | 1.82k | break; |
2819 | | |
2820 | | |
2821 | 2.06k | case URX_STATIC_SETREF: |
2822 | 2.06k | if (currentLen == 0) { |
2823 | 338 | int32_t sn = URX_VAL(op); |
2824 | 338 | U_ASSERT(sn>0 && sn<URX_LAST_SET); |
2825 | 338 | const UnicodeSet &s = RegexStaticSets::gStaticSets->fPropSets[sn]; |
2826 | 338 | fRXPat->fInitialChars->addAll(s); |
2827 | 338 | numInitialStrings += 2; |
2828 | 338 | } |
2829 | 2.06k | currentLen = safeIncrement(currentLen, 1); |
2830 | 2.06k | atStart = false; |
2831 | 2.06k | break; |
2832 | | |
2833 | | |
2834 | | |
2835 | 1.31k | case URX_STAT_SETREF_N: |
2836 | 1.31k | if (currentLen == 0) { |
2837 | 244 | int32_t sn = URX_VAL(op); |
2838 | 244 | UnicodeSet sc; |
2839 | 244 | sc.addAll(RegexStaticSets::gStaticSets->fPropSets[sn]).complement(); |
2840 | 244 | fRXPat->fInitialChars->addAll(sc); |
2841 | 244 | numInitialStrings += 2; |
2842 | 244 | } |
2843 | 1.31k | currentLen = safeIncrement(currentLen, 1); |
2844 | 1.31k | atStart = false; |
2845 | 1.31k | break; |
2846 | | |
2847 | | |
2848 | | |
2849 | 1.22k | case URX_BACKSLASH_D: |
2850 | | // Digit Char |
2851 | 1.22k | if (currentLen == 0) { |
2852 | 416 | UnicodeSet s; |
2853 | 416 | s.applyIntPropertyValue(UCHAR_GENERAL_CATEGORY_MASK, U_GC_ND_MASK, *fStatus); |
2854 | 416 | if (URX_VAL(op) != 0) { |
2855 | 204 | s.complement(); |
2856 | 204 | } |
2857 | 416 | fRXPat->fInitialChars->addAll(s); |
2858 | 416 | numInitialStrings += 2; |
2859 | 416 | } |
2860 | 1.22k | currentLen = safeIncrement(currentLen, 1); |
2861 | 1.22k | atStart = false; |
2862 | 1.22k | break; |
2863 | | |
2864 | | |
2865 | 1.82k | case URX_BACKSLASH_H: |
2866 | | // Horiz white space |
2867 | 1.82k | if (currentLen == 0) { |
2868 | 657 | UnicodeSet s; |
2869 | 657 | s.applyIntPropertyValue(UCHAR_GENERAL_CATEGORY_MASK, U_GC_ZS_MASK, *fStatus); |
2870 | 657 | s.add((UChar32)9); // Tab |
2871 | 657 | if (URX_VAL(op) != 0) { |
2872 | 456 | s.complement(); |
2873 | 456 | } |
2874 | 657 | fRXPat->fInitialChars->addAll(s); |
2875 | 657 | numInitialStrings += 2; |
2876 | 657 | } |
2877 | 1.82k | currentLen = safeIncrement(currentLen, 1); |
2878 | 1.82k | atStart = false; |
2879 | 1.82k | break; |
2880 | | |
2881 | | |
2882 | 387 | case URX_BACKSLASH_R: // Any line ending sequence |
2883 | 2.28k | case URX_BACKSLASH_V: // Any line ending code point, with optional negation |
2884 | 2.28k | if (currentLen == 0) { |
2885 | 976 | UnicodeSet s; |
2886 | 976 | s.add((UChar32)0x0a, (UChar32)0x0d); // add range |
2887 | 976 | s.add((UChar32)0x85); |
2888 | 976 | s.add((UChar32)0x2028, (UChar32)0x2029); |
2889 | 976 | if (URX_VAL(op) != 0) { |
2890 | | // Complement option applies to URX_BACKSLASH_V only. |
2891 | 390 | s.complement(); |
2892 | 390 | } |
2893 | 976 | fRXPat->fInitialChars->addAll(s); |
2894 | 976 | numInitialStrings += 2; |
2895 | 976 | } |
2896 | 2.28k | currentLen = safeIncrement(currentLen, 1); |
2897 | 2.28k | atStart = false; |
2898 | 2.28k | break; |
2899 | | |
2900 | | |
2901 | | |
2902 | 14.1k | case URX_ONECHAR_I: |
2903 | | // Case Insensitive Single Character. |
2904 | 14.1k | if (currentLen == 0) { |
2905 | 2.06k | UChar32 c = URX_VAL(op); |
2906 | 2.06k | if (u_hasBinaryProperty(c, UCHAR_CASE_SENSITIVE)) { |
2907 | 2.06k | UnicodeSet starters(c, c); |
2908 | 2.06k | starters.closeOver(USET_CASE_INSENSITIVE); |
2909 | | // findCaseInsensitiveStarters(c, &starters); |
2910 | | // For ONECHAR_I, no need to worry about text chars that expand on folding into strings. |
2911 | | // The expanded folding can't match the pattern. |
2912 | 2.06k | fRXPat->fInitialChars->addAll(starters); |
2913 | 2.06k | } else { |
2914 | | // Char has no case variants. Just add it as-is to the |
2915 | | // set of possible starting chars. |
2916 | 0 | fRXPat->fInitialChars->add(c); |
2917 | 0 | } |
2918 | 2.06k | numInitialStrings += 2; |
2919 | 2.06k | } |
2920 | 14.1k | currentLen = safeIncrement(currentLen, 1); |
2921 | 14.1k | atStart = false; |
2922 | 14.1k | break; |
2923 | | |
2924 | | |
2925 | 422 | case URX_BACKSLASH_X: // Grapheme Cluster. Minimum is 1, max unbounded. |
2926 | 1.06k | case URX_DOTANY_ALL: // . matches one or two. |
2927 | 4.27k | case URX_DOTANY: |
2928 | 4.67k | case URX_DOTANY_UNIX: |
2929 | 4.67k | if (currentLen == 0) { |
2930 | | // These constructs are all bad news when they appear at the start |
2931 | | // of a match. Any character can begin the match. |
2932 | 656 | fRXPat->fInitialChars->clear(); |
2933 | 656 | fRXPat->fInitialChars->complement(); |
2934 | 656 | numInitialStrings += 2; |
2935 | 656 | } |
2936 | 4.67k | currentLen = safeIncrement(currentLen, 1); |
2937 | 4.67k | atStart = false; |
2938 | 4.67k | break; |
2939 | | |
2940 | | |
2941 | 0 | case URX_JMPX: |
2942 | 0 | loc++; // Except for extra operand on URX_JMPX, same as URX_JMP. |
2943 | 0 | U_FALLTHROUGH; |
2944 | 8.53M | case URX_JMP: |
2945 | 8.53M | { |
2946 | 8.53M | int32_t jmpDest = URX_VAL(op); |
2947 | 8.53M | if (jmpDest < loc) { |
2948 | | // Loop of some kind. Can safely ignore, the worst that will happen |
2949 | | // is that we understate the true minimum length |
2950 | 2.33k | currentLen = forwardedLength.elementAti(loc+1); |
2951 | | |
2952 | 8.53M | } else { |
2953 | | // Forward jump. Propagate the current min length to the target loc of the jump. |
2954 | 8.53M | U_ASSERT(jmpDest <= end+1); |
2955 | 8.53M | if (forwardedLength.elementAti(jmpDest) > currentLen) { |
2956 | 1.92k | forwardedLength.setElementAt(currentLen, jmpDest); |
2957 | 1.92k | } |
2958 | 8.53M | } |
2959 | 8.53M | } |
2960 | 8.53M | atStart = false; |
2961 | 8.53M | break; |
2962 | | |
2963 | 122k | case URX_JMP_SAV: |
2964 | 124k | case URX_JMP_SAV_X: |
2965 | | // Combo of state save to the next loc, + jmp backwards. |
2966 | | // Net effect on min. length computation is nothing. |
2967 | 124k | atStart = false; |
2968 | 124k | break; |
2969 | | |
2970 | 1.90k | case URX_BACKTRACK: |
2971 | | // Fails are kind of like a branch, except that the min length was |
2972 | | // propagated already, by the state save. |
2973 | 1.90k | currentLen = forwardedLength.elementAti(loc+1); |
2974 | 1.90k | atStart = false; |
2975 | 1.90k | break; |
2976 | | |
2977 | | |
2978 | 9.28M | case URX_STATE_SAVE: |
2979 | 9.28M | { |
2980 | | // State Save, for forward jumps, propagate the current minimum. |
2981 | | // of the state save. |
2982 | 9.28M | int32_t jmpDest = URX_VAL(op); |
2983 | 9.28M | if (jmpDest > loc) { |
2984 | 9.28M | if (currentLen < forwardedLength.elementAti(jmpDest)) { |
2985 | 8.72M | forwardedLength.setElementAt(currentLen, jmpDest); |
2986 | 8.72M | } |
2987 | 9.28M | } |
2988 | 9.28M | } |
2989 | 9.28M | atStart = false; |
2990 | 9.28M | break; |
2991 | | |
2992 | | |
2993 | | |
2994 | | |
2995 | 26.2k | case URX_STRING: |
2996 | 26.2k | { |
2997 | 26.2k | loc++; |
2998 | 26.2k | int32_t stringLenOp = (int32_t)fRXPat->fCompiledPat->elementAti(loc); |
2999 | 26.2k | int32_t stringLen = URX_VAL(stringLenOp); |
3000 | 26.2k | U_ASSERT(URX_TYPE(stringLenOp) == URX_STRING_LEN); |
3001 | 26.2k | U_ASSERT(stringLenOp >= 2); |
3002 | 26.2k | if (currentLen == 0) { |
3003 | | // Add the starting character of this string to the set of possible starting |
3004 | | // characters for this pattern. |
3005 | 21.2k | int32_t stringStartIdx = URX_VAL(op); |
3006 | 21.2k | UChar32 c = fRXPat->fLiteralText.char32At(stringStartIdx); |
3007 | 21.2k | fRXPat->fInitialChars->add(c); |
3008 | | |
3009 | | // Remember this string. After the entire pattern has been checked, |
3010 | | // if nothing else is identified that can start a match, we'll use it. |
3011 | 21.2k | numInitialStrings++; |
3012 | 21.2k | fRXPat->fInitialStringIdx = stringStartIdx; |
3013 | 21.2k | fRXPat->fInitialStringLen = stringLen; |
3014 | 21.2k | } |
3015 | | |
3016 | 26.2k | currentLen = safeIncrement(currentLen, stringLen); |
3017 | 26.2k | atStart = false; |
3018 | 26.2k | } |
3019 | 26.2k | break; |
3020 | | |
3021 | 184k | case URX_STRING_I: |
3022 | 184k | { |
3023 | | // Case-insensitive string. Unlike exact-match strings, we won't |
3024 | | // attempt a string search for possible match positions. But we |
3025 | | // do update the set of possible starting characters. |
3026 | 184k | loc++; |
3027 | 184k | int32_t stringLenOp = (int32_t)fRXPat->fCompiledPat->elementAti(loc); |
3028 | 184k | int32_t stringLen = URX_VAL(stringLenOp); |
3029 | 184k | U_ASSERT(URX_TYPE(stringLenOp) == URX_STRING_LEN); |
3030 | 184k | U_ASSERT(stringLenOp >= 2); |
3031 | 184k | if (currentLen == 0) { |
3032 | | // Add the starting character of this string to the set of possible starting |
3033 | | // characters for this pattern. |
3034 | 64.3k | int32_t stringStartIdx = URX_VAL(op); |
3035 | 64.3k | UChar32 c = fRXPat->fLiteralText.char32At(stringStartIdx); |
3036 | 64.3k | UnicodeSet s; |
3037 | 64.3k | findCaseInsensitiveStarters(c, &s); |
3038 | 64.3k | fRXPat->fInitialChars->addAll(s); |
3039 | 64.3k | numInitialStrings += 2; // Matching on an initial string not possible. |
3040 | 64.3k | } |
3041 | 184k | currentLen = safeIncrement(currentLen, stringLen); |
3042 | 184k | atStart = false; |
3043 | 184k | } |
3044 | 184k | break; |
3045 | | |
3046 | 1.99k | case URX_CTR_INIT: |
3047 | 2.54k | case URX_CTR_INIT_NG: |
3048 | 2.54k | { |
3049 | | // Loop Init Ops. These don't change the min length, but they are 4 word ops |
3050 | | // so location must be updated accordingly. |
3051 | | // Loop Init Ops. |
3052 | | // If the min loop count == 0 |
3053 | | // move loc forwards to the end of the loop, skipping over the body. |
3054 | | // If the min count is > 0, |
3055 | | // continue normal processing of the body of the loop. |
3056 | 2.54k | int32_t loopEndLoc = (int32_t)fRXPat->fCompiledPat->elementAti(loc+1); |
3057 | 2.54k | loopEndLoc = URX_VAL(loopEndLoc); |
3058 | 2.54k | int32_t minLoopCount = (int32_t)fRXPat->fCompiledPat->elementAti(loc+2); |
3059 | 2.54k | if (minLoopCount == 0) { |
3060 | | // Min Loop Count of 0, treat like a forward branch and |
3061 | | // move the current minimum length up to the target |
3062 | | // (end of loop) location. |
3063 | 1.17k | U_ASSERT(loopEndLoc <= end+1); |
3064 | 1.17k | if (forwardedLength.elementAti(loopEndLoc) > currentLen) { |
3065 | 869 | forwardedLength.setElementAt(currentLen, loopEndLoc); |
3066 | 869 | } |
3067 | 1.17k | } |
3068 | 2.54k | loc+=3; // Skips over operands of CTR_INIT |
3069 | 2.54k | } |
3070 | 2.54k | atStart = false; |
3071 | 2.54k | break; |
3072 | | |
3073 | | |
3074 | 1.99k | case URX_CTR_LOOP: |
3075 | 2.54k | case URX_CTR_LOOP_NG: |
3076 | | // Loop ops. |
3077 | | // The jump is conditional, backwards only. |
3078 | 2.54k | atStart = false; |
3079 | 2.54k | break; |
3080 | | |
3081 | 4.41k | case URX_LOOP_C: |
3082 | | // More loop ops. These state-save to themselves. |
3083 | | // don't change the minimum match |
3084 | 4.41k | atStart = false; |
3085 | 4.41k | break; |
3086 | | |
3087 | | |
3088 | 522 | case URX_LA_START: |
3089 | 1.02k | case URX_LB_START: |
3090 | 1.02k | { |
3091 | | // Look-around. Scan forward until the matching look-ahead end, |
3092 | | // without processing the look-around block. This is overly pessimistic. |
3093 | | |
3094 | | // Keep track of the nesting depth of look-around blocks. Boilerplate code for |
3095 | | // lookahead contains two LA_END instructions, so count goes up by two |
3096 | | // for each LA_START. |
3097 | 1.02k | int32_t depth = (opType == URX_LA_START? 2: 1); |
3098 | 8.06M | for (;;) { |
3099 | 8.06M | loc++; |
3100 | 8.06M | op = (int32_t)fRXPat->fCompiledPat->elementAti(loc); |
3101 | 8.06M | if (URX_TYPE(op) == URX_LA_START) { |
3102 | 9.33k | depth+=2; |
3103 | 9.33k | } |
3104 | 8.06M | if (URX_TYPE(op) == URX_LB_START) { |
3105 | 598 | depth++; |
3106 | 598 | } |
3107 | 8.06M | if (URX_TYPE(op) == URX_LA_END || URX_TYPE(op)==URX_LBN_END) { |
3108 | 20.8k | depth--; |
3109 | 20.8k | if (depth == 0) { |
3110 | 1.02k | break; |
3111 | 1.02k | } |
3112 | 20.8k | } |
3113 | 8.06M | if (URX_TYPE(op) == URX_STATE_SAVE) { |
3114 | | // Need this because neg lookahead blocks will FAIL to outside |
3115 | | // of the block. |
3116 | 3.95M | int32_t jmpDest = URX_VAL(op); |
3117 | 3.95M | if (jmpDest > loc) { |
3118 | 3.95M | if (currentLen < forwardedLength.elementAti(jmpDest)) { |
3119 | 3.94M | forwardedLength.setElementAt(currentLen, jmpDest); |
3120 | 3.94M | } |
3121 | 3.95M | } |
3122 | 3.95M | } |
3123 | 8.06M | U_ASSERT(loc <= end); |
3124 | 8.06M | } |
3125 | 1.02k | } |
3126 | 1.02k | break; |
3127 | | |
3128 | 0 | case URX_LA_END: |
3129 | 0 | case URX_LB_CONT: |
3130 | 0 | case URX_LB_END: |
3131 | 0 | case URX_LBN_CONT: |
3132 | 0 | case URX_LBN_END: |
3133 | 0 | UPRV_UNREACHABLE_EXIT; // Shouldn't get here. These ops should be |
3134 | | // consumed by the scan in URX_LA_START and LB_START |
3135 | 0 | default: |
3136 | 0 | UPRV_UNREACHABLE_EXIT; |
3137 | 19.4M | } |
3138 | | |
3139 | 19.4M | } |
3140 | | |
3141 | | |
3142 | | // We have finished walking through the ops. Check whether some forward jump |
3143 | | // propagated a shorter length to location end+1. |
3144 | 4.59k | if (forwardedLength.elementAti(end+1) < currentLen) { |
3145 | 3.62k | currentLen = forwardedLength.elementAti(end+1); |
3146 | 3.62k | } |
3147 | | |
3148 | | |
3149 | 4.59k | fRXPat->fInitialChars8->init(fRXPat->fInitialChars); |
3150 | | |
3151 | | |
3152 | | // Sort out what we should check for when looking for candidate match start positions. |
3153 | | // In order of preference, |
3154 | | // 1. Start of input text buffer. |
3155 | | // 2. A literal string. |
3156 | | // 3. Start of line in multi-line mode. |
3157 | | // 4. A single literal character. |
3158 | | // 5. A character from a set of characters. |
3159 | | // |
3160 | 4.59k | if (fRXPat->fStartType == START_START) { |
3161 | | // Match only at the start of an input text string. |
3162 | | // start type is already set. We're done. |
3163 | 4.56k | } else if (numInitialStrings == 1 && fRXPat->fMinMatchLen > 0) { |
3164 | | // Match beginning only with a literal string. |
3165 | 486 | UChar32 c = fRXPat->fLiteralText.char32At(fRXPat->fInitialStringIdx); |
3166 | 486 | U_ASSERT(fRXPat->fInitialChars->contains(c)); |
3167 | 486 | fRXPat->fStartType = START_STRING; |
3168 | 486 | fRXPat->fInitialChar = c; |
3169 | 4.08k | } else if (fRXPat->fStartType == START_LINE) { |
3170 | | // Match at start of line in Multi-Line mode. |
3171 | | // Nothing to do here; everything is already set. |
3172 | 4.06k | } else if (fRXPat->fMinMatchLen == 0) { |
3173 | | // Zero length match possible. We could start anywhere. |
3174 | 926 | fRXPat->fStartType = START_NO_INFO; |
3175 | 3.13k | } else if (fRXPat->fInitialChars->size() == 1) { |
3176 | | // All matches begin with the same char. |
3177 | 825 | fRXPat->fStartType = START_CHAR; |
3178 | 825 | fRXPat->fInitialChar = fRXPat->fInitialChars->charAt(0); |
3179 | 825 | U_ASSERT(fRXPat->fInitialChar != (UChar32)-1); |
3180 | 2.31k | } else if (fRXPat->fInitialChars->contains((UChar32)0, (UChar32)0x10ffff) == false && |
3181 | 2.31k | fRXPat->fMinMatchLen > 0) { |
3182 | | // Matches start with a set of character smaller than the set of all chars. |
3183 | 2.21k | fRXPat->fStartType = START_SET; |
3184 | 2.21k | } else { |
3185 | | // Matches can start with anything |
3186 | 101 | fRXPat->fStartType = START_NO_INFO; |
3187 | 101 | } |
3188 | | |
3189 | 4.59k | return; |
3190 | 4.59k | } |
3191 | | |
3192 | | |
3193 | | |
3194 | | //------------------------------------------------------------------------------ |
3195 | | // |
3196 | | // minMatchLength Calculate the length of the shortest string that could |
3197 | | // match the specified pattern. |
3198 | | // Length is in 16 bit code units, not code points. |
3199 | | // |
3200 | | // The calculated length may not be exact. The returned |
3201 | | // value may be shorter than the actual minimum; it must |
3202 | | // never be longer. |
3203 | | // |
3204 | | // start and end are the range of p-code operations to be |
3205 | | // examined. The endpoints are included in the range. |
3206 | | // |
3207 | | //------------------------------------------------------------------------------ |
3208 | 184k | int32_t RegexCompile::minMatchLength(int32_t start, int32_t end) { |
3209 | 184k | if (U_FAILURE(*fStatus)) { |
3210 | 45 | return 0; |
3211 | 45 | } |
3212 | | |
3213 | 184k | U_ASSERT(start <= end); |
3214 | 184k | U_ASSERT(end < fRXPat->fCompiledPat->size()); |
3215 | | |
3216 | | |
3217 | 184k | int32_t loc; |
3218 | 184k | int32_t op; |
3219 | 184k | int32_t opType; |
3220 | 184k | int32_t currentLen = 0; |
3221 | | |
3222 | | |
3223 | | // forwardedLength is a vector holding minimum-match-length values that |
3224 | | // are propagated forward in the pattern by JMP or STATE_SAVE operations. |
3225 | | // It must be one longer than the pattern being checked because some ops |
3226 | | // will jmp to a end-of-block+1 location from within a block, and we must |
3227 | | // count those when checking the block. |
3228 | 184k | UVector32 forwardedLength(end+2, *fStatus); |
3229 | 184k | forwardedLength.setSize(end+2); |
3230 | 47.8M | for (loc=start; loc<=end+1; loc++) { |
3231 | 47.6M | forwardedLength.setElementAt(INT32_MAX, loc); |
3232 | 47.6M | } |
3233 | | |
3234 | 32.3M | for (loc = start; loc<=end; loc++) { |
3235 | 32.1M | op = (int32_t)fRXPat->fCompiledPat->elementAti(loc); |
3236 | 32.1M | opType = URX_TYPE(op); |
3237 | | |
3238 | | // The loop is advancing linearly through the pattern. |
3239 | | // If the op we are now at was the destination of a branch in the pattern, |
3240 | | // and that path has a shorter minimum length than the current accumulated value, |
3241 | | // replace the current accumulated value. |
3242 | | // U_ASSERT(currentLen>=0 && currentLen < INT32_MAX); // MinLength == INT32_MAX for some |
3243 | | // no-match-possible cases. |
3244 | 32.1M | if (forwardedLength.elementAti(loc) < currentLen) { |
3245 | 449k | currentLen = forwardedLength.elementAti(loc); |
3246 | 449k | U_ASSERT(currentLen>=0 && currentLen < INT32_MAX); |
3247 | 449k | } |
3248 | | |
3249 | 32.1M | switch (opType) { |
3250 | | // Ops that don't change the total length matched |
3251 | 0 | case URX_RESERVED_OP: |
3252 | 4.59k | case URX_END: |
3253 | 4.59k | case URX_STRING_LEN: |
3254 | 196k | case URX_NOP: |
3255 | 277k | case URX_START_CAPTURE: |
3256 | 357k | case URX_END_CAPTURE: |
3257 | 358k | case URX_BACKSLASH_B: |
3258 | 358k | case URX_BACKSLASH_BU: |
3259 | 359k | case URX_BACKSLASH_G: |
3260 | 359k | case URX_BACKSLASH_Z: |
3261 | 364k | case URX_CARET: |
3262 | 366k | case URX_DOLLAR: |
3263 | 366k | case URX_DOLLAR_M: |
3264 | 367k | case URX_DOLLAR_D: |
3265 | 367k | case URX_DOLLAR_MD: |
3266 | 367k | case URX_RELOC_OPRND: |
3267 | 371k | case URX_STO_INP_LOC: |
3268 | 371k | case URX_CARET_M: |
3269 | 372k | case URX_CARET_M_UNIX: |
3270 | 373k | case URX_BACKREF: // BackRef. Must assume that it might be a zero length match |
3271 | 373k | case URX_BACKREF_I: |
3272 | | |
3273 | 379k | case URX_STO_SP: // Setup for atomic or possessive blocks. Doesn't change what can match. |
3274 | 385k | case URX_LD_SP: |
3275 | | |
3276 | 511k | case URX_JMP_SAV: |
3277 | 514k | case URX_JMP_SAV_X: |
3278 | 514k | break; |
3279 | | |
3280 | | |
3281 | | // Ops that match a minimum of one character (one or two 16 bit code units.) |
3282 | | // |
3283 | 931k | case URX_ONECHAR: |
3284 | 934k | case URX_STATIC_SETREF: |
3285 | 935k | case URX_STAT_SETREF_N: |
3286 | 1.33M | case URX_SETREF: |
3287 | 1.33M | case URX_BACKSLASH_D: |
3288 | 1.33M | case URX_BACKSLASH_H: |
3289 | 1.33M | case URX_BACKSLASH_R: |
3290 | 1.33M | case URX_BACKSLASH_V: |
3291 | 1.36M | case URX_ONECHAR_I: |
3292 | 1.36M | case URX_BACKSLASH_X: // Grapheme Cluster. Minimum is 1, max unbounded. |
3293 | 1.36M | case URX_DOTANY_ALL: // . matches one or two. |
3294 | 1.36M | case URX_DOTANY: |
3295 | 1.36M | case URX_DOTANY_UNIX: |
3296 | 1.36M | currentLen = safeIncrement(currentLen, 1); |
3297 | 1.36M | break; |
3298 | | |
3299 | | |
3300 | 0 | case URX_JMPX: |
3301 | 0 | loc++; // URX_JMPX has an extra operand, ignored here, |
3302 | | // otherwise processed identically to URX_JMP. |
3303 | 0 | U_FALLTHROUGH; |
3304 | 14.4M | case URX_JMP: |
3305 | 14.4M | { |
3306 | 14.4M | int32_t jmpDest = URX_VAL(op); |
3307 | 14.4M | if (jmpDest < loc) { |
3308 | | // Loop of some kind. Can safely ignore, the worst that will happen |
3309 | | // is that we understate the true minimum length |
3310 | 3.62k | currentLen = forwardedLength.elementAti(loc+1); |
3311 | 14.4M | } else { |
3312 | | // Forward jump. Propagate the current min length to the target loc of the jump. |
3313 | 14.4M | U_ASSERT(jmpDest <= end+1); |
3314 | 14.4M | if (forwardedLength.elementAti(jmpDest) > currentLen) { |
3315 | 3.54k | forwardedLength.setElementAt(currentLen, jmpDest); |
3316 | 3.54k | } |
3317 | 14.4M | } |
3318 | 14.4M | } |
3319 | 14.4M | break; |
3320 | | |
3321 | 2.81k | case URX_BACKTRACK: |
3322 | 2.81k | { |
3323 | | // Back-tracks are kind of like a branch, except that the min length was |
3324 | | // propagated already, by the state save. |
3325 | 2.81k | currentLen = forwardedLength.elementAti(loc+1); |
3326 | 2.81k | } |
3327 | 2.81k | break; |
3328 | | |
3329 | | |
3330 | 15.3M | case URX_STATE_SAVE: |
3331 | 15.3M | { |
3332 | | // State Save, for forward jumps, propagate the current minimum. |
3333 | | // of the state save. |
3334 | 15.3M | int32_t jmpDest = URX_VAL(op); |
3335 | 15.3M | if (jmpDest > loc) { |
3336 | 15.3M | if (currentLen < forwardedLength.elementAti(jmpDest)) { |
3337 | 14.6M | forwardedLength.setElementAt(currentLen, jmpDest); |
3338 | 14.6M | } |
3339 | 15.3M | } |
3340 | 15.3M | } |
3341 | 15.3M | break; |
3342 | | |
3343 | | |
3344 | 62.5k | case URX_STRING: |
3345 | 62.5k | { |
3346 | 62.5k | loc++; |
3347 | 62.5k | int32_t stringLenOp = (int32_t)fRXPat->fCompiledPat->elementAti(loc); |
3348 | 62.5k | currentLen = safeIncrement(currentLen, URX_VAL(stringLenOp)); |
3349 | 62.5k | } |
3350 | 62.5k | break; |
3351 | | |
3352 | | |
3353 | 356k | case URX_STRING_I: |
3354 | 356k | { |
3355 | 356k | loc++; |
3356 | | // TODO: with full case folding, matching input text may be shorter than |
3357 | | // the string we have here. More smarts could put some bounds on it. |
3358 | | // Assume a min length of one for now. A min length of zero causes |
3359 | | // optimization failures for a pattern like "string"+ |
3360 | | // currentLen += URX_VAL(stringLenOp); |
3361 | 356k | currentLen = safeIncrement(currentLen, 1); |
3362 | 356k | } |
3363 | 356k | break; |
3364 | | |
3365 | 4.11k | case URX_CTR_INIT: |
3366 | 6.46k | case URX_CTR_INIT_NG: |
3367 | 6.46k | { |
3368 | | // Loop Init Ops. |
3369 | | // If the min loop count == 0 |
3370 | | // move loc forwards to the end of the loop, skipping over the body. |
3371 | | // If the min count is > 0, |
3372 | | // continue normal processing of the body of the loop. |
3373 | 6.46k | int32_t loopEndLoc = (int32_t)fRXPat->fCompiledPat->elementAti(loc+1); |
3374 | 6.46k | loopEndLoc = URX_VAL(loopEndLoc); |
3375 | 6.46k | int32_t minLoopCount = (int32_t)fRXPat->fCompiledPat->elementAti(loc+2); |
3376 | 6.46k | if (minLoopCount == 0) { |
3377 | 3.80k | loc = loopEndLoc; |
3378 | 3.80k | } else { |
3379 | 2.66k | loc+=3; // Skips over operands of CTR_INIT |
3380 | 2.66k | } |
3381 | 6.46k | } |
3382 | 6.46k | break; |
3383 | | |
3384 | | |
3385 | 1.91k | case URX_CTR_LOOP: |
3386 | 2.66k | case URX_CTR_LOOP_NG: |
3387 | | // Loop ops. |
3388 | | // The jump is conditional, backwards only. |
3389 | 2.66k | break; |
3390 | | |
3391 | 2.59k | case URX_LOOP_SR_I: |
3392 | 4.66k | case URX_LOOP_DOT_I: |
3393 | 9.32k | case URX_LOOP_C: |
3394 | | // More loop ops. These state-save to themselves. |
3395 | | // don't change the minimum match - could match nothing at all. |
3396 | 9.32k | break; |
3397 | | |
3398 | | |
3399 | 3.73k | case URX_LA_START: |
3400 | 5.45k | case URX_LB_START: |
3401 | 5.45k | { |
3402 | | // Look-around. Scan forward until the matching look-ahead end, |
3403 | | // without processing the look-around block. This is overly pessimistic for look-ahead, |
3404 | | // it assumes that the look-ahead match might be zero-length. |
3405 | | // TODO: Positive lookahead could recursively do the block, then continue |
3406 | | // with the longer of the block or the value coming in. Ticket 6060 |
3407 | 5.45k | int32_t depth = (opType == URX_LA_START? 2: 1); |
3408 | 14.5M | for (;;) { |
3409 | 14.5M | loc++; |
3410 | 14.5M | op = (int32_t)fRXPat->fCompiledPat->elementAti(loc); |
3411 | 14.5M | if (URX_TYPE(op) == URX_LA_START) { |
3412 | | // The boilerplate for look-ahead includes two LA_END instructions, |
3413 | | // Depth will be decremented by each one when it is seen. |
3414 | 116k | depth += 2; |
3415 | 116k | } |
3416 | 14.5M | if (URX_TYPE(op) == URX_LB_START) { |
3417 | 2.01k | depth++; |
3418 | 2.01k | } |
3419 | 14.5M | if (URX_TYPE(op) == URX_LA_END) { |
3420 | 243k | depth--; |
3421 | 243k | if (depth == 0) { |
3422 | 4.60k | break; |
3423 | 4.60k | } |
3424 | 243k | } |
3425 | 14.5M | if (URX_TYPE(op)==URX_LBN_END) { |
3426 | 1.57k | depth--; |
3427 | 1.57k | if (depth == 0) { |
3428 | 851 | break; |
3429 | 851 | } |
3430 | 1.57k | } |
3431 | 14.5M | if (URX_TYPE(op) == URX_STATE_SAVE) { |
3432 | | // Need this because neg lookahead blocks will FAIL to outside |
3433 | | // of the block. |
3434 | 6.82M | int32_t jmpDest = URX_VAL(op); |
3435 | 6.82M | if (jmpDest > loc) { |
3436 | 6.82M | if (currentLen < forwardedLength.elementAti(jmpDest)) { |
3437 | 6.81M | forwardedLength.setElementAt(currentLen, jmpDest); |
3438 | 6.81M | } |
3439 | 6.82M | } |
3440 | 6.82M | } |
3441 | 14.5M | U_ASSERT(loc <= end); |
3442 | 14.5M | } |
3443 | 5.45k | } |
3444 | 5.45k | break; |
3445 | | |
3446 | 1.52k | case URX_LA_END: |
3447 | 1.52k | case URX_LB_CONT: |
3448 | 3.04k | case URX_LB_END: |
3449 | 3.04k | case URX_LBN_CONT: |
3450 | 4.68k | case URX_LBN_END: |
3451 | | // Only come here if the matching URX_LA_START or URX_LB_START was not in the |
3452 | | // range being sized, which happens when measuring size of look-behind blocks. |
3453 | 4.68k | break; |
3454 | | |
3455 | 0 | default: |
3456 | 0 | UPRV_UNREACHABLE_EXIT; |
3457 | 32.1M | } |
3458 | | |
3459 | 32.1M | } |
3460 | | |
3461 | | // We have finished walking through the ops. Check whether some forward jump |
3462 | | // propagated a shorter length to location end+1. |
3463 | 184k | if (forwardedLength.elementAti(end+1) < currentLen) { |
3464 | 320 | currentLen = forwardedLength.elementAti(end+1); |
3465 | 320 | U_ASSERT(currentLen>=0 && currentLen < INT32_MAX); |
3466 | 320 | } |
3467 | | |
3468 | 184k | return currentLen; |
3469 | 184k | } |
3470 | | |
3471 | | //------------------------------------------------------------------------------ |
3472 | | // |
3473 | | // maxMatchLength Calculate the length of the longest string that could |
3474 | | // match the specified pattern. |
3475 | | // Length is in 16 bit code units, not code points. |
3476 | | // |
3477 | | // The calculated length may not be exact. The returned |
3478 | | // value may be longer than the actual maximum; it must |
3479 | | // never be shorter. |
3480 | | // |
3481 | | // start, end: the range of the pattern to check. |
3482 | | // end is inclusive. |
3483 | | // |
3484 | | //------------------------------------------------------------------------------ |
3485 | 7.28k | int32_t RegexCompile::maxMatchLength(int32_t start, int32_t end) { |
3486 | 7.28k | if (U_FAILURE(*fStatus)) { |
3487 | 0 | return 0; |
3488 | 0 | } |
3489 | 7.28k | U_ASSERT(start <= end); |
3490 | 7.28k | U_ASSERT(end < fRXPat->fCompiledPat->size()); |
3491 | | |
3492 | 7.28k | int32_t loc; |
3493 | 7.28k | int32_t op; |
3494 | 7.28k | int32_t opType; |
3495 | 7.28k | int32_t currentLen = 0; |
3496 | 7.28k | UVector32 forwardedLength(end+1, *fStatus); |
3497 | 7.28k | forwardedLength.setSize(end+1); |
3498 | | |
3499 | 18.8M | for (loc=start; loc<=end; loc++) { |
3500 | 18.7M | forwardedLength.setElementAt(0, loc); |
3501 | 18.7M | } |
3502 | | |
3503 | 11.7M | for (loc = start; loc<=end; loc++) { |
3504 | 11.6M | op = (int32_t)fRXPat->fCompiledPat->elementAti(loc); |
3505 | 11.6M | opType = URX_TYPE(op); |
3506 | | |
3507 | | // The loop is advancing linearly through the pattern. |
3508 | | // If the op we are now at was the destination of a branch in the pattern, |
3509 | | // and that path has a longer maximum length than the current accumulated value, |
3510 | | // replace the current accumulated value. |
3511 | 11.6M | if (forwardedLength.elementAti(loc) > currentLen) { |
3512 | 1.57M | currentLen = forwardedLength.elementAti(loc); |
3513 | 1.57M | } |
3514 | | |
3515 | 11.6M | switch (opType) { |
3516 | | // Ops that don't change the total length matched |
3517 | 0 | case URX_RESERVED_OP: |
3518 | 0 | case URX_END: |
3519 | 0 | case URX_STRING_LEN: |
3520 | 133k | case URX_NOP: |
3521 | 141k | case URX_START_CAPTURE: |
3522 | 147k | case URX_END_CAPTURE: |
3523 | 147k | case URX_BACKSLASH_B: |
3524 | 147k | case URX_BACKSLASH_BU: |
3525 | 148k | case URX_BACKSLASH_G: |
3526 | 148k | case URX_BACKSLASH_Z: |
3527 | 148k | case URX_CARET: |
3528 | 149k | case URX_DOLLAR: |
3529 | 149k | case URX_DOLLAR_M: |
3530 | 149k | case URX_DOLLAR_D: |
3531 | 149k | case URX_DOLLAR_MD: |
3532 | 149k | case URX_RELOC_OPRND: |
3533 | 149k | case URX_STO_INP_LOC: |
3534 | 149k | case URX_CARET_M: |
3535 | 150k | case URX_CARET_M_UNIX: |
3536 | | |
3537 | 151k | case URX_STO_SP: // Setup for atomic or possessive blocks. Doesn't change what can match. |
3538 | 153k | case URX_LD_SP: |
3539 | | |
3540 | 154k | case URX_LB_END: |
3541 | 154k | case URX_LB_CONT: |
3542 | 154k | case URX_LBN_CONT: |
3543 | 156k | case URX_LBN_END: |
3544 | 156k | break; |
3545 | | |
3546 | | |
3547 | | // Ops that increase that cause an unbounded increase in the length |
3548 | | // of a matched string, or that increase it a hard to characterize way. |
3549 | | // Call the max length unbounded, and stop further checking. |
3550 | 266 | case URX_BACKREF: // BackRef. Must assume that it might be a zero length match |
3551 | 719 | case URX_BACKREF_I: |
3552 | 1.10k | case URX_BACKSLASH_X: // Grapheme Cluster. Minimum is 1, max unbounded. |
3553 | 1.10k | currentLen = INT32_MAX; |
3554 | 1.10k | break; |
3555 | | |
3556 | | |
3557 | | // Ops that match a max of one character (possibly two 16 bit code units.) |
3558 | | // |
3559 | 266 | case URX_STATIC_SETREF: |
3560 | 617 | case URX_STAT_SETREF_N: |
3561 | 1.17k | case URX_SETREF: |
3562 | 1.43k | case URX_BACKSLASH_D: |
3563 | 1.70k | case URX_BACKSLASH_H: |
3564 | 1.89k | case URX_BACKSLASH_R: |
3565 | 2.14k | case URX_BACKSLASH_V: |
3566 | 2.78k | case URX_ONECHAR_I: |
3567 | 2.97k | case URX_DOTANY_ALL: |
3568 | 4.70k | case URX_DOTANY: |
3569 | 4.91k | case URX_DOTANY_UNIX: |
3570 | 4.91k | currentLen = safeIncrement(currentLen, 2); |
3571 | 4.91k | break; |
3572 | | |
3573 | | // Single literal character. Increase current max length by one or two, |
3574 | | // depending on whether the char is in the supplementary range. |
3575 | 199k | case URX_ONECHAR: |
3576 | 199k | currentLen = safeIncrement(currentLen, 1); |
3577 | 199k | if (URX_VAL(op) > 0x10000) { |
3578 | 286 | currentLen = safeIncrement(currentLen, 1); |
3579 | 286 | } |
3580 | 199k | break; |
3581 | | |
3582 | | // Jumps. |
3583 | | // |
3584 | 5.44M | case URX_JMP: |
3585 | 5.44M | case URX_JMPX: |
3586 | 5.44M | case URX_JMP_SAV: |
3587 | 5.44M | case URX_JMP_SAV_X: |
3588 | 5.44M | { |
3589 | 5.44M | int32_t jmpDest = URX_VAL(op); |
3590 | 5.44M | if (jmpDest < loc) { |
3591 | | // Loop of some kind. Max match length is unbounded. |
3592 | 610 | currentLen = INT32_MAX; |
3593 | 5.44M | } else { |
3594 | | // Forward jump. Propagate the current min length to the target loc of the jump. |
3595 | 5.44M | if (forwardedLength.elementAti(jmpDest) < currentLen) { |
3596 | 64.9k | forwardedLength.setElementAt(currentLen, jmpDest); |
3597 | 64.9k | } |
3598 | 5.44M | currentLen = 0; |
3599 | 5.44M | } |
3600 | 5.44M | } |
3601 | 5.44M | break; |
3602 | | |
3603 | 57.5k | case URX_BACKTRACK: |
3604 | | // back-tracks are kind of like a branch, except that the max length was |
3605 | | // propagated already, by the state save. |
3606 | 57.5k | currentLen = forwardedLength.elementAti(loc+1); |
3607 | 57.5k | break; |
3608 | | |
3609 | | |
3610 | 5.60M | case URX_STATE_SAVE: |
3611 | 5.60M | { |
3612 | | // State Save, for forward jumps, propagate the current minimum. |
3613 | | // of the state save. |
3614 | | // For backwards jumps, they create a loop, maximum |
3615 | | // match length is unbounded. |
3616 | 5.60M | int32_t jmpDest = URX_VAL(op); |
3617 | 5.60M | if (jmpDest > loc) { |
3618 | 5.60M | if (currentLen > forwardedLength.elementAti(jmpDest)) { |
3619 | 1.71M | forwardedLength.setElementAt(currentLen, jmpDest); |
3620 | 1.71M | } |
3621 | 5.60M | } else { |
3622 | 68 | currentLen = INT32_MAX; |
3623 | 68 | } |
3624 | 5.60M | } |
3625 | 5.60M | break; |
3626 | | |
3627 | | |
3628 | | |
3629 | | |
3630 | 38.7k | case URX_STRING: |
3631 | 38.7k | { |
3632 | 38.7k | loc++; |
3633 | 38.7k | int32_t stringLenOp = (int32_t)fRXPat->fCompiledPat->elementAti(loc); |
3634 | 38.7k | currentLen = safeIncrement(currentLen, URX_VAL(stringLenOp)); |
3635 | 38.7k | break; |
3636 | 5.44M | } |
3637 | | |
3638 | 11.9k | case URX_STRING_I: |
3639 | | // TODO: This code assumes that any user string that matches will be no longer |
3640 | | // than our compiled string, with case insensitive matching. |
3641 | | // Our compiled string has been case-folded already. |
3642 | | // |
3643 | | // Any matching user string will have no more code points than our |
3644 | | // compiled (folded) string. Folding may add code points, but |
3645 | | // not remove them. |
3646 | | // |
3647 | | // There is a potential problem if a supplemental code point |
3648 | | // case-folds to a BMP code point. In this case our compiled string |
3649 | | // could be shorter (in code units) than a matching user string. |
3650 | | // |
3651 | | // At this time (Unicode 6.1) there are no such characters, and this case |
3652 | | // is not being handled. A test, intltest regex/Bug9283, will fail if |
3653 | | // any problematic characters are added to Unicode. |
3654 | | // |
3655 | | // If this happens, we can make a set of the BMP chars that the |
3656 | | // troublesome supplementals fold to, scan our string, and bump the |
3657 | | // currentLen one extra for each that is found. |
3658 | | // |
3659 | 11.9k | { |
3660 | 11.9k | loc++; |
3661 | 11.9k | int32_t stringLenOp = (int32_t)fRXPat->fCompiledPat->elementAti(loc); |
3662 | 11.9k | currentLen = safeIncrement(currentLen, URX_VAL(stringLenOp)); |
3663 | 11.9k | } |
3664 | 11.9k | break; |
3665 | | |
3666 | 2.48k | case URX_CTR_INIT: |
3667 | 4.23k | case URX_CTR_INIT_NG: |
3668 | | // For Loops, recursively call this function on the pattern for the loop body, |
3669 | | // then multiply the result by the maximum loop count. |
3670 | 4.23k | { |
3671 | 4.23k | int32_t loopEndLoc = URX_VAL(fRXPat->fCompiledPat->elementAti(loc+1)); |
3672 | 4.23k | if (loopEndLoc == loc+4) { |
3673 | | // Loop has an empty body. No affect on max match length. |
3674 | | // Continue processing with code after the loop end. |
3675 | 0 | loc = loopEndLoc; |
3676 | 0 | break; |
3677 | 0 | } |
3678 | | |
3679 | 4.23k | int32_t maxLoopCount = static_cast<int32_t>(fRXPat->fCompiledPat->elementAti(loc+3)); |
3680 | 4.23k | if (maxLoopCount == -1) { |
3681 | | // Unbounded Loop. No upper bound on match length. |
3682 | 109 | currentLen = INT32_MAX; |
3683 | 109 | break; |
3684 | 109 | } |
3685 | | |
3686 | 4.12k | U_ASSERT(loopEndLoc >= loc+4); |
3687 | 4.12k | int64_t blockLen = maxMatchLength(loc+4, loopEndLoc-1); // Recursive call. |
3688 | 4.12k | int64_t updatedLen = (int64_t)currentLen + blockLen * maxLoopCount; |
3689 | 4.12k | if (updatedLen >= INT32_MAX) { |
3690 | 139 | currentLen = INT32_MAX; |
3691 | 139 | break; |
3692 | 139 | } |
3693 | 3.98k | currentLen = (int32_t)updatedLen; |
3694 | 3.98k | loc = loopEndLoc; |
3695 | 3.98k | break; |
3696 | 4.12k | } |
3697 | | |
3698 | 0 | case URX_CTR_LOOP: |
3699 | 0 | case URX_CTR_LOOP_NG: |
3700 | | // These opcodes will be skipped over by code for URX_CTR_INIT. |
3701 | | // We shouldn't encounter them here. |
3702 | 0 | UPRV_UNREACHABLE_EXIT; |
3703 | | |
3704 | 98 | case URX_LOOP_SR_I: |
3705 | 643 | case URX_LOOP_DOT_I: |
3706 | 643 | case URX_LOOP_C: |
3707 | | // For anything to do with loops, make the match length unbounded. |
3708 | 643 | currentLen = INT32_MAX; |
3709 | 643 | break; |
3710 | | |
3711 | | |
3712 | | |
3713 | 56.7k | case URX_LA_START: |
3714 | 171k | case URX_LA_END: |
3715 | | // Look-ahead. Just ignore, treat the look-ahead block as if |
3716 | | // it were normal pattern. Gives a too-long match length, |
3717 | | // but good enough for now. |
3718 | 171k | break; |
3719 | | |
3720 | | // End of look-ahead ops should always be consumed by the processing at |
3721 | | // the URX_LA_START op. |
3722 | | // UPRV_UNREACHABLE_EXIT; |
3723 | | |
3724 | 1.23k | case URX_LB_START: |
3725 | 1.23k | { |
3726 | | // Look-behind. Scan forward until the matching look-around end, |
3727 | | // without processing the look-behind block. |
3728 | 1.23k | int32_t dataLoc = URX_VAL(op); |
3729 | 3.15M | for (loc = loc + 1; loc <= end; ++loc) { |
3730 | 3.15M | op = (int32_t)fRXPat->fCompiledPat->elementAti(loc); |
3731 | 3.15M | int32_t opType = URX_TYPE(op); |
3732 | 3.15M | if ((opType == URX_LA_END || opType == URX_LBN_END) && (URX_VAL(op) == dataLoc)) { |
3733 | 1.23k | break; |
3734 | 1.23k | } |
3735 | 3.15M | } |
3736 | 1.23k | U_ASSERT(loc <= end); |
3737 | 1.23k | } |
3738 | 1.23k | break; |
3739 | | |
3740 | 0 | default: |
3741 | 0 | UPRV_UNREACHABLE_EXIT; |
3742 | 11.6M | } |
3743 | | |
3744 | | |
3745 | 11.6M | if (currentLen == INT32_MAX) { |
3746 | | // The maximum length is unbounded. |
3747 | | // Stop further processing of the pattern. |
3748 | 2.68k | break; |
3749 | 2.68k | } |
3750 | | |
3751 | 11.6M | } |
3752 | 7.28k | return currentLen; |
3753 | | |
3754 | 7.28k | } |
3755 | | |
3756 | | |
3757 | | //------------------------------------------------------------------------------ |
3758 | | // |
3759 | | // stripNOPs Remove any NOP operations from the compiled pattern code. |
3760 | | // Extra NOPs are inserted for some constructs during the initial |
3761 | | // code generation to provide locations that may be patched later. |
3762 | | // Many end up unneeded, and are removed by this function. |
3763 | | // |
3764 | | // In order to minimize the number of passes through the pattern, |
3765 | | // back-reference fixup is also performed here (adjusting |
3766 | | // back-reference operands to point to the correct frame offsets). |
3767 | | // |
3768 | | //------------------------------------------------------------------------------ |
3769 | 4.64k | void RegexCompile::stripNOPs() { |
3770 | | |
3771 | 4.64k | if (U_FAILURE(*fStatus)) { |
3772 | 0 | return; |
3773 | 0 | } |
3774 | | |
3775 | 4.64k | int32_t end = fRXPat->fCompiledPat->size(); |
3776 | 4.64k | UVector32 deltas(end, *fStatus); |
3777 | | |
3778 | | // Make a first pass over the code, computing the amount that things |
3779 | | // will be offset at each location in the original code. |
3780 | 4.64k | int32_t loc; |
3781 | 4.64k | int32_t d = 0; |
3782 | 28.0M | for (loc=0; loc<end; loc++) { |
3783 | 28.0M | deltas.addElement(d, *fStatus); |
3784 | 28.0M | int32_t op = (int32_t)fRXPat->fCompiledPat->elementAti(loc); |
3785 | 28.0M | if (URX_TYPE(op) == URX_NOP) { |
3786 | 175k | d++; |
3787 | 175k | } |
3788 | 28.0M | } |
3789 | | |
3790 | 4.64k | UnicodeString caseStringBuffer; |
3791 | | |
3792 | | // Make a second pass over the code, removing the NOPs by moving following |
3793 | | // code up, and patching operands that refer to code locations that |
3794 | | // are being moved. The array of offsets from the first step is used |
3795 | | // to compute the new operand values. |
3796 | 4.64k | int32_t src; |
3797 | 4.64k | int32_t dst = 0; |
3798 | 28.0M | for (src=0; src<end; src++) { |
3799 | 28.0M | int32_t op = (int32_t)fRXPat->fCompiledPat->elementAti(src); |
3800 | 28.0M | int32_t opType = URX_TYPE(op); |
3801 | 28.0M | switch (opType) { |
3802 | 175k | case URX_NOP: |
3803 | 175k | break; |
3804 | | |
3805 | 13.3M | case URX_STATE_SAVE: |
3806 | 25.8M | case URX_JMP: |
3807 | 25.8M | case URX_CTR_LOOP: |
3808 | 25.8M | case URX_CTR_LOOP_NG: |
3809 | 25.8M | case URX_RELOC_OPRND: |
3810 | 25.8M | case URX_JMPX: |
3811 | 25.9M | case URX_JMP_SAV: |
3812 | 25.9M | case URX_JMP_SAV_X: |
3813 | | // These are instructions with operands that refer to code locations. |
3814 | 25.9M | { |
3815 | 25.9M | int32_t operandAddress = URX_VAL(op); |
3816 | 25.9M | U_ASSERT(operandAddress>=0 && operandAddress<deltas.size()); |
3817 | 25.9M | int32_t fixedOperandAddress = operandAddress - deltas.elementAti(operandAddress); |
3818 | 25.9M | op = buildOp(opType, fixedOperandAddress); |
3819 | 25.9M | fRXPat->fCompiledPat->setElementAt(op, dst); |
3820 | 25.9M | dst++; |
3821 | 25.9M | break; |
3822 | 25.9M | } |
3823 | | |
3824 | 757 | case URX_BACKREF: |
3825 | 1.31k | case URX_BACKREF_I: |
3826 | 1.31k | { |
3827 | 1.31k | int32_t where = URX_VAL(op); |
3828 | 1.31k | if (where > fRXPat->fGroupMap->size()) { |
3829 | 369 | error(U_REGEX_INVALID_BACK_REF); |
3830 | 369 | break; |
3831 | 369 | } |
3832 | 947 | where = fRXPat->fGroupMap->elementAti(where-1); |
3833 | 947 | op = buildOp(opType, where); |
3834 | 947 | fRXPat->fCompiledPat->setElementAt(op, dst); |
3835 | 947 | dst++; |
3836 | | |
3837 | 947 | fRXPat->fNeedsAltInput = true; |
3838 | 947 | break; |
3839 | 1.31k | } |
3840 | 7.29k | case URX_RESERVED_OP: |
3841 | 7.90k | case URX_RESERVED_OP_N: |
3842 | 19.8k | case URX_BACKTRACK: |
3843 | 24.4k | case URX_END: |
3844 | 770k | case URX_ONECHAR: |
3845 | 826k | case URX_STRING: |
3846 | 1.07M | case URX_STRING_LEN: |
3847 | 1.14M | case URX_START_CAPTURE: |
3848 | 1.21M | case URX_END_CAPTURE: |
3849 | 1.22M | case URX_STATIC_SETREF: |
3850 | 1.22M | case URX_STAT_SETREF_N: |
3851 | 1.61M | case URX_SETREF: |
3852 | 1.62M | case URX_DOTANY: |
3853 | 1.62M | case URX_FAIL: |
3854 | 1.62M | case URX_BACKSLASH_B: |
3855 | 1.62M | case URX_BACKSLASH_BU: |
3856 | 1.62M | case URX_BACKSLASH_G: |
3857 | 1.62M | case URX_BACKSLASH_X: |
3858 | 1.62M | case URX_BACKSLASH_Z: |
3859 | 1.62M | case URX_DOTANY_ALL: |
3860 | 1.62M | case URX_BACKSLASH_D: |
3861 | 1.63M | case URX_CARET: |
3862 | 1.63M | case URX_DOLLAR: |
3863 | 1.63M | case URX_CTR_INIT: |
3864 | 1.63M | case URX_CTR_INIT_NG: |
3865 | 1.63M | case URX_DOTANY_UNIX: |
3866 | 1.63M | case URX_STO_SP: |
3867 | 1.64M | case URX_LD_SP: |
3868 | 1.64M | case URX_STO_INP_LOC: |
3869 | 1.65M | case URX_LA_START: |
3870 | 1.67M | case URX_LA_END: |
3871 | 1.68M | case URX_ONECHAR_I: |
3872 | 1.88M | case URX_STRING_I: |
3873 | 1.88M | case URX_DOLLAR_M: |
3874 | 1.88M | case URX_CARET_M: |
3875 | 1.88M | case URX_CARET_M_UNIX: |
3876 | 1.88M | case URX_LB_START: |
3877 | 1.88M | case URX_LB_CONT: |
3878 | 1.88M | case URX_LB_END: |
3879 | 1.88M | case URX_LBN_CONT: |
3880 | 1.88M | case URX_LBN_END: |
3881 | 1.88M | case URX_LOOP_SR_I: |
3882 | 1.89M | case URX_LOOP_DOT_I: |
3883 | 1.89M | case URX_LOOP_C: |
3884 | 1.89M | case URX_DOLLAR_D: |
3885 | 1.89M | case URX_DOLLAR_MD: |
3886 | 1.89M | case URX_BACKSLASH_H: |
3887 | 1.89M | case URX_BACKSLASH_R: |
3888 | 1.89M | case URX_BACKSLASH_V: |
3889 | | // These instructions are unaltered by the relocation. |
3890 | 1.89M | fRXPat->fCompiledPat->setElementAt(op, dst); |
3891 | 1.89M | dst++; |
3892 | 1.89M | break; |
3893 | | |
3894 | 0 | default: |
3895 | | // Some op is unaccounted for. |
3896 | 0 | UPRV_UNREACHABLE_EXIT; |
3897 | 28.0M | } |
3898 | 28.0M | } |
3899 | | |
3900 | 4.64k | fRXPat->fCompiledPat->setSize(dst); |
3901 | 4.64k | } |
3902 | | |
3903 | | |
3904 | | |
3905 | | |
3906 | | //------------------------------------------------------------------------------ |
3907 | | // |
3908 | | // Error Report a rule parse error. |
3909 | | // Only report it if no previous error has been recorded. |
3910 | | // |
3911 | | //------------------------------------------------------------------------------ |
3912 | 7.56k | void RegexCompile::error(UErrorCode e) { |
3913 | 7.56k | if (U_SUCCESS(*fStatus) || e == U_MEMORY_ALLOCATION_ERROR) { |
3914 | 6.65k | *fStatus = e; |
3915 | | // Hmm. fParseErr (UParseError) line & offset fields are int32_t in public |
3916 | | // API (see common/unicode/parseerr.h), while fLineNum and fCharNum are |
3917 | | // int64_t. If the values of the latter are out of range for the former, |
3918 | | // set them to the appropriate "field not supported" values. |
3919 | 6.65k | if (fLineNum > 0x7FFFFFFF) { |
3920 | 0 | fParseErr->line = 0; |
3921 | 0 | fParseErr->offset = -1; |
3922 | 6.65k | } else if (fCharNum > 0x7FFFFFFF) { |
3923 | 0 | fParseErr->line = (int32_t)fLineNum; |
3924 | 0 | fParseErr->offset = -1; |
3925 | 6.65k | } else { |
3926 | 6.65k | fParseErr->line = (int32_t)fLineNum; |
3927 | 6.65k | fParseErr->offset = (int32_t)fCharNum; |
3928 | 6.65k | } |
3929 | | |
3930 | 6.65k | UErrorCode status = U_ZERO_ERROR; // throwaway status for extracting context |
3931 | | |
3932 | | // Fill in the context. |
3933 | | // Note: extractBetween() pins supplied indices to the string bounds. |
3934 | 6.65k | uprv_memset(fParseErr->preContext, 0, sizeof(fParseErr->preContext)); |
3935 | 6.65k | uprv_memset(fParseErr->postContext, 0, sizeof(fParseErr->postContext)); |
3936 | 6.65k | utext_extract(fRXPat->fPattern, fScanIndex-U_PARSE_CONTEXT_LEN+1, fScanIndex, fParseErr->preContext, U_PARSE_CONTEXT_LEN, &status); |
3937 | 6.65k | utext_extract(fRXPat->fPattern, fScanIndex, fScanIndex+U_PARSE_CONTEXT_LEN-1, fParseErr->postContext, U_PARSE_CONTEXT_LEN, &status); |
3938 | 6.65k | } |
3939 | 7.56k | } |
3940 | | |
3941 | | |
3942 | | // |
3943 | | // Assorted Unicode character constants. |
3944 | | // Numeric because there is no portable way to enter them as literals. |
3945 | | // (Think EBCDIC). |
3946 | | // |
3947 | | static const char16_t chCR = 0x0d; // New lines, for terminating comments. |
3948 | | static const char16_t chLF = 0x0a; // Line Feed |
3949 | | static const char16_t chPound = 0x23; // '#', introduces a comment. |
3950 | | static const char16_t chDigit0 = 0x30; // '0' |
3951 | | static const char16_t chDigit7 = 0x37; // '9' |
3952 | | static const char16_t chColon = 0x3A; // ':' |
3953 | | static const char16_t chE = 0x45; // 'E' |
3954 | | static const char16_t chQ = 0x51; // 'Q' |
3955 | | //static const char16_t chN = 0x4E; // 'N' |
3956 | | static const char16_t chP = 0x50; // 'P' |
3957 | | static const char16_t chBackSlash = 0x5c; // '\' introduces a char escape |
3958 | | //static const char16_t chLBracket = 0x5b; // '[' |
3959 | | static const char16_t chRBracket = 0x5d; // ']' |
3960 | | static const char16_t chUp = 0x5e; // '^' |
3961 | | static const char16_t chLowerP = 0x70; |
3962 | | static const char16_t chLBrace = 0x7b; // '{' |
3963 | | static const char16_t chRBrace = 0x7d; // '}' |
3964 | | static const char16_t chNEL = 0x85; // NEL newline variant |
3965 | | static const char16_t chLS = 0x2028; // Unicode Line Separator |
3966 | | |
3967 | | |
3968 | | //------------------------------------------------------------------------------ |
3969 | | // |
3970 | | // nextCharLL Low Level Next Char from the regex pattern. |
3971 | | // Get a char from the string, keep track of input position |
3972 | | // for error reporting. |
3973 | | // |
3974 | | //------------------------------------------------------------------------------ |
3975 | 103M | UChar32 RegexCompile::nextCharLL() { |
3976 | 103M | UChar32 ch; |
3977 | | |
3978 | 103M | if (fPeekChar != -1) { |
3979 | 373k | ch = fPeekChar; |
3980 | 373k | fPeekChar = -1; |
3981 | 373k | return ch; |
3982 | 373k | } |
3983 | | |
3984 | | // assume we're already in the right place |
3985 | 102M | ch = UTEXT_NEXT32(fRXPat->fPattern); |
3986 | 102M | if (ch == U_SENTINEL) { |
3987 | 14.6k | return ch; |
3988 | 14.6k | } |
3989 | | |
3990 | 102M | if (ch == chCR || |
3991 | 102M | ch == chNEL || |
3992 | 102M | ch == chLS || |
3993 | 102M | (ch == chLF && fLastChar != chCR)) { |
3994 | | // Character is starting a new line. Bump up the line number, and |
3995 | | // reset the column to 0. |
3996 | 377k | fLineNum++; |
3997 | 377k | fCharNum=0; |
3998 | 377k | } |
3999 | 102M | else { |
4000 | | // Character is not starting a new line. Except in the case of a |
4001 | | // LF following a CR, increment the column position. |
4002 | 102M | if (ch != chLF) { |
4003 | 102M | fCharNum++; |
4004 | 102M | } |
4005 | 102M | } |
4006 | 102M | fLastChar = ch; |
4007 | 102M | return ch; |
4008 | 102M | } |
4009 | | |
4010 | | //------------------------------------------------------------------------------ |
4011 | | // |
4012 | | // peekCharLL Low Level Character Scanning, sneak a peek at the next |
4013 | | // character without actually getting it. |
4014 | | // |
4015 | | //------------------------------------------------------------------------------ |
4016 | 624k | UChar32 RegexCompile::peekCharLL() { |
4017 | 624k | if (fPeekChar == -1) { |
4018 | 376k | fPeekChar = nextCharLL(); |
4019 | 376k | } |
4020 | 624k | return fPeekChar; |
4021 | 624k | } |
4022 | | |
4023 | | |
4024 | | //------------------------------------------------------------------------------ |
4025 | | // |
4026 | | // nextChar for pattern scanning. At this level, we handle stripping |
4027 | | // out comments and processing some backslash character escapes. |
4028 | | // The rest of the pattern grammar is handled at the next level up. |
4029 | | // |
4030 | | //------------------------------------------------------------------------------ |
4031 | 98.6M | void RegexCompile::nextChar(RegexPatternChar &c) { |
4032 | 98.6M | tailRecursion: |
4033 | 98.6M | fScanIndex = UTEXT_GETNATIVEINDEX(fRXPat->fPattern); |
4034 | 98.6M | c.fChar = nextCharLL(); |
4035 | 98.6M | c.fQuoted = false; |
4036 | | |
4037 | 98.6M | if (fQuoteMode) { |
4038 | 263k | c.fQuoted = true; |
4039 | 263k | if ((c.fChar==chBackSlash && peekCharLL()==chE && ((fModeFlags & UREGEX_LITERAL) == 0)) || |
4040 | 263k | c.fChar == (UChar32)-1) { |
4041 | 539 | fQuoteMode = false; // Exit quote mode, |
4042 | 539 | nextCharLL(); // discard the E |
4043 | | // nextChar(c); // recurse to get the real next char |
4044 | 539 | goto tailRecursion; // Note: fuzz testing produced testcases that |
4045 | | // resulted in stack overflow here. |
4046 | 539 | } |
4047 | 263k | } |
4048 | 98.4M | else if (fInBackslashQuote) { |
4049 | | // The current character immediately follows a '\' |
4050 | | // Don't check for any further escapes, just return it as-is. |
4051 | | // Don't set c.fQuoted, because that would prevent the state machine from |
4052 | | // dispatching on the character. |
4053 | 122k | fInBackslashQuote = false; |
4054 | 122k | } |
4055 | 98.3M | else |
4056 | 98.3M | { |
4057 | | // We are not in a \Q quoted region \E of the source. |
4058 | | // |
4059 | 98.3M | if (fModeFlags & UREGEX_COMMENTS) { |
4060 | | // |
4061 | | // We are in free-spacing and comments mode. |
4062 | | // Scan through any white space and comments, until we |
4063 | | // reach a significant character or the end of input. |
4064 | 11.4M | for (;;) { |
4065 | 11.4M | if (c.fChar == (UChar32)-1) { |
4066 | 1.28k | break; // End of Input |
4067 | 1.28k | } |
4068 | 11.4M | if (c.fChar == chPound && fEOLComments) { |
4069 | | // Start of a comment. Consume the rest of it, until EOF or a new line |
4070 | 3.54M | for (;;) { |
4071 | 3.54M | c.fChar = nextCharLL(); |
4072 | 3.54M | if (c.fChar == (UChar32)-1 || // EOF |
4073 | 3.54M | c.fChar == chCR || |
4074 | 3.54M | c.fChar == chLF || |
4075 | 3.54M | c.fChar == chNEL || |
4076 | 3.54M | c.fChar == chLS) { |
4077 | 5.13k | break; |
4078 | 5.13k | } |
4079 | 3.54M | } |
4080 | 5.13k | } |
4081 | | // TODO: check what Java & Perl do with non-ASCII white spaces. Ticket 6061. |
4082 | 11.4M | if (PatternProps::isWhiteSpace(c.fChar) == false) { |
4083 | 11.1M | break; |
4084 | 11.1M | } |
4085 | 277k | c.fChar = nextCharLL(); |
4086 | 277k | } |
4087 | 11.1M | } |
4088 | | |
4089 | | // |
4090 | | // check for backslash escaped characters. |
4091 | | // |
4092 | 98.3M | if (c.fChar == chBackSlash) { |
4093 | 363k | int64_t pos = UTEXT_GETNATIVEINDEX(fRXPat->fPattern); |
4094 | 363k | if (RegexStaticSets::gStaticSets->fUnescapeCharSet.contains(peekCharLL())) { |
4095 | | // |
4096 | | // A '\' sequence that is handled by ICU's standard unescapeAt function. |
4097 | | // Includes \uxxxx, \n, \r, many others. |
4098 | | // Return the single equivalent character. |
4099 | | // |
4100 | 237k | nextCharLL(); // get & discard the peeked char. |
4101 | 237k | c.fQuoted = true; |
4102 | | |
4103 | 237k | if (UTEXT_FULL_TEXT_IN_CHUNK(fRXPat->fPattern, fPatternLength)) { |
4104 | 237k | int32_t endIndex = (int32_t)pos; |
4105 | 237k | c.fChar = u_unescapeAt(uregex_ucstr_unescape_charAt, &endIndex, (int32_t)fPatternLength, (void *)fRXPat->fPattern->chunkContents); |
4106 | | |
4107 | 237k | if (endIndex == pos) { |
4108 | 148 | error(U_REGEX_BAD_ESCAPE_SEQUENCE); |
4109 | 148 | } |
4110 | 237k | fCharNum += endIndex - pos; |
4111 | 237k | UTEXT_SETNATIVEINDEX(fRXPat->fPattern, endIndex); |
4112 | 237k | } else { |
4113 | 0 | int32_t offset = 0; |
4114 | 0 | struct URegexUTextUnescapeCharContext context = U_REGEX_UTEXT_UNESCAPE_CONTEXT(fRXPat->fPattern); |
4115 | |
|
4116 | 0 | UTEXT_SETNATIVEINDEX(fRXPat->fPattern, pos); |
4117 | 0 | c.fChar = u_unescapeAt(uregex_utext_unescape_charAt, &offset, INT32_MAX, &context); |
4118 | |
|
4119 | 0 | if (offset == 0) { |
4120 | 0 | error(U_REGEX_BAD_ESCAPE_SEQUENCE); |
4121 | 0 | } else if (context.lastOffset == offset) { |
4122 | 0 | UTEXT_PREVIOUS32(fRXPat->fPattern); |
4123 | 0 | } else if (context.lastOffset != offset-1) { |
4124 | 0 | utext_moveIndex32(fRXPat->fPattern, offset - context.lastOffset - 1); |
4125 | 0 | } |
4126 | 0 | fCharNum += offset; |
4127 | 0 | } |
4128 | 237k | } |
4129 | 125k | else if (peekCharLL() == chDigit0) { |
4130 | | // Octal Escape, using Java Regexp Conventions |
4131 | | // which are \0 followed by 1-3 octal digits. |
4132 | | // Different from ICU Unescape handling of Octal, which does not |
4133 | | // require the leading 0. |
4134 | | // Java also has the convention of only consuming 2 octal digits if |
4135 | | // the three digit number would be > 0xff |
4136 | | // |
4137 | 2.22k | c.fChar = 0; |
4138 | 2.22k | nextCharLL(); // Consume the initial 0. |
4139 | 2.22k | int index; |
4140 | 5.18k | for (index=0; index<3; index++) { |
4141 | 4.72k | int32_t ch = peekCharLL(); |
4142 | 4.72k | if (ch<chDigit0 || ch>chDigit7) { |
4143 | 1.75k | if (index==0) { |
4144 | | // \0 is not followed by any octal digits. |
4145 | 263 | error(U_REGEX_BAD_ESCAPE_SEQUENCE); |
4146 | 263 | } |
4147 | 1.75k | break; |
4148 | 1.75k | } |
4149 | 2.96k | c.fChar <<= 3; |
4150 | 2.96k | c.fChar += ch&7; |
4151 | 2.96k | if (c.fChar <= 255) { |
4152 | 2.72k | nextCharLL(); |
4153 | 2.72k | } else { |
4154 | | // The last digit made the number too big. Forget we saw it. |
4155 | 248 | c.fChar >>= 3; |
4156 | 248 | } |
4157 | 2.96k | } |
4158 | 2.22k | c.fQuoted = true; |
4159 | 2.22k | } |
4160 | 123k | else if (peekCharLL() == chQ) { |
4161 | | // "\Q" enter quote mode, which will continue until "\E" |
4162 | 610 | fQuoteMode = true; |
4163 | 610 | nextCharLL(); // discard the 'Q'. |
4164 | | // nextChar(c); // recurse to get the real next char. |
4165 | 610 | goto tailRecursion; // Note: fuzz testing produced test cases that |
4166 | | // resulted in stack overflow here. |
4167 | 610 | } |
4168 | 122k | else |
4169 | 122k | { |
4170 | | // We are in a '\' escape that will be handled by the state table scanner. |
4171 | | // Just return the backslash, but remember that the following char is to |
4172 | | // be taken literally. |
4173 | 122k | fInBackslashQuote = true; |
4174 | 122k | } |
4175 | 363k | } |
4176 | 98.3M | } |
4177 | | |
4178 | | // re-enable # to end-of-line comments, in case they were disabled. |
4179 | | // They are disabled by the parser upon seeing '(?', but this lasts for |
4180 | | // the fetching of the next character only. |
4181 | 98.6M | fEOLComments = true; |
4182 | | |
4183 | | // putc(c.fChar, stdout); |
4184 | 98.6M | } |
4185 | | |
4186 | | |
4187 | | |
4188 | | //------------------------------------------------------------------------------ |
4189 | | // |
4190 | | // scanNamedChar |
4191 | | // Get a UChar32 from a \N{UNICODE CHARACTER NAME} in the pattern. |
4192 | | // |
4193 | | // The scan position will be at the 'N'. On return |
4194 | | // the scan position should be just after the '}' |
4195 | | // |
4196 | | // Return the UChar32 |
4197 | | // |
4198 | | //------------------------------------------------------------------------------ |
4199 | 3.07k | UChar32 RegexCompile::scanNamedChar() { |
4200 | 3.07k | if (U_FAILURE(*fStatus)) { |
4201 | 0 | return 0; |
4202 | 0 | } |
4203 | | |
4204 | 3.07k | nextChar(fC); |
4205 | 3.07k | if (fC.fChar != chLBrace) { |
4206 | 37 | error(U_REGEX_PROPERTY_SYNTAX); |
4207 | 37 | return 0; |
4208 | 37 | } |
4209 | | |
4210 | 3.03k | UnicodeString charName; |
4211 | 23.4k | for (;;) { |
4212 | 23.4k | nextChar(fC); |
4213 | 23.4k | if (fC.fChar == chRBrace) { |
4214 | 2.99k | break; |
4215 | 2.99k | } |
4216 | 20.4k | if (fC.fChar == -1) { |
4217 | 37 | error(U_REGEX_PROPERTY_SYNTAX); |
4218 | 37 | return 0; |
4219 | 37 | } |
4220 | 20.4k | charName.append(fC.fChar); |
4221 | 20.4k | } |
4222 | | |
4223 | 2.99k | char name[100]; |
4224 | 2.99k | if (!uprv_isInvariantUString(charName.getBuffer(), charName.length()) || |
4225 | 2.99k | (uint32_t)charName.length()>=sizeof(name)) { |
4226 | | // All Unicode character names have only invariant characters. |
4227 | | // The API to get a character, given a name, accepts only char *, forcing us to convert, |
4228 | | // which requires this error check |
4229 | 7 | error(U_REGEX_PROPERTY_SYNTAX); |
4230 | 7 | return 0; |
4231 | 7 | } |
4232 | 2.98k | charName.extract(0, charName.length(), name, sizeof(name), US_INV); |
4233 | | |
4234 | 2.98k | UChar32 theChar = u_charFromName(U_UNICODE_CHAR_NAME, name, fStatus); |
4235 | 2.98k | if (U_FAILURE(*fStatus)) { |
4236 | 102 | error(U_REGEX_PROPERTY_SYNTAX); |
4237 | 102 | } |
4238 | | |
4239 | 2.98k | nextChar(fC); // Continue overall regex pattern processing with char after the '}' |
4240 | 2.98k | return theChar; |
4241 | 2.99k | } |
4242 | | |
4243 | | //------------------------------------------------------------------------------ |
4244 | | // |
4245 | | // scanProp Construct a UnicodeSet from the text at the current scan |
4246 | | // position, which will be of the form \p{whaterver} |
4247 | | // |
4248 | | // The scan position will be at the 'p' or 'P'. On return |
4249 | | // the scan position should be just after the '}' |
4250 | | // |
4251 | | // Return a UnicodeSet, constructed from the \P pattern, |
4252 | | // or nullptr if the pattern is invalid. |
4253 | | // |
4254 | | //------------------------------------------------------------------------------ |
4255 | 1.23k | UnicodeSet *RegexCompile::scanProp() { |
4256 | 1.23k | UnicodeSet *uset = nullptr; |
4257 | | |
4258 | 1.23k | if (U_FAILURE(*fStatus)) { |
4259 | 0 | return nullptr; |
4260 | 0 | } |
4261 | 1.23k | (void)chLowerP; // Suppress compiler unused variable warning. |
4262 | 1.23k | U_ASSERT(fC.fChar == chLowerP || fC.fChar == chP); |
4263 | 1.23k | UBool negated = (fC.fChar == chP); |
4264 | | |
4265 | 1.23k | UnicodeString propertyName; |
4266 | 1.23k | nextChar(fC); |
4267 | 1.23k | if (fC.fChar != chLBrace) { |
4268 | 29 | error(U_REGEX_PROPERTY_SYNTAX); |
4269 | 29 | return nullptr; |
4270 | 29 | } |
4271 | 82.4k | for (;;) { |
4272 | 82.4k | nextChar(fC); |
4273 | 82.4k | if (fC.fChar == chRBrace) { |
4274 | 1.16k | break; |
4275 | 1.16k | } |
4276 | 81.2k | if (fC.fChar == -1) { |
4277 | | // Hit the end of the input string without finding the closing '}' |
4278 | 41 | error(U_REGEX_PROPERTY_SYNTAX); |
4279 | 41 | return nullptr; |
4280 | 41 | } |
4281 | 81.2k | propertyName.append(fC.fChar); |
4282 | 81.2k | } |
4283 | 1.16k | uset = createSetForProperty(propertyName, negated); |
4284 | 1.16k | nextChar(fC); // Move input scan to position following the closing '}' |
4285 | 1.16k | return uset; |
4286 | 1.20k | } |
4287 | | |
4288 | | //------------------------------------------------------------------------------ |
4289 | | // |
4290 | | // scanPosixProp Construct a UnicodeSet from the text at the current scan |
4291 | | // position, which is expected be of the form [:property expression:] |
4292 | | // |
4293 | | // The scan position will be at the opening ':'. On return |
4294 | | // the scan position must be on the closing ']' |
4295 | | // |
4296 | | // Return a UnicodeSet constructed from the pattern, |
4297 | | // or nullptr if this is not a valid POSIX-style set expression. |
4298 | | // If not a property expression, restore the initial scan position |
4299 | | // (to the opening ':') |
4300 | | // |
4301 | | // Note: the opening '[:' is not sufficient to guarantee that |
4302 | | // this is a [:property:] expression. |
4303 | | // [:'+=,] is a perfectly good ordinary set expression that |
4304 | | // happens to include ':' as one of its characters. |
4305 | | // |
4306 | | //------------------------------------------------------------------------------ |
4307 | 91.1k | UnicodeSet *RegexCompile::scanPosixProp() { |
4308 | 91.1k | UnicodeSet *uset = nullptr; |
4309 | | |
4310 | 91.1k | if (U_FAILURE(*fStatus)) { |
4311 | 0 | return nullptr; |
4312 | 0 | } |
4313 | | |
4314 | 91.1k | U_ASSERT(fC.fChar == chColon); |
4315 | | |
4316 | | // Save the scanner state. |
4317 | | // TODO: move this into the scanner, with the state encapsulated in some way. Ticket 6062 |
4318 | 91.1k | int64_t savedScanIndex = fScanIndex; |
4319 | 91.1k | int64_t savedNextIndex = UTEXT_GETNATIVEINDEX(fRXPat->fPattern); |
4320 | 91.1k | UBool savedQuoteMode = fQuoteMode; |
4321 | 91.1k | UBool savedInBackslashQuote = fInBackslashQuote; |
4322 | 91.1k | UBool savedEOLComments = fEOLComments; |
4323 | 91.1k | int64_t savedLineNum = fLineNum; |
4324 | 91.1k | int64_t savedCharNum = fCharNum; |
4325 | 91.1k | UChar32 savedLastChar = fLastChar; |
4326 | 91.1k | UChar32 savedPeekChar = fPeekChar; |
4327 | 91.1k | RegexPatternChar savedfC = fC; |
4328 | | |
4329 | | // Scan for a closing ]. A little tricky because there are some perverse |
4330 | | // edge cases possible. "[:abc\Qdef:] \E]" is a valid non-property expression, |
4331 | | // ending on the second closing ]. |
4332 | | |
4333 | 91.1k | UnicodeString propName; |
4334 | 91.1k | UBool negated = false; |
4335 | | |
4336 | | // Check for and consume the '^' in a negated POSIX property, e.g. [:^Letter:] |
4337 | 91.1k | nextChar(fC); |
4338 | 91.1k | if (fC.fChar == chUp) { |
4339 | 78 | negated = true; |
4340 | 78 | nextChar(fC); |
4341 | 78 | } |
4342 | | |
4343 | | // Scan for the closing ":]", collecting the property name along the way. |
4344 | 91.1k | UBool sawPropSetTerminator = false; |
4345 | 40.9M | for (;;) { |
4346 | 40.9M | propName.append(fC.fChar); |
4347 | 40.9M | nextChar(fC); |
4348 | 40.9M | if (fC.fQuoted || fC.fChar == -1) { |
4349 | | // Escaped characters or end of input - either says this isn't a [:Property:] |
4350 | 8.88k | break; |
4351 | 8.88k | } |
4352 | 40.9M | if (fC.fChar == chColon) { |
4353 | 82.2k | nextChar(fC); |
4354 | 82.2k | if (fC.fChar == chRBracket) { |
4355 | 69.6k | sawPropSetTerminator = true; |
4356 | 69.6k | } |
4357 | 82.2k | break; |
4358 | 82.2k | } |
4359 | 40.9M | } |
4360 | | |
4361 | 91.1k | if (sawPropSetTerminator) { |
4362 | 69.6k | uset = createSetForProperty(propName, negated); |
4363 | 69.6k | } |
4364 | 21.4k | else |
4365 | 21.4k | { |
4366 | | // No closing ":]". |
4367 | | // Restore the original scan position. |
4368 | | // The main scanner will retry the input as a normal set expression, |
4369 | | // not a [:Property:] expression. |
4370 | 21.4k | fScanIndex = savedScanIndex; |
4371 | 21.4k | fQuoteMode = savedQuoteMode; |
4372 | 21.4k | fInBackslashQuote = savedInBackslashQuote; |
4373 | 21.4k | fEOLComments = savedEOLComments; |
4374 | 21.4k | fLineNum = savedLineNum; |
4375 | 21.4k | fCharNum = savedCharNum; |
4376 | 21.4k | fLastChar = savedLastChar; |
4377 | 21.4k | fPeekChar = savedPeekChar; |
4378 | 21.4k | fC = savedfC; |
4379 | 21.4k | UTEXT_SETNATIVEINDEX(fRXPat->fPattern, savedNextIndex); |
4380 | 21.4k | } |
4381 | 91.1k | return uset; |
4382 | 91.1k | } |
4383 | | |
4384 | 0 | static inline void addIdentifierIgnorable(UnicodeSet *set, UErrorCode& ec) { |
4385 | 0 | set->add(0, 8).add(0x0e, 0x1b).add(0x7f, 0x9f); |
4386 | 0 | addCategory(set, U_GC_CF_MASK, ec); |
4387 | 0 | } |
4388 | | |
4389 | | // |
4390 | | // Create a Unicode Set from a Unicode Property expression. |
4391 | | // This is common code underlying both \p{...} and [:...:] expressions. |
4392 | | // Includes trying the Java "properties" that aren't supported as |
4393 | | // normal ICU UnicodeSet properties |
4394 | | // |
4395 | 70.8k | UnicodeSet *RegexCompile::createSetForProperty(const UnicodeString &propName, UBool negated) { |
4396 | | |
4397 | 70.8k | if (U_FAILURE(*fStatus)) { |
4398 | 1 | return nullptr; |
4399 | 1 | } |
4400 | 70.8k | LocalPointer<UnicodeSet> set; |
4401 | 70.8k | UErrorCode status = U_ZERO_ERROR; |
4402 | | |
4403 | 70.8k | do { // non-loop, exists to allow breaks from the block. |
4404 | | // |
4405 | | // First try the property as we received it |
4406 | | // |
4407 | 70.8k | UnicodeString setExpr; |
4408 | 70.8k | uint32_t usetFlags = 0; |
4409 | 70.8k | setExpr.append(u"[\\p{", -1); |
4410 | 70.8k | setExpr.append(propName); |
4411 | 70.8k | setExpr.append(u"}]", -1); |
4412 | 70.8k | if (fModeFlags & UREGEX_CASE_INSENSITIVE) { |
4413 | 9.58k | usetFlags |= USET_CASE_INSENSITIVE; |
4414 | 9.58k | } |
4415 | 70.8k | set.adoptInsteadAndCheckErrorCode(new UnicodeSet(setExpr, usetFlags, nullptr, status), status); |
4416 | 70.8k | if (U_SUCCESS(status) || status == U_MEMORY_ALLOCATION_ERROR) { |
4417 | 55.4k | break; |
4418 | 55.4k | } |
4419 | | |
4420 | | // |
4421 | | // The incoming property wasn't directly recognized by ICU. |
4422 | | |
4423 | | // Check [:word:] and [:all:]. These are not recognized as a properties by ICU UnicodeSet. |
4424 | | // Java accepts 'word' with mixed case. |
4425 | | // Java accepts 'all' only in all lower case. |
4426 | | |
4427 | 15.4k | status = U_ZERO_ERROR; |
4428 | 15.4k | if (propName.caseCompare(u"word", -1, 0) == 0) { |
4429 | 430 | set.adoptInsteadAndCheckErrorCode( |
4430 | 430 | RegexStaticSets::gStaticSets->fPropSets[URX_ISWORD_SET].cloneAsThawed(), status); |
4431 | 430 | break; |
4432 | 430 | } |
4433 | 15.0k | if (propName.compare(u"all", -1) == 0) { |
4434 | 280 | set.adoptInsteadAndCheckErrorCode(new UnicodeSet(0, 0x10ffff), status); |
4435 | 280 | break; |
4436 | 280 | } |
4437 | | |
4438 | | |
4439 | | // Do Java InBlock expressions |
4440 | | // |
4441 | 14.7k | UnicodeString mPropName = propName; |
4442 | 14.7k | if (mPropName.startsWith(u"In", 2) && mPropName.length() >= 3) { |
4443 | 7.79k | status = U_ZERO_ERROR; |
4444 | 7.79k | set.adoptInsteadAndCheckErrorCode(new UnicodeSet(), status); |
4445 | 7.79k | if (U_FAILURE(status)) { |
4446 | 0 | break; |
4447 | 0 | } |
4448 | 7.79k | UnicodeString blockName(mPropName, 2); // Property with the leading "In" removed. |
4449 | 7.79k | set->applyPropertyAlias(UnicodeString(u"Block"), blockName, status); |
4450 | 7.79k | break; |
4451 | 7.79k | } |
4452 | | |
4453 | | // Check for the Java form "IsBooleanPropertyValue", which we will recast |
4454 | | // as "BooleanPropertyValue". The property value can be either a |
4455 | | // a General Category or a Script Name. |
4456 | | |
4457 | 6.92k | if (propName.startsWith(u"Is", 2) && propName.length()>=3) { |
4458 | 5.03k | mPropName.remove(0, 2); // Strip the "Is" |
4459 | 5.03k | if (mPropName.indexOf(u'=') >= 0) { |
4460 | | // Reject any "Is..." property expression containing an '=', that is, |
4461 | | // any non-binary property expression. |
4462 | 16 | status = U_REGEX_PROPERTY_SYNTAX; |
4463 | 16 | break; |
4464 | 16 | } |
4465 | | |
4466 | 5.01k | if (mPropName.caseCompare(u"assigned", -1, 0) == 0) { |
4467 | 0 | mPropName.setTo(u"unassigned", -1); |
4468 | 0 | negated = !negated; |
4469 | 5.01k | } else if (mPropName.caseCompare(u"TitleCase", -1, 0) == 0) { |
4470 | 0 | mPropName.setTo(u"Titlecase_Letter", -1); |
4471 | 0 | } |
4472 | | |
4473 | 5.01k | mPropName.insert(0, u"[\\p{", -1); |
4474 | 5.01k | mPropName.append(u"}]", -1); |
4475 | 5.01k | set.adoptInsteadAndCheckErrorCode(new UnicodeSet(mPropName, *fStatus), status); |
4476 | | |
4477 | 5.01k | if (U_SUCCESS(status) && !set->isEmpty() && (usetFlags & USET_CASE_INSENSITIVE)) { |
4478 | 1.04k | set->closeOver(USET_CASE_INSENSITIVE); |
4479 | 1.04k | } |
4480 | 5.01k | break; |
4481 | | |
4482 | 5.03k | } |
4483 | | |
4484 | 1.89k | if (propName.startsWith(u"java", -1)) { |
4485 | 0 | status = U_ZERO_ERROR; |
4486 | 0 | set.adoptInsteadAndCheckErrorCode(new UnicodeSet(), status); |
4487 | 0 | if (U_FAILURE(status)) { |
4488 | 0 | break; |
4489 | 0 | } |
4490 | | // |
4491 | | // Try the various Java specific properties. |
4492 | | // These all begin with "java" |
4493 | | // |
4494 | 0 | if (propName.compare(u"javaDefined", -1) == 0) { |
4495 | 0 | addCategory(set.getAlias(), U_GC_CN_MASK, status); |
4496 | 0 | set->complement(); |
4497 | 0 | } |
4498 | 0 | else if (propName.compare(u"javaDigit", -1) == 0) { |
4499 | 0 | addCategory(set.getAlias(), U_GC_ND_MASK, status); |
4500 | 0 | } |
4501 | 0 | else if (propName.compare(u"javaIdentifierIgnorable", -1) == 0) { |
4502 | 0 | addIdentifierIgnorable(set.getAlias(), status); |
4503 | 0 | } |
4504 | 0 | else if (propName.compare(u"javaISOControl", -1) == 0) { |
4505 | 0 | set->add(0, 0x1F).add(0x7F, 0x9F); |
4506 | 0 | } |
4507 | 0 | else if (propName.compare(u"javaJavaIdentifierPart", -1) == 0) { |
4508 | 0 | addCategory(set.getAlias(), U_GC_L_MASK, status); |
4509 | 0 | addCategory(set.getAlias(), U_GC_SC_MASK, status); |
4510 | 0 | addCategory(set.getAlias(), U_GC_PC_MASK, status); |
4511 | 0 | addCategory(set.getAlias(), U_GC_ND_MASK, status); |
4512 | 0 | addCategory(set.getAlias(), U_GC_NL_MASK, status); |
4513 | 0 | addCategory(set.getAlias(), U_GC_MC_MASK, status); |
4514 | 0 | addCategory(set.getAlias(), U_GC_MN_MASK, status); |
4515 | 0 | addIdentifierIgnorable(set.getAlias(), status); |
4516 | 0 | } |
4517 | 0 | else if (propName.compare(u"javaJavaIdentifierStart", -1) == 0) { |
4518 | 0 | addCategory(set.getAlias(), U_GC_L_MASK, status); |
4519 | 0 | addCategory(set.getAlias(), U_GC_NL_MASK, status); |
4520 | 0 | addCategory(set.getAlias(), U_GC_SC_MASK, status); |
4521 | 0 | addCategory(set.getAlias(), U_GC_PC_MASK, status); |
4522 | 0 | } |
4523 | 0 | else if (propName.compare(u"javaLetter", -1) == 0) { |
4524 | 0 | addCategory(set.getAlias(), U_GC_L_MASK, status); |
4525 | 0 | } |
4526 | 0 | else if (propName.compare(u"javaLetterOrDigit", -1) == 0) { |
4527 | 0 | addCategory(set.getAlias(), U_GC_L_MASK, status); |
4528 | 0 | addCategory(set.getAlias(), U_GC_ND_MASK, status); |
4529 | 0 | } |
4530 | 0 | else if (propName.compare(u"javaLowerCase", -1) == 0) { |
4531 | 0 | addCategory(set.getAlias(), U_GC_LL_MASK, status); |
4532 | 0 | } |
4533 | 0 | else if (propName.compare(u"javaMirrored", -1) == 0) { |
4534 | 0 | set->applyIntPropertyValue(UCHAR_BIDI_MIRRORED, 1, status); |
4535 | 0 | } |
4536 | 0 | else if (propName.compare(u"javaSpaceChar", -1) == 0) { |
4537 | 0 | addCategory(set.getAlias(), U_GC_Z_MASK, status); |
4538 | 0 | } |
4539 | 0 | else if (propName.compare(u"javaSupplementaryCodePoint", -1) == 0) { |
4540 | 0 | set->add(0x10000, UnicodeSet::MAX_VALUE); |
4541 | 0 | } |
4542 | 0 | else if (propName.compare(u"javaTitleCase", -1) == 0) { |
4543 | 0 | addCategory(set.getAlias(), U_GC_LT_MASK, status); |
4544 | 0 | } |
4545 | 0 | else if (propName.compare(u"javaUnicodeIdentifierStart", -1) == 0) { |
4546 | 0 | addCategory(set.getAlias(), U_GC_L_MASK, status); |
4547 | 0 | addCategory(set.getAlias(), U_GC_NL_MASK, status); |
4548 | 0 | } |
4549 | 0 | else if (propName.compare(u"javaUnicodeIdentifierPart", -1) == 0) { |
4550 | 0 | addCategory(set.getAlias(), U_GC_L_MASK, status); |
4551 | 0 | addCategory(set.getAlias(), U_GC_PC_MASK, status); |
4552 | 0 | addCategory(set.getAlias(), U_GC_ND_MASK, status); |
4553 | 0 | addCategory(set.getAlias(), U_GC_NL_MASK, status); |
4554 | 0 | addCategory(set.getAlias(), U_GC_MC_MASK, status); |
4555 | 0 | addCategory(set.getAlias(), U_GC_MN_MASK, status); |
4556 | 0 | addIdentifierIgnorable(set.getAlias(), status); |
4557 | 0 | } |
4558 | 0 | else if (propName.compare(u"javaUpperCase", -1) == 0) { |
4559 | 0 | addCategory(set.getAlias(), U_GC_LU_MASK, status); |
4560 | 0 | } |
4561 | 0 | else if (propName.compare(u"javaValidCodePoint", -1) == 0) { |
4562 | 0 | set->add(0, UnicodeSet::MAX_VALUE); |
4563 | 0 | } |
4564 | 0 | else if (propName.compare(u"javaWhitespace", -1) == 0) { |
4565 | 0 | addCategory(set.getAlias(), U_GC_Z_MASK, status); |
4566 | 0 | set->removeAll(UnicodeSet().add(0xa0).add(0x2007).add(0x202f)); |
4567 | 0 | set->add(9, 0x0d).add(0x1c, 0x1f); |
4568 | 0 | } else { |
4569 | 0 | status = U_REGEX_PROPERTY_SYNTAX; |
4570 | 0 | } |
4571 | |
|
4572 | 0 | if (U_SUCCESS(status) && !set->isEmpty() && (usetFlags & USET_CASE_INSENSITIVE)) { |
4573 | 0 | set->closeOver(USET_CASE_INSENSITIVE); |
4574 | 0 | } |
4575 | 0 | break; |
4576 | 0 | } |
4577 | | |
4578 | | // Unrecognized property. ICU didn't like it as it was, and none of the Java compatibility |
4579 | | // extensions matched it. |
4580 | 1.89k | status = U_REGEX_PROPERTY_SYNTAX; |
4581 | 1.89k | } while (false); // End of do loop block. Code above breaks out of the block on success or hard failure. |
4582 | | |
4583 | 70.8k | if (U_SUCCESS(status)) { |
4584 | | // ICU 70 adds emoji properties of strings, but as long as Java does not say how to |
4585 | | // deal with properties of strings and character classes with strings, we ignore them. |
4586 | | // Just in case something downstream might stumble over the strings, |
4587 | | // we remove them from the set. |
4588 | | // Note that when we support strings, the complement of a property (as with \P) |
4589 | | // should be implemented as .complement().removeAllStrings() (code point complement). |
4590 | 68.8k | set->removeAllStrings(); |
4591 | 68.8k | U_ASSERT(set.isValid()); |
4592 | 68.8k | if (negated) { |
4593 | 965 | set->complement(); |
4594 | 965 | } |
4595 | 68.8k | return set.orphan(); |
4596 | 68.8k | } else { |
4597 | 1.98k | if (status == U_ILLEGAL_ARGUMENT_ERROR) { |
4598 | 71 | status = U_REGEX_PROPERTY_SYNTAX; |
4599 | 71 | } |
4600 | 1.98k | error(status); |
4601 | 1.98k | return nullptr; |
4602 | 1.98k | } |
4603 | 70.8k | } |
4604 | | |
4605 | | |
4606 | | // |
4607 | | // SetEval Part of the evaluation of [set expressions]. |
4608 | | // Perform any pending (stacked) operations with precedence |
4609 | | // equal or greater to that of the next operator encountered |
4610 | | // in the expression. |
4611 | | // |
4612 | 8.91M | void RegexCompile::setEval(int32_t nextOp) { |
4613 | 8.91M | UnicodeSet *rightOperand = nullptr; |
4614 | 8.91M | UnicodeSet *leftOperand = nullptr; |
4615 | 9.54M | for (;;) { |
4616 | 9.54M | U_ASSERT(fSetOpStack.empty()==false); |
4617 | 9.54M | int32_t pendingSetOperation = fSetOpStack.peeki(); |
4618 | 9.54M | if ((pendingSetOperation&0xffff0000) < (nextOp&0xffff0000)) { |
4619 | 8.91M | break; |
4620 | 8.91M | } |
4621 | 634k | fSetOpStack.popi(); |
4622 | 634k | U_ASSERT(fSetStack.empty() == false); |
4623 | 634k | rightOperand = (UnicodeSet *)fSetStack.peek(); |
4624 | | // ICU 70 adds emoji properties of strings, but createSetForProperty() removes all strings |
4625 | | // (see comments there). |
4626 | | // We also do not yet support string literals in character classes, |
4627 | | // so there should not be any strings. |
4628 | | // Note that when we support strings, the complement of a set (as with ^ or \P) |
4629 | | // should be implemented as .complement().removeAllStrings() (code point complement). |
4630 | 634k | U_ASSERT(!rightOperand->hasStrings()); |
4631 | 634k | switch (pendingSetOperation) { |
4632 | 671 | case setNegation: |
4633 | 671 | rightOperand->complement(); |
4634 | 671 | break; |
4635 | 559k | case setCaseClose: |
4636 | | // TODO: need a simple close function. Ticket 6065 |
4637 | 559k | rightOperand->closeOver(USET_CASE_INSENSITIVE); |
4638 | 559k | rightOperand->removeAllStrings(); |
4639 | 559k | break; |
4640 | 1.67k | case setDifference1: |
4641 | 2.19k | case setDifference2: |
4642 | 2.19k | fSetStack.pop(); |
4643 | 2.19k | leftOperand = (UnicodeSet *)fSetStack.peek(); |
4644 | 2.19k | leftOperand->removeAll(*rightOperand); |
4645 | 2.19k | delete rightOperand; |
4646 | 2.19k | break; |
4647 | 515 | case setIntersection1: |
4648 | 2.11k | case setIntersection2: |
4649 | 2.11k | fSetStack.pop(); |
4650 | 2.11k | leftOperand = (UnicodeSet *)fSetStack.peek(); |
4651 | 2.11k | leftOperand->retainAll(*rightOperand); |
4652 | 2.11k | delete rightOperand; |
4653 | 2.11k | break; |
4654 | 70.2k | case setUnion: |
4655 | 70.2k | fSetStack.pop(); |
4656 | 70.2k | leftOperand = (UnicodeSet *)fSetStack.peek(); |
4657 | 70.2k | leftOperand->addAll(*rightOperand); |
4658 | 70.2k | delete rightOperand; |
4659 | 70.2k | break; |
4660 | 0 | default: |
4661 | 0 | UPRV_UNREACHABLE_EXIT; |
4662 | 634k | } |
4663 | 634k | } |
4664 | 8.91M | } |
4665 | | |
4666 | 82.2k | void RegexCompile::setPushOp(int32_t op) { |
4667 | 82.2k | setEval(op); |
4668 | 82.2k | fSetOpStack.push(op, *fStatus); |
4669 | 82.2k | LocalPointer<UnicodeSet> lpSet(new UnicodeSet(), *fStatus); |
4670 | 82.2k | fSetStack.push(lpSet.orphan(), *fStatus); |
4671 | 82.2k | } |
4672 | | |
4673 | | U_NAMESPACE_END |
4674 | | #endif // !UCONFIG_NO_REGULAR_EXPRESSIONS |
4675 | | |