/src/icu/icu4c/source/common/rbbiscan.cpp
Line | Count | Source (jump to first uncovered line) |
1 | | // © 2016 and later: Unicode, Inc. and others. |
2 | | // License & terms of use: http://www.unicode.org/copyright.html |
3 | | // |
4 | | // file: rbbiscan.cpp |
5 | | // |
6 | | // Copyright (C) 2002-2016, International Business Machines Corporation and others. |
7 | | // All Rights Reserved. |
8 | | // |
9 | | // This file contains the Rule Based Break Iterator Rule Builder functions for |
10 | | // scanning the rules and assembling a parse tree. This is the first phase |
11 | | // of compiling the rules. |
12 | | // |
13 | | // The overall of the rules is managed by class RBBIRuleBuilder, which will |
14 | | // create and use an instance of this class as part of the process. |
15 | | // |
16 | | |
17 | | #include "unicode/utypes.h" |
18 | | |
19 | | #if !UCONFIG_NO_BREAK_ITERATION |
20 | | |
21 | | #include "unicode/unistr.h" |
22 | | #include "unicode/uniset.h" |
23 | | #include "unicode/uchar.h" |
24 | | #include "unicode/uchriter.h" |
25 | | #include "unicode/parsepos.h" |
26 | | #include "unicode/parseerr.h" |
27 | | #include "cmemory.h" |
28 | | #include "cstring.h" |
29 | | |
30 | | #include "rbbirpt.h" // Contains state table for the rbbi rules parser. |
31 | | // generated by a Perl script. |
32 | | #include "rbbirb.h" |
33 | | #include "rbbinode.h" |
34 | | #include "rbbiscan.h" |
35 | | #include "rbbitblb.h" |
36 | | |
37 | | #include "uassert.h" |
38 | | |
39 | | //------------------------------------------------------------------------------ |
40 | | // |
41 | | // Unicode Set init strings for each of the character classes needed for parsing a rule file. |
42 | | // (Initialized with hex values for portability to EBCDIC based machines. |
43 | | // Really ugly, but there's no good way to avoid it.) |
44 | | // |
45 | | // The sets are referred to by name in the rbbirpt.txt, which is the |
46 | | // source form of the state transition table for the RBBI rule parser. |
47 | | // |
48 | | //------------------------------------------------------------------------------ |
49 | | static const char16_t gRuleSet_rule_char_pattern[] = { |
50 | | // Characters that may appear as literals in patterns without escaping or quoting. |
51 | | // [ ^ [ \ p { Z } \ u 0 0 2 0 |
52 | | 0x5b, 0x5e, 0x5b, 0x5c, 0x70, 0x7b, 0x5a, 0x7d, 0x5c, 0x75, 0x30, 0x30, 0x32, 0x30, |
53 | | // - \ u 0 0 7 f ] - [ \ p |
54 | | 0x2d, 0x5c, 0x75, 0x30, 0x30, 0x37, 0x66, 0x5d, 0x2d, 0x5b, 0x5c, 0x70, |
55 | | // { L } ] - [ \ p { N } ] ] |
56 | | 0x7b, 0x4c, 0x7d, 0x5d, 0x2d, 0x5b, 0x5c, 0x70, 0x7b, 0x4e, 0x7d, 0x5d, 0x5d, 0}; |
57 | | |
58 | | static const char16_t gRuleSet_name_char_pattern[] = { |
59 | | // [ _ \ p { L } \ p { N } ] |
60 | | 0x5b, 0x5f, 0x5c, 0x70, 0x7b, 0x4c, 0x7d, 0x5c, 0x70, 0x7b, 0x4e, 0x7d, 0x5d, 0}; |
61 | | |
62 | | static const char16_t gRuleSet_digit_char_pattern[] = { |
63 | | // [ 0 - 9 ] |
64 | | 0x5b, 0x30, 0x2d, 0x39, 0x5d, 0}; |
65 | | |
66 | | static const char16_t gRuleSet_name_start_char_pattern[] = { |
67 | | // [ _ \ p { L } ] |
68 | | 0x5b, 0x5f, 0x5c, 0x70, 0x7b, 0x4c, 0x7d, 0x5d, 0 }; |
69 | | |
70 | | static const char16_t kAny[] = {0x61, 0x6e, 0x79, 0x00}; // "any" |
71 | | |
72 | | |
73 | | U_CDECL_BEGIN |
74 | 0 | static void U_CALLCONV RBBISetTable_deleter(void *p) { |
75 | 0 | icu::RBBISetTableEl *px = (icu::RBBISetTableEl *)p; |
76 | 0 | delete px->key; |
77 | | // Note: px->val is owned by the linked list "fSetsListHead" in scanner. |
78 | | // Don't delete the value nodes here. |
79 | 0 | uprv_free(px); |
80 | 0 | } |
81 | | U_CDECL_END |
82 | | |
83 | | U_NAMESPACE_BEGIN |
84 | | |
85 | | //------------------------------------------------------------------------------ |
86 | | // |
87 | | // Constructor. |
88 | | // |
89 | | //------------------------------------------------------------------------------ |
90 | | RBBIRuleScanner::RBBIRuleScanner(RBBIRuleBuilder *rb) |
91 | 0 | { |
92 | 0 | fRB = rb; |
93 | 0 | fScanIndex = 0; |
94 | 0 | fNextIndex = 0; |
95 | 0 | fQuoteMode = false; |
96 | 0 | fLineNum = 1; |
97 | 0 | fCharNum = 0; |
98 | 0 | fLastChar = 0; |
99 | | |
100 | 0 | fStateTable = nullptr; |
101 | 0 | fStack[0] = 0; |
102 | 0 | fStackPtr = 0; |
103 | 0 | fNodeStack[0] = nullptr; |
104 | 0 | fNodeStackPtr = 0; |
105 | |
|
106 | 0 | fReverseRule = false; |
107 | 0 | fLookAheadRule = false; |
108 | 0 | fNoChainInRule = false; |
109 | |
|
110 | 0 | fSymbolTable = nullptr; |
111 | 0 | fSetTable = nullptr; |
112 | 0 | fRuleNum = 0; |
113 | 0 | fOptionStart = 0; |
114 | | |
115 | | // Do not check status until after all critical fields are sufficiently initialized |
116 | | // that the destructor can run cleanly. |
117 | 0 | if (U_FAILURE(*rb->fStatus)) { |
118 | 0 | return; |
119 | 0 | } |
120 | | |
121 | | // |
122 | | // Set up the constant Unicode Sets. |
123 | | // Note: These could be made static, lazily initialized, and shared among |
124 | | // all instances of RBBIRuleScanners. BUT this is quite a bit simpler, |
125 | | // and the time to build these few sets should be small compared to a |
126 | | // full break iterator build. |
127 | 0 | fRuleSets[kRuleSet_rule_char-128] |
128 | 0 | = UnicodeSet(UnicodeString(gRuleSet_rule_char_pattern), *rb->fStatus); |
129 | | // fRuleSets[kRuleSet_white_space-128] = [:Pattern_White_Space:] |
130 | 0 | fRuleSets[kRuleSet_white_space-128]. |
131 | 0 | add(9, 0xd).add(0x20).add(0x85).add(0x200e, 0x200f).add(0x2028, 0x2029); |
132 | 0 | fRuleSets[kRuleSet_name_char-128] |
133 | 0 | = UnicodeSet(UnicodeString(gRuleSet_name_char_pattern), *rb->fStatus); |
134 | 0 | fRuleSets[kRuleSet_name_start_char-128] |
135 | 0 | = UnicodeSet(UnicodeString(gRuleSet_name_start_char_pattern), *rb->fStatus); |
136 | 0 | fRuleSets[kRuleSet_digit_char-128] |
137 | 0 | = UnicodeSet(UnicodeString(gRuleSet_digit_char_pattern), *rb->fStatus); |
138 | 0 | if (*rb->fStatus == U_ILLEGAL_ARGUMENT_ERROR) { |
139 | | // This case happens if ICU's data is missing. UnicodeSet tries to look up property |
140 | | // names from the init string, can't find them, and claims an illegal argument. |
141 | | // Change the error so that the actual problem will be clearer to users. |
142 | 0 | *rb->fStatus = U_BRK_INIT_ERROR; |
143 | 0 | } |
144 | 0 | if (U_FAILURE(*rb->fStatus)) { |
145 | 0 | return; |
146 | 0 | } |
147 | | |
148 | 0 | fSymbolTable = new RBBISymbolTable(this, rb->fRules, *rb->fStatus); |
149 | 0 | if (fSymbolTable == nullptr) { |
150 | 0 | *rb->fStatus = U_MEMORY_ALLOCATION_ERROR; |
151 | 0 | return; |
152 | 0 | } |
153 | 0 | fSetTable = uhash_open(uhash_hashUnicodeString, uhash_compareUnicodeString, nullptr, rb->fStatus); |
154 | 0 | if (U_FAILURE(*rb->fStatus)) { |
155 | 0 | return; |
156 | 0 | } |
157 | 0 | uhash_setValueDeleter(fSetTable, RBBISetTable_deleter); |
158 | 0 | } |
159 | | |
160 | | |
161 | | |
162 | | //------------------------------------------------------------------------------ |
163 | | // |
164 | | // Destructor |
165 | | // |
166 | | //------------------------------------------------------------------------------ |
167 | 0 | RBBIRuleScanner::~RBBIRuleScanner() { |
168 | 0 | delete fSymbolTable; |
169 | 0 | if (fSetTable != nullptr) { |
170 | 0 | uhash_close(fSetTable); |
171 | 0 | fSetTable = nullptr; |
172 | |
|
173 | 0 | } |
174 | | |
175 | | |
176 | | // Node Stack. |
177 | | // Normally has one entry, which is the entire parse tree for the rules. |
178 | | // If errors occurred, there may be additional subtrees left on the stack. |
179 | 0 | while (fNodeStackPtr > 0) { |
180 | 0 | delete fNodeStack[fNodeStackPtr]; |
181 | 0 | fNodeStackPtr--; |
182 | 0 | } |
183 | |
|
184 | 0 | } |
185 | | |
186 | | //------------------------------------------------------------------------------ |
187 | | // |
188 | | // doParseAction Do some action during rule parsing. |
189 | | // Called by the parse state machine. |
190 | | // Actions build the parse tree and Unicode Sets, |
191 | | // and maintain the parse stack for nested expressions. |
192 | | // |
193 | | // TODO: unify EParseAction and RBBI_RuleParseAction enum types. |
194 | | // They represent exactly the same thing. They're separate |
195 | | // only to work around enum forward declaration restrictions |
196 | | // in some compilers, while at the same time avoiding multiple |
197 | | // definitions problems. I'm sure that there's a better way. |
198 | | // |
199 | | //------------------------------------------------------------------------------ |
200 | | UBool RBBIRuleScanner::doParseActions(int32_t action) |
201 | 0 | { |
202 | 0 | RBBINode *n = nullptr; |
203 | |
|
204 | 0 | UBool returnVal = true; |
205 | |
|
206 | 0 | switch (action) { |
207 | | |
208 | 0 | case doExprStart: |
209 | 0 | pushNewNode(RBBINode::opStart); |
210 | 0 | fRuleNum++; |
211 | 0 | break; |
212 | | |
213 | | |
214 | 0 | case doNoChain: |
215 | | // Scanned a '^' while on the rule start state. |
216 | 0 | fNoChainInRule = true; |
217 | 0 | break; |
218 | | |
219 | | |
220 | 0 | case doExprOrOperator: |
221 | 0 | { |
222 | 0 | fixOpStack(RBBINode::precOpCat); |
223 | 0 | RBBINode *operandNode = fNodeStack[fNodeStackPtr--]; |
224 | 0 | RBBINode *orNode = pushNewNode(RBBINode::opOr); |
225 | 0 | if (U_FAILURE(*fRB->fStatus)) { |
226 | 0 | break; |
227 | 0 | } |
228 | 0 | orNode->fLeftChild = operandNode; |
229 | 0 | operandNode->fParent = orNode; |
230 | 0 | } |
231 | 0 | break; |
232 | | |
233 | 0 | case doExprCatOperator: |
234 | | // concatenation operator. |
235 | | // For the implicit concatenation of adjacent terms in an expression that are |
236 | | // not separated by any other operator. Action is invoked between the |
237 | | // actions for the two terms. |
238 | 0 | { |
239 | 0 | fixOpStack(RBBINode::precOpCat); |
240 | 0 | RBBINode *operandNode = fNodeStack[fNodeStackPtr--]; |
241 | 0 | RBBINode *catNode = pushNewNode(RBBINode::opCat); |
242 | 0 | if (U_FAILURE(*fRB->fStatus)) { |
243 | 0 | break; |
244 | 0 | } |
245 | 0 | catNode->fLeftChild = operandNode; |
246 | 0 | operandNode->fParent = catNode; |
247 | 0 | } |
248 | 0 | break; |
249 | | |
250 | 0 | case doLParen: |
251 | | // Open Paren. |
252 | | // The openParen node is a dummy operation type with a low precedence, |
253 | | // which has the affect of ensuring that any real binary op that |
254 | | // follows within the parens binds more tightly to the operands than |
255 | | // stuff outside of the parens. |
256 | 0 | pushNewNode(RBBINode::opLParen); |
257 | 0 | break; |
258 | | |
259 | 0 | case doExprRParen: |
260 | 0 | fixOpStack(RBBINode::precLParen); |
261 | 0 | break; |
262 | | |
263 | 0 | case doNOP: |
264 | 0 | break; |
265 | | |
266 | 0 | case doStartAssign: |
267 | | // We've just scanned "$variable = " |
268 | | // The top of the node stack has the $variable ref node. |
269 | | |
270 | | // Save the start position of the RHS text in the StartExpression node |
271 | | // that precedes the $variableReference node on the stack. |
272 | | // This will eventually be used when saving the full $variable replacement |
273 | | // text as a string. |
274 | 0 | n = fNodeStack[fNodeStackPtr-1]; |
275 | 0 | n->fFirstPos = fNextIndex; // move past the '=' |
276 | | |
277 | | // Push a new start-of-expression node; needed to keep parse of the |
278 | | // RHS expression happy. |
279 | 0 | pushNewNode(RBBINode::opStart); |
280 | 0 | break; |
281 | | |
282 | | |
283 | | |
284 | | |
285 | 0 | case doEndAssign: |
286 | 0 | { |
287 | | // We have reached the end of an assignment statement. |
288 | | // Current scan char is the ';' that terminates the assignment. |
289 | | |
290 | | // Terminate expression, leaves expression parse tree rooted in TOS node. |
291 | 0 | fixOpStack(RBBINode::precStart); |
292 | |
|
293 | 0 | RBBINode *startExprNode = fNodeStack[fNodeStackPtr-2]; |
294 | 0 | RBBINode *varRefNode = fNodeStack[fNodeStackPtr-1]; |
295 | 0 | RBBINode *RHSExprNode = fNodeStack[fNodeStackPtr]; |
296 | | |
297 | | // Save original text of right side of assignment, excluding the terminating ';' |
298 | | // in the root of the node for the right-hand-side expression. |
299 | 0 | RHSExprNode->fFirstPos = startExprNode->fFirstPos; |
300 | 0 | RHSExprNode->fLastPos = fScanIndex; |
301 | 0 | fRB->fRules.extractBetween(RHSExprNode->fFirstPos, RHSExprNode->fLastPos, RHSExprNode->fText); |
302 | | |
303 | | // Expression parse tree becomes l. child of the $variable reference node. |
304 | 0 | varRefNode->fLeftChild = RHSExprNode; |
305 | 0 | RHSExprNode->fParent = varRefNode; |
306 | | |
307 | | // Make a symbol table entry for the $variableRef node. |
308 | 0 | fSymbolTable->addEntry(varRefNode->fText, varRefNode, *fRB->fStatus); |
309 | 0 | if (U_FAILURE(*fRB->fStatus)) { |
310 | | // This is a round-about way to get the parse position set |
311 | | // so that duplicate symbols error messages include a line number. |
312 | 0 | UErrorCode t = *fRB->fStatus; |
313 | 0 | *fRB->fStatus = U_ZERO_ERROR; |
314 | 0 | error(t); |
315 | 0 | } |
316 | | |
317 | | // Clean up the stack. |
318 | 0 | delete startExprNode; |
319 | 0 | fNodeStackPtr-=3; |
320 | 0 | break; |
321 | 0 | } |
322 | | |
323 | 0 | case doEndOfRule: |
324 | 0 | { |
325 | 0 | fixOpStack(RBBINode::precStart); // Terminate expression, leaves expression |
326 | 0 | if (U_FAILURE(*fRB->fStatus)) { // parse tree rooted in TOS node. |
327 | 0 | break; |
328 | 0 | } |
329 | | #ifdef RBBI_DEBUG |
330 | | if (fRB->fDebugEnv && uprv_strstr(fRB->fDebugEnv, "rtree")) {printNodeStack("end of rule");} |
331 | | #endif |
332 | 0 | U_ASSERT(fNodeStackPtr == 1); |
333 | 0 | RBBINode *thisRule = fNodeStack[fNodeStackPtr]; |
334 | | |
335 | | // If this rule includes a look-ahead '/', add a endMark node to the |
336 | | // expression tree. |
337 | 0 | if (fLookAheadRule) { |
338 | 0 | RBBINode *endNode = pushNewNode(RBBINode::endMark); |
339 | 0 | RBBINode *catNode = pushNewNode(RBBINode::opCat); |
340 | 0 | if (U_FAILURE(*fRB->fStatus)) { |
341 | 0 | break; |
342 | 0 | } |
343 | 0 | fNodeStackPtr -= 2; |
344 | 0 | catNode->fLeftChild = thisRule; |
345 | 0 | catNode->fRightChild = endNode; |
346 | 0 | fNodeStack[fNodeStackPtr] = catNode; |
347 | 0 | endNode->fVal = fRuleNum; |
348 | 0 | endNode->fLookAheadEnd = true; |
349 | 0 | thisRule = catNode; |
350 | | |
351 | | // TODO: Disable chaining out of look-ahead (hard break) rules. |
352 | | // The break on rule match is forced, so there is no point in building up |
353 | | // the state table to chain into another rule for a longer match. |
354 | 0 | } |
355 | | |
356 | | // Mark this node as being the root of a rule. |
357 | 0 | thisRule->fRuleRoot = true; |
358 | | |
359 | | // Flag if chaining into this rule is wanted. |
360 | | // |
361 | 0 | if (fRB->fChainRules && // If rule chaining is enabled globally via !!chain |
362 | 0 | !fNoChainInRule) { // and no '^' chain-in inhibit was on this rule |
363 | 0 | thisRule->fChainIn = true; |
364 | 0 | } |
365 | | |
366 | | |
367 | | // All rule expressions are ORed together. |
368 | | // The ';' that terminates an expression really just functions as a '|' with |
369 | | // a low operator prededence. |
370 | | // |
371 | | // Each of the four sets of rules are collected separately. |
372 | | // (forward, reverse, safe_forward, safe_reverse) |
373 | | // OR this rule into the appropriate group of them. |
374 | | // |
375 | 0 | RBBINode **destRules = (fReverseRule? &fRB->fSafeRevTree : fRB->fDefaultTree); |
376 | |
|
377 | 0 | if (*destRules != nullptr) { |
378 | | // This is not the first rule encountered. |
379 | | // OR previous stuff (from *destRules) |
380 | | // with the current rule expression (on the Node Stack) |
381 | | // with the resulting OR expression going to *destRules |
382 | | // |
383 | 0 | thisRule = fNodeStack[fNodeStackPtr]; |
384 | 0 | RBBINode *prevRules = *destRules; |
385 | 0 | RBBINode *orNode = pushNewNode(RBBINode::opOr); |
386 | 0 | if (U_FAILURE(*fRB->fStatus)) { |
387 | 0 | break; |
388 | 0 | } |
389 | 0 | orNode->fLeftChild = prevRules; |
390 | 0 | prevRules->fParent = orNode; |
391 | 0 | orNode->fRightChild = thisRule; |
392 | 0 | thisRule->fParent = orNode; |
393 | 0 | *destRules = orNode; |
394 | 0 | } |
395 | 0 | else |
396 | 0 | { |
397 | | // This is the first rule encountered (for this direction). |
398 | | // Just move its parse tree from the stack to *destRules. |
399 | 0 | *destRules = fNodeStack[fNodeStackPtr]; |
400 | 0 | } |
401 | 0 | fReverseRule = false; // in preparation for the next rule. |
402 | 0 | fLookAheadRule = false; |
403 | 0 | fNoChainInRule = false; |
404 | 0 | fNodeStackPtr = 0; |
405 | 0 | } |
406 | 0 | break; |
407 | | |
408 | | |
409 | 0 | case doRuleError: |
410 | 0 | error(U_BRK_RULE_SYNTAX); |
411 | 0 | returnVal = false; |
412 | 0 | break; |
413 | | |
414 | | |
415 | 0 | case doVariableNameExpectedErr: |
416 | 0 | error(U_BRK_RULE_SYNTAX); |
417 | 0 | break; |
418 | | |
419 | | |
420 | | // |
421 | | // Unary operands + ? * |
422 | | // These all appear after the operand to which they apply. |
423 | | // When we hit one, the operand (may be a whole sub expression) |
424 | | // will be on the top of the stack. |
425 | | // Unary Operator becomes TOS, with the old TOS as its one child. |
426 | 0 | case doUnaryOpPlus: |
427 | 0 | { |
428 | 0 | RBBINode *operandNode = fNodeStack[fNodeStackPtr--]; |
429 | 0 | RBBINode *plusNode = pushNewNode(RBBINode::opPlus); |
430 | 0 | if (U_FAILURE(*fRB->fStatus)) { |
431 | 0 | break; |
432 | 0 | } |
433 | 0 | plusNode->fLeftChild = operandNode; |
434 | 0 | operandNode->fParent = plusNode; |
435 | 0 | } |
436 | 0 | break; |
437 | | |
438 | 0 | case doUnaryOpQuestion: |
439 | 0 | { |
440 | 0 | RBBINode *operandNode = fNodeStack[fNodeStackPtr--]; |
441 | 0 | RBBINode *qNode = pushNewNode(RBBINode::opQuestion); |
442 | 0 | if (U_FAILURE(*fRB->fStatus)) { |
443 | 0 | break; |
444 | 0 | } |
445 | 0 | qNode->fLeftChild = operandNode; |
446 | 0 | operandNode->fParent = qNode; |
447 | 0 | } |
448 | 0 | break; |
449 | | |
450 | 0 | case doUnaryOpStar: |
451 | 0 | { |
452 | 0 | RBBINode *operandNode = fNodeStack[fNodeStackPtr--]; |
453 | 0 | RBBINode *starNode = pushNewNode(RBBINode::opStar); |
454 | 0 | if (U_FAILURE(*fRB->fStatus)) { |
455 | 0 | break; |
456 | 0 | } |
457 | 0 | starNode->fLeftChild = operandNode; |
458 | 0 | operandNode->fParent = starNode; |
459 | 0 | } |
460 | 0 | break; |
461 | | |
462 | 0 | case doRuleChar: |
463 | | // A "Rule Character" is any single character that is a literal part |
464 | | // of the regular expression. Like a, b and c in the expression "(abc*) | [:L:]" |
465 | | // These are pretty uncommon in break rules; the terms are more commonly |
466 | | // sets. To keep things uniform, treat these characters like as |
467 | | // sets that just happen to contain only one character. |
468 | 0 | { |
469 | 0 | n = pushNewNode(RBBINode::setRef); |
470 | 0 | if (U_FAILURE(*fRB->fStatus)) { |
471 | 0 | break; |
472 | 0 | } |
473 | 0 | findSetFor(UnicodeString(fC.fChar), n); |
474 | 0 | n->fFirstPos = fScanIndex; |
475 | 0 | n->fLastPos = fNextIndex; |
476 | 0 | fRB->fRules.extractBetween(n->fFirstPos, n->fLastPos, n->fText); |
477 | 0 | break; |
478 | 0 | } |
479 | | |
480 | 0 | case doDotAny: |
481 | | // scanned a ".", meaning match any single character. |
482 | 0 | { |
483 | 0 | n = pushNewNode(RBBINode::setRef); |
484 | 0 | if (U_FAILURE(*fRB->fStatus)) { |
485 | 0 | break; |
486 | 0 | } |
487 | 0 | findSetFor(UnicodeString(true, kAny, 3), n); |
488 | 0 | n->fFirstPos = fScanIndex; |
489 | 0 | n->fLastPos = fNextIndex; |
490 | 0 | fRB->fRules.extractBetween(n->fFirstPos, n->fLastPos, n->fText); |
491 | 0 | break; |
492 | 0 | } |
493 | | |
494 | 0 | case doSlash: |
495 | | // Scanned a '/', which identifies a look-ahead break position in a rule. |
496 | 0 | n = pushNewNode(RBBINode::lookAhead); |
497 | 0 | if (U_FAILURE(*fRB->fStatus)) { |
498 | 0 | break; |
499 | 0 | } |
500 | 0 | n->fVal = fRuleNum; |
501 | 0 | n->fFirstPos = fScanIndex; |
502 | 0 | n->fLastPos = fNextIndex; |
503 | 0 | fRB->fRules.extractBetween(n->fFirstPos, n->fLastPos, n->fText); |
504 | 0 | fLookAheadRule = true; |
505 | 0 | break; |
506 | | |
507 | | |
508 | 0 | case doStartTagValue: |
509 | | // Scanned a '{', the opening delimiter for a tag value within a rule. |
510 | 0 | n = pushNewNode(RBBINode::tag); |
511 | 0 | if (U_FAILURE(*fRB->fStatus)) { |
512 | 0 | break; |
513 | 0 | } |
514 | 0 | n->fVal = 0; |
515 | 0 | n->fFirstPos = fScanIndex; |
516 | 0 | n->fLastPos = fNextIndex; |
517 | 0 | break; |
518 | | |
519 | 0 | case doTagDigit: |
520 | | // Just scanned a decimal digit that's part of a tag value |
521 | 0 | { |
522 | 0 | n = fNodeStack[fNodeStackPtr]; |
523 | 0 | uint32_t v = u_charDigitValue(fC.fChar); |
524 | 0 | U_ASSERT(v < 10); |
525 | 0 | n->fVal = n->fVal*10 + v; |
526 | 0 | break; |
527 | 0 | } |
528 | | |
529 | 0 | case doTagValue: |
530 | 0 | n = fNodeStack[fNodeStackPtr]; |
531 | 0 | n->fLastPos = fNextIndex; |
532 | 0 | fRB->fRules.extractBetween(n->fFirstPos, n->fLastPos, n->fText); |
533 | 0 | break; |
534 | | |
535 | 0 | case doTagExpectedError: |
536 | 0 | error(U_BRK_MALFORMED_RULE_TAG); |
537 | 0 | returnVal = false; |
538 | 0 | break; |
539 | | |
540 | 0 | case doOptionStart: |
541 | | // Scanning a !!option. At the start of string. |
542 | 0 | fOptionStart = fScanIndex; |
543 | 0 | break; |
544 | | |
545 | 0 | case doOptionEnd: |
546 | 0 | { |
547 | 0 | UnicodeString opt(fRB->fRules, fOptionStart, fScanIndex-fOptionStart); |
548 | 0 | if (opt == UNICODE_STRING("chain", 5)) { |
549 | 0 | fRB->fChainRules = true; |
550 | 0 | } else if (opt == UNICODE_STRING("forward", 7)) { |
551 | 0 | fRB->fDefaultTree = &fRB->fForwardTree; |
552 | 0 | } else if (opt == UNICODE_STRING("reverse", 7)) { |
553 | 0 | fRB->fDefaultTree = &fRB->fReverseTree; |
554 | 0 | } else if (opt == UNICODE_STRING("safe_forward", 12)) { |
555 | 0 | fRB->fDefaultTree = &fRB->fSafeFwdTree; |
556 | 0 | } else if (opt == UNICODE_STRING("safe_reverse", 12)) { |
557 | 0 | fRB->fDefaultTree = &fRB->fSafeRevTree; |
558 | 0 | } else if (opt == UNICODE_STRING("lookAheadHardBreak", 18)) { |
559 | 0 | fRB->fLookAheadHardBreak = true; |
560 | 0 | } else if (opt == UNICODE_STRING("quoted_literals_only", 20)) { |
561 | 0 | fRuleSets[kRuleSet_rule_char-128].clear(); |
562 | 0 | } else if (opt == UNICODE_STRING("unquoted_literals", 17)) { |
563 | 0 | fRuleSets[kRuleSet_rule_char-128].applyPattern(UnicodeString(gRuleSet_rule_char_pattern), *fRB->fStatus); |
564 | 0 | } else { |
565 | 0 | error(U_BRK_UNRECOGNIZED_OPTION); |
566 | 0 | } |
567 | 0 | } |
568 | 0 | break; |
569 | | |
570 | 0 | case doReverseDir: |
571 | 0 | fReverseRule = true; |
572 | 0 | break; |
573 | | |
574 | 0 | case doStartVariableName: |
575 | 0 | n = pushNewNode(RBBINode::varRef); |
576 | 0 | if (U_FAILURE(*fRB->fStatus)) { |
577 | 0 | break; |
578 | 0 | } |
579 | 0 | n->fFirstPos = fScanIndex; |
580 | 0 | break; |
581 | | |
582 | 0 | case doEndVariableName: |
583 | 0 | n = fNodeStack[fNodeStackPtr]; |
584 | 0 | if (n==nullptr || n->fType != RBBINode::varRef) { |
585 | 0 | error(U_BRK_INTERNAL_ERROR); |
586 | 0 | break; |
587 | 0 | } |
588 | 0 | n->fLastPos = fScanIndex; |
589 | 0 | fRB->fRules.extractBetween(n->fFirstPos+1, n->fLastPos, n->fText); |
590 | | // Look the newly scanned name up in the symbol table |
591 | | // If there's an entry, set the l. child of the var ref to the replacement expression. |
592 | | // (We also pass through here when scanning assignments, but no harm is done, other |
593 | | // than a slight wasted effort that seems hard to avoid. Lookup will be null) |
594 | 0 | n->fLeftChild = fSymbolTable->lookupNode(n->fText); |
595 | 0 | break; |
596 | | |
597 | 0 | case doCheckVarDef: |
598 | 0 | n = fNodeStack[fNodeStackPtr]; |
599 | 0 | if (n->fLeftChild == nullptr) { |
600 | 0 | error(U_BRK_UNDEFINED_VARIABLE); |
601 | 0 | returnVal = false; |
602 | 0 | } |
603 | 0 | break; |
604 | | |
605 | 0 | case doExprFinished: |
606 | 0 | break; |
607 | | |
608 | 0 | case doRuleErrorAssignExpr: |
609 | 0 | error(U_BRK_ASSIGN_ERROR); |
610 | 0 | returnVal = false; |
611 | 0 | break; |
612 | | |
613 | 0 | case doExit: |
614 | 0 | returnVal = false; |
615 | 0 | break; |
616 | | |
617 | 0 | case doScanUnicodeSet: |
618 | 0 | scanSet(); |
619 | 0 | break; |
620 | | |
621 | 0 | default: |
622 | 0 | error(U_BRK_INTERNAL_ERROR); |
623 | 0 | returnVal = false; |
624 | 0 | break; |
625 | 0 | } |
626 | 0 | return returnVal && U_SUCCESS(*fRB->fStatus); |
627 | 0 | } |
628 | | |
629 | | |
630 | | |
631 | | |
632 | | //------------------------------------------------------------------------------ |
633 | | // |
634 | | // Error Report a rule parse error. |
635 | | // Only report it if no previous error has been recorded. |
636 | | // |
637 | | //------------------------------------------------------------------------------ |
638 | 0 | void RBBIRuleScanner::error(UErrorCode e) { |
639 | 0 | if (U_SUCCESS(*fRB->fStatus)) { |
640 | 0 | *fRB->fStatus = e; |
641 | 0 | if (fRB->fParseError) { |
642 | 0 | fRB->fParseError->line = fLineNum; |
643 | 0 | fRB->fParseError->offset = fCharNum; |
644 | 0 | fRB->fParseError->preContext[0] = 0; |
645 | 0 | fRB->fParseError->postContext[0] = 0; |
646 | 0 | } |
647 | 0 | } |
648 | 0 | } |
649 | | |
650 | | |
651 | | |
652 | | |
653 | | //------------------------------------------------------------------------------ |
654 | | // |
655 | | // fixOpStack The parse stack holds partially assembled chunks of the parse tree. |
656 | | // An entry on the stack may be as small as a single setRef node, |
657 | | // or as large as the parse tree |
658 | | // for an entire expression (this will be the one item left on the stack |
659 | | // when the parsing of an RBBI rule completes. |
660 | | // |
661 | | // This function is called when a binary operator is encountered. |
662 | | // It looks back up the stack for operators that are not yet associated |
663 | | // with a right operand, and if the precedence of the stacked operator >= |
664 | | // the precedence of the current operator, binds the operand left, |
665 | | // to the previously encountered operator. |
666 | | // |
667 | | //------------------------------------------------------------------------------ |
668 | 0 | void RBBIRuleScanner::fixOpStack(RBBINode::OpPrecedence p) { |
669 | 0 | RBBINode *n; |
670 | | // printNodeStack("entering fixOpStack()"); |
671 | 0 | for (;;) { |
672 | 0 | n = fNodeStack[fNodeStackPtr-1]; // an operator node |
673 | 0 | if (n->fPrecedence == 0) { |
674 | 0 | RBBIDebugPuts("RBBIRuleScanner::fixOpStack, bad operator node"); |
675 | 0 | error(U_BRK_INTERNAL_ERROR); |
676 | 0 | return; |
677 | 0 | } |
678 | | |
679 | 0 | if (n->fPrecedence < p || n->fPrecedence <= RBBINode::precLParen) { |
680 | | // The most recent operand goes with the current operator, |
681 | | // not with the previously stacked one. |
682 | 0 | break; |
683 | 0 | } |
684 | | // Stack operator is a binary op ( '|' or concatenation) |
685 | | // TOS operand becomes right child of this operator. |
686 | | // Resulting subexpression becomes the TOS operand. |
687 | 0 | n->fRightChild = fNodeStack[fNodeStackPtr]; |
688 | 0 | fNodeStack[fNodeStackPtr]->fParent = n; |
689 | 0 | fNodeStackPtr--; |
690 | | // printNodeStack("looping in fixOpStack() "); |
691 | 0 | } |
692 | | |
693 | 0 | if (p <= RBBINode::precLParen) { |
694 | | // Scan is at a right paren or end of expression. |
695 | | // The scanned item must match the stack, or else there was an error. |
696 | | // Discard the left paren (or start expr) node from the stack, |
697 | | // leaving the completed (sub)expression as TOS. |
698 | 0 | if (n->fPrecedence != p) { |
699 | | // Right paren encountered matched start of expression node, or |
700 | | // end of expression matched with a left paren node. |
701 | 0 | error(U_BRK_MISMATCHED_PAREN); |
702 | 0 | } |
703 | 0 | fNodeStack[fNodeStackPtr-1] = fNodeStack[fNodeStackPtr]; |
704 | 0 | fNodeStackPtr--; |
705 | | // Delete the now-discarded LParen or Start node. |
706 | 0 | delete n; |
707 | 0 | } |
708 | | // printNodeStack("leaving fixOpStack()"); |
709 | 0 | } |
710 | | |
711 | | |
712 | | |
713 | | |
714 | | //------------------------------------------------------------------------------ |
715 | | // |
716 | | // findSetFor given a UnicodeString, |
717 | | // - find the corresponding Unicode Set (uset node) |
718 | | // (create one if necessary) |
719 | | // - Set fLeftChild of the caller's node (should be a setRef node) |
720 | | // to the uset node |
721 | | // Maintain a hash table of uset nodes, so the same one is always used |
722 | | // for the same string. |
723 | | // If a "to adopt" set is provided and we haven't seen this key before, |
724 | | // add the provided set to the hash table. |
725 | | // If the string is one (32 bit) char in length, the set contains |
726 | | // just one element which is the char in question. |
727 | | // If the string is "any", return a set containing all chars. |
728 | | // |
729 | | //------------------------------------------------------------------------------ |
730 | 0 | void RBBIRuleScanner::findSetFor(const UnicodeString &s, RBBINode *node, UnicodeSet *setToAdopt) { |
731 | |
|
732 | 0 | RBBISetTableEl *el; |
733 | | |
734 | | // First check whether we've already cached a set for this string. |
735 | | // If so, just use the cached set in the new node. |
736 | | // delete any set provided by the caller, since we own it. |
737 | 0 | el = (RBBISetTableEl *)uhash_get(fSetTable, &s); |
738 | 0 | if (el != nullptr) { |
739 | 0 | delete setToAdopt; |
740 | 0 | node->fLeftChild = el->val; |
741 | 0 | U_ASSERT(node->fLeftChild->fType == RBBINode::uset); |
742 | 0 | return; |
743 | 0 | } |
744 | | |
745 | | // Haven't seen this set before. |
746 | | // If the caller didn't provide us with a prebuilt set, |
747 | | // create a new UnicodeSet now. |
748 | 0 | if (setToAdopt == nullptr) { |
749 | 0 | if (s.compare(kAny, -1) == 0) { |
750 | 0 | setToAdopt = new UnicodeSet(0x000000, 0x10ffff); |
751 | 0 | } else { |
752 | 0 | UChar32 c; |
753 | 0 | c = s.char32At(0); |
754 | 0 | setToAdopt = new UnicodeSet(c, c); |
755 | 0 | } |
756 | 0 | } |
757 | | |
758 | | // |
759 | | // Make a new uset node to refer to this UnicodeSet |
760 | | // This new uset node becomes the child of the caller's setReference node. |
761 | | // |
762 | 0 | RBBINode *usetNode = new RBBINode(RBBINode::uset); |
763 | 0 | if (usetNode == nullptr) { |
764 | 0 | error(U_MEMORY_ALLOCATION_ERROR); |
765 | 0 | return; |
766 | 0 | } |
767 | 0 | usetNode->fInputSet = setToAdopt; |
768 | 0 | usetNode->fParent = node; |
769 | 0 | node->fLeftChild = usetNode; |
770 | 0 | usetNode->fText = s; |
771 | | |
772 | | |
773 | | // |
774 | | // Add the new uset node to the list of all uset nodes. |
775 | | // |
776 | 0 | fRB->fUSetNodes->addElement(usetNode, *fRB->fStatus); |
777 | | |
778 | | |
779 | | // |
780 | | // Add the new set to the set hash table. |
781 | | // |
782 | 0 | el = (RBBISetTableEl *)uprv_malloc(sizeof(RBBISetTableEl)); |
783 | 0 | UnicodeString *tkey = new UnicodeString(s); |
784 | 0 | if (tkey == nullptr || el == nullptr || setToAdopt == nullptr) { |
785 | | // Delete to avoid memory leak |
786 | 0 | delete tkey; |
787 | 0 | tkey = nullptr; |
788 | 0 | uprv_free(el); |
789 | 0 | el = nullptr; |
790 | 0 | delete setToAdopt; |
791 | 0 | setToAdopt = nullptr; |
792 | |
|
793 | 0 | error(U_MEMORY_ALLOCATION_ERROR); |
794 | 0 | return; |
795 | 0 | } |
796 | 0 | el->key = tkey; |
797 | 0 | el->val = usetNode; |
798 | 0 | uhash_put(fSetTable, el->key, el, fRB->fStatus); |
799 | |
|
800 | 0 | return; |
801 | 0 | } |
802 | | |
803 | | |
804 | | |
805 | | // |
806 | | // Assorted Unicode character constants. |
807 | | // Numeric because there is no portable way to enter them as literals. |
808 | | // (Think EBCDIC). |
809 | | // |
810 | | static const char16_t chCR = 0x0d; // New lines, for terminating comments. |
811 | | static const char16_t chLF = 0x0a; |
812 | | static const char16_t chNEL = 0x85; // NEL newline variant |
813 | | static const char16_t chLS = 0x2028; // Unicode Line Separator |
814 | | static const char16_t chApos = 0x27; // single quote, for quoted chars. |
815 | | static const char16_t chPound = 0x23; // '#', introduces a comment. |
816 | | static const char16_t chBackSlash = 0x5c; // '\' introduces a char escape |
817 | | static const char16_t chLParen = 0x28; |
818 | | static const char16_t chRParen = 0x29; |
819 | | |
820 | | |
821 | | //------------------------------------------------------------------------------ |
822 | | // |
823 | | // stripRules Return a rules string without extra spaces. |
824 | | // (Comments are removed separately, during rule parsing.) |
825 | | // |
826 | | //------------------------------------------------------------------------------ |
827 | 0 | UnicodeString RBBIRuleScanner::stripRules(const UnicodeString &rules) { |
828 | 0 | UnicodeString strippedRules; |
829 | 0 | int32_t rulesLength = rules.length(); |
830 | |
|
831 | 0 | for (int32_t idx=0; idx<rulesLength; idx = rules.moveIndex32(idx, 1)) { |
832 | 0 | UChar32 cp = rules.char32At(idx); |
833 | 0 | bool whiteSpace = u_hasBinaryProperty(cp, UCHAR_PATTERN_WHITE_SPACE); |
834 | 0 | if (whiteSpace) { |
835 | 0 | continue; |
836 | 0 | } |
837 | 0 | strippedRules.append(cp); |
838 | 0 | } |
839 | 0 | return strippedRules; |
840 | 0 | } |
841 | | |
842 | | |
843 | | //------------------------------------------------------------------------------ |
844 | | // |
845 | | // nextCharLL Low Level Next Char from rule input source. |
846 | | // Get a char from the input character iterator, |
847 | | // keep track of input position for error reporting. |
848 | | // |
849 | | //------------------------------------------------------------------------------ |
850 | 0 | UChar32 RBBIRuleScanner::nextCharLL() { |
851 | 0 | UChar32 ch; |
852 | |
|
853 | 0 | if (fNextIndex >= fRB->fRules.length()) { |
854 | 0 | return (UChar32)-1; |
855 | 0 | } |
856 | 0 | ch = fRB->fRules.char32At(fNextIndex); |
857 | 0 | if (U_IS_SURROGATE(ch)) { |
858 | 0 | error(U_ILLEGAL_CHAR_FOUND); |
859 | 0 | return U_SENTINEL; |
860 | 0 | } |
861 | 0 | fNextIndex = fRB->fRules.moveIndex32(fNextIndex, 1); |
862 | |
|
863 | 0 | if (ch == chCR || |
864 | 0 | ch == chNEL || |
865 | 0 | ch == chLS || |
866 | 0 | (ch == chLF && fLastChar != chCR)) { |
867 | | // Character is starting a new line. Bump up the line number, and |
868 | | // reset the column to 0. |
869 | 0 | fLineNum++; |
870 | 0 | fCharNum=0; |
871 | 0 | if (fQuoteMode) { |
872 | 0 | error(U_BRK_NEW_LINE_IN_QUOTED_STRING); |
873 | 0 | fQuoteMode = false; |
874 | 0 | } |
875 | 0 | } |
876 | 0 | else { |
877 | | // Character is not starting a new line. Except in the case of a |
878 | | // LF following a CR, increment the column position. |
879 | 0 | if (ch != chLF) { |
880 | 0 | fCharNum++; |
881 | 0 | } |
882 | 0 | } |
883 | 0 | fLastChar = ch; |
884 | 0 | return ch; |
885 | 0 | } |
886 | | |
887 | | |
888 | | //------------------------------------------------------------------------------ |
889 | | // |
890 | | // nextChar for rules scanning. At this level, we handle stripping |
891 | | // out comments and processing backslash character escapes. |
892 | | // The rest of the rules grammar is handled at the next level up. |
893 | | // |
894 | | //------------------------------------------------------------------------------ |
895 | 0 | void RBBIRuleScanner::nextChar(RBBIRuleChar &c) { |
896 | | |
897 | | // Unicode Character constants needed for the processing done by nextChar(), |
898 | | // in hex because literals wont work on EBCDIC machines. |
899 | |
|
900 | 0 | fScanIndex = fNextIndex; |
901 | 0 | c.fChar = nextCharLL(); |
902 | 0 | c.fEscaped = false; |
903 | | |
904 | | // |
905 | | // check for '' sequence. |
906 | | // These are recognized in all contexts, whether in quoted text or not. |
907 | | // |
908 | 0 | if (c.fChar == chApos) { |
909 | 0 | if (fRB->fRules.char32At(fNextIndex) == chApos) { |
910 | 0 | c.fChar = nextCharLL(); // get nextChar officially so character counts |
911 | 0 | c.fEscaped = true; // stay correct. |
912 | 0 | } |
913 | 0 | else |
914 | 0 | { |
915 | | // Single quote, by itself. |
916 | | // Toggle quoting mode. |
917 | | // Return either '(' or ')', because quotes cause a grouping of the quoted text. |
918 | 0 | fQuoteMode = !fQuoteMode; |
919 | 0 | if (fQuoteMode) { |
920 | 0 | c.fChar = chLParen; |
921 | 0 | } else { |
922 | 0 | c.fChar = chRParen; |
923 | 0 | } |
924 | 0 | c.fEscaped = false; // The paren that we return is not escaped. |
925 | 0 | return; |
926 | 0 | } |
927 | 0 | } |
928 | | |
929 | 0 | if (fQuoteMode) { |
930 | 0 | c.fEscaped = true; |
931 | 0 | } |
932 | 0 | else |
933 | 0 | { |
934 | | // We are not in a 'quoted region' of the source. |
935 | | // |
936 | 0 | if (c.fChar == chPound) { |
937 | | // Start of a comment. Consume the rest of it. |
938 | | // The new-line char that terminates the comment is always returned. |
939 | | // It will be treated as white-space, and serves to break up anything |
940 | | // that might otherwise incorrectly clump together with a comment in |
941 | | // the middle (a variable name, for example.) |
942 | 0 | int32_t commentStart = fScanIndex; |
943 | 0 | for (;;) { |
944 | 0 | c.fChar = nextCharLL(); |
945 | 0 | if (c.fChar == (UChar32)-1 || // EOF |
946 | 0 | c.fChar == chCR || |
947 | 0 | c.fChar == chLF || |
948 | 0 | c.fChar == chNEL || |
949 | 0 | c.fChar == chLS) {break;} |
950 | 0 | } |
951 | 0 | for (int32_t i=commentStart; i<fNextIndex-1; ++i) { |
952 | 0 | fRB->fStrippedRules.setCharAt(i, u' '); |
953 | 0 | } |
954 | 0 | } |
955 | 0 | if (c.fChar == (UChar32)-1) { |
956 | 0 | return; |
957 | 0 | } |
958 | | |
959 | | // |
960 | | // check for backslash escaped characters. |
961 | | // Use UnicodeString::unescapeAt() to handle them. |
962 | | // |
963 | 0 | if (c.fChar == chBackSlash) { |
964 | 0 | c.fEscaped = true; |
965 | 0 | int32_t startX = fNextIndex; |
966 | 0 | c.fChar = fRB->fRules.unescapeAt(fNextIndex); |
967 | 0 | if (fNextIndex == startX) { |
968 | 0 | error(U_BRK_HEX_DIGITS_EXPECTED); |
969 | 0 | } |
970 | 0 | fCharNum += fNextIndex-startX; |
971 | 0 | } |
972 | 0 | } |
973 | | // putc(c.fChar, stdout); |
974 | 0 | } |
975 | | |
976 | | //------------------------------------------------------------------------------ |
977 | | // |
978 | | // Parse RBBI rules. The state machine for rules parsing is here. |
979 | | // The state tables are hand-written in the file rbbirpt.txt, |
980 | | // and converted to the form used here by a perl |
981 | | // script rbbicst.pl |
982 | | // |
983 | | //------------------------------------------------------------------------------ |
984 | 0 | void RBBIRuleScanner::parse() { |
985 | 0 | uint16_t state; |
986 | 0 | const RBBIRuleTableEl *tableEl; |
987 | |
|
988 | 0 | if (U_FAILURE(*fRB->fStatus)) { |
989 | 0 | return; |
990 | 0 | } |
991 | | |
992 | 0 | state = 1; |
993 | 0 | nextChar(fC); |
994 | | // |
995 | | // Main loop for the rule parsing state machine. |
996 | | // Runs once per state transition. |
997 | | // Each time through optionally performs, depending on the state table, |
998 | | // - an advance to the the next input char |
999 | | // - an action to be performed. |
1000 | | // - pushing or popping a state to/from the local state return stack. |
1001 | | // |
1002 | 0 | for (;;) { |
1003 | | // Bail out if anything has gone wrong. |
1004 | | // RBBI rule file parsing stops on the first error encountered. |
1005 | 0 | if (U_FAILURE(*fRB->fStatus)) { |
1006 | 0 | break; |
1007 | 0 | } |
1008 | | |
1009 | | // Quit if state == 0. This is the normal way to exit the state machine. |
1010 | | // |
1011 | 0 | if (state == 0) { |
1012 | 0 | break; |
1013 | 0 | } |
1014 | | |
1015 | | // Find the state table element that matches the input char from the rule, or the |
1016 | | // class of the input character. Start with the first table row for this |
1017 | | // state, then linearly scan forward until we find a row that matches the |
1018 | | // character. The last row for each state always matches all characters, so |
1019 | | // the search will stop there, if not before. |
1020 | | // |
1021 | 0 | tableEl = &gRuleParseStateTable[state]; |
1022 | | #ifdef RBBI_DEBUG |
1023 | | if (fRB->fDebugEnv && uprv_strstr(fRB->fDebugEnv, "scan")) { |
1024 | | RBBIDebugPrintf("char, line, col = (\'%c\', %d, %d) state=%s ", |
1025 | | fC.fChar, fLineNum, fCharNum, RBBIRuleStateNames[state]); |
1026 | | } |
1027 | | #endif |
1028 | |
|
1029 | 0 | for (;;) { |
1030 | | #ifdef RBBI_DEBUG |
1031 | | if (fRB->fDebugEnv && uprv_strstr(fRB->fDebugEnv, "scan")) { RBBIDebugPrintf("."); fflush(stdout);} |
1032 | | #endif |
1033 | 0 | if (tableEl->fCharClass < 127 && fC.fEscaped == false && tableEl->fCharClass == fC.fChar) { |
1034 | | // Table row specified an individual character, not a set, and |
1035 | | // the input character is not escaped, and |
1036 | | // the input character matched it. |
1037 | 0 | break; |
1038 | 0 | } |
1039 | 0 | if (tableEl->fCharClass == 255) { |
1040 | | // Table row specified default, match anything character class. |
1041 | 0 | break; |
1042 | 0 | } |
1043 | 0 | if (tableEl->fCharClass == 254 && fC.fEscaped) { |
1044 | | // Table row specified "escaped" and the char was escaped. |
1045 | 0 | break; |
1046 | 0 | } |
1047 | 0 | if (tableEl->fCharClass == 253 && fC.fEscaped && |
1048 | 0 | (fC.fChar == 0x50 || fC.fChar == 0x70 )) { |
1049 | | // Table row specified "escaped P" and the char is either 'p' or 'P'. |
1050 | 0 | break; |
1051 | 0 | } |
1052 | 0 | if (tableEl->fCharClass == 252 && fC.fChar == (UChar32)-1) { |
1053 | | // Table row specified eof and we hit eof on the input. |
1054 | 0 | break; |
1055 | 0 | } |
1056 | | |
1057 | 0 | if (tableEl->fCharClass >= 128 && tableEl->fCharClass < 240 && // Table specs a char class && |
1058 | 0 | fC.fEscaped == false && // char is not escaped && |
1059 | 0 | fC.fChar != (UChar32)-1) { // char is not EOF |
1060 | 0 | U_ASSERT((tableEl->fCharClass-128) < UPRV_LENGTHOF(fRuleSets)); |
1061 | 0 | if (fRuleSets[tableEl->fCharClass-128].contains(fC.fChar)) { |
1062 | | // Table row specified a character class, or set of characters, |
1063 | | // and the current char matches it. |
1064 | 0 | break; |
1065 | 0 | } |
1066 | 0 | } |
1067 | | |
1068 | | // No match on this row, advance to the next row for this state, |
1069 | 0 | tableEl++; |
1070 | 0 | } |
1071 | 0 | if (fRB->fDebugEnv && uprv_strstr(fRB->fDebugEnv, "scan")) { RBBIDebugPuts("");} |
1072 | | |
1073 | | // |
1074 | | // We've found the row of the state table that matches the current input |
1075 | | // character from the rules string. |
1076 | | // Perform any action specified by this row in the state table. |
1077 | 0 | if (doParseActions((int32_t)tableEl->fAction) == false) { |
1078 | | // Break out of the state machine loop if the |
1079 | | // the action signalled some kind of error, or |
1080 | | // the action was to exit, occurs on normal end-of-rules-input. |
1081 | 0 | break; |
1082 | 0 | } |
1083 | | |
1084 | 0 | if (tableEl->fPushState != 0) { |
1085 | 0 | fStackPtr++; |
1086 | 0 | if (fStackPtr >= kStackSize) { |
1087 | 0 | error(U_BRK_INTERNAL_ERROR); |
1088 | 0 | RBBIDebugPuts("RBBIRuleScanner::parse() - state stack overflow."); |
1089 | 0 | fStackPtr--; |
1090 | 0 | } |
1091 | 0 | fStack[fStackPtr] = tableEl->fPushState; |
1092 | 0 | } |
1093 | |
|
1094 | 0 | if (tableEl->fNextChar) { |
1095 | 0 | nextChar(fC); |
1096 | 0 | } |
1097 | | |
1098 | | // Get the next state from the table entry, or from the |
1099 | | // state stack if the next state was specified as "pop". |
1100 | 0 | if (tableEl->fNextState != 255) { |
1101 | 0 | state = tableEl->fNextState; |
1102 | 0 | } else { |
1103 | 0 | state = fStack[fStackPtr]; |
1104 | 0 | fStackPtr--; |
1105 | 0 | if (fStackPtr < 0) { |
1106 | 0 | error(U_BRK_INTERNAL_ERROR); |
1107 | 0 | RBBIDebugPuts("RBBIRuleScanner::parse() - state stack underflow."); |
1108 | 0 | fStackPtr++; |
1109 | 0 | } |
1110 | 0 | } |
1111 | |
|
1112 | 0 | } |
1113 | |
|
1114 | 0 | if (U_FAILURE(*fRB->fStatus)) { |
1115 | 0 | return; |
1116 | 0 | } |
1117 | | |
1118 | | // If there are no forward rules set an error. |
1119 | | // |
1120 | 0 | if (fRB->fForwardTree == nullptr) { |
1121 | 0 | error(U_BRK_RULE_SYNTAX); |
1122 | 0 | return; |
1123 | 0 | } |
1124 | | |
1125 | | // |
1126 | | // Parsing of the input RBBI rules is complete. |
1127 | | // We now have a parse tree for the rule expressions |
1128 | | // and a list of all UnicodeSets that are referenced. |
1129 | | // |
1130 | | #ifdef RBBI_DEBUG |
1131 | | if (fRB->fDebugEnv && uprv_strstr(fRB->fDebugEnv, "symbols")) {fSymbolTable->rbbiSymtablePrint();} |
1132 | | if (fRB->fDebugEnv && uprv_strstr(fRB->fDebugEnv, "ptree")) { |
1133 | | RBBIDebugPrintf("Completed Forward Rules Parse Tree...\n"); |
1134 | | RBBINode::printTree(fRB->fForwardTree, true); |
1135 | | RBBIDebugPrintf("\nCompleted Reverse Rules Parse Tree...\n"); |
1136 | | RBBINode::printTree(fRB->fReverseTree, true); |
1137 | | RBBIDebugPrintf("\nCompleted Safe Point Forward Rules Parse Tree...\n"); |
1138 | | RBBINode::printTree(fRB->fSafeFwdTree, true); |
1139 | | RBBIDebugPrintf("\nCompleted Safe Point Reverse Rules Parse Tree...\n"); |
1140 | | RBBINode::printTree(fRB->fSafeRevTree, true); |
1141 | | } |
1142 | | #endif |
1143 | 0 | } |
1144 | | |
1145 | | |
1146 | | //------------------------------------------------------------------------------ |
1147 | | // |
1148 | | // printNodeStack for debugging... |
1149 | | // |
1150 | | //------------------------------------------------------------------------------ |
1151 | | #ifdef RBBI_DEBUG |
1152 | | void RBBIRuleScanner::printNodeStack(const char *title) { |
1153 | | int i; |
1154 | | RBBIDebugPrintf("%s. Dumping node stack...\n", title); |
1155 | | for (i=fNodeStackPtr; i>0; i--) {RBBINode::printTree(fNodeStack[i], true);} |
1156 | | } |
1157 | | #endif |
1158 | | |
1159 | | |
1160 | | |
1161 | | |
1162 | | //------------------------------------------------------------------------------ |
1163 | | // |
1164 | | // pushNewNode create a new RBBINode of the specified type and push it |
1165 | | // onto the stack of nodes. |
1166 | | // |
1167 | | //------------------------------------------------------------------------------ |
1168 | 0 | RBBINode *RBBIRuleScanner::pushNewNode(RBBINode::NodeType t) { |
1169 | 0 | if (U_FAILURE(*fRB->fStatus)) { |
1170 | 0 | return nullptr; |
1171 | 0 | } |
1172 | 0 | if (fNodeStackPtr >= kStackSize - 1) { |
1173 | 0 | error(U_BRK_RULE_SYNTAX); |
1174 | 0 | RBBIDebugPuts("RBBIRuleScanner::pushNewNode - stack overflow."); |
1175 | 0 | return nullptr; |
1176 | 0 | } |
1177 | 0 | fNodeStackPtr++; |
1178 | 0 | fNodeStack[fNodeStackPtr] = new RBBINode(t); |
1179 | 0 | if (fNodeStack[fNodeStackPtr] == nullptr) { |
1180 | 0 | *fRB->fStatus = U_MEMORY_ALLOCATION_ERROR; |
1181 | 0 | } |
1182 | 0 | return fNodeStack[fNodeStackPtr]; |
1183 | 0 | } |
1184 | | |
1185 | | |
1186 | | |
1187 | | //------------------------------------------------------------------------------ |
1188 | | // |
1189 | | // scanSet Construct a UnicodeSet from the text at the current scan |
1190 | | // position. Advance the scan position to the first character |
1191 | | // after the set. |
1192 | | // |
1193 | | // A new RBBI setref node referring to the set is pushed onto the node |
1194 | | // stack. |
1195 | | // |
1196 | | // The scan position is normally under the control of the state machine |
1197 | | // that controls rule parsing. UnicodeSets, however, are parsed by |
1198 | | // the UnicodeSet constructor, not by the RBBI rule parser. |
1199 | | // |
1200 | | //------------------------------------------------------------------------------ |
1201 | 0 | void RBBIRuleScanner::scanSet() { |
1202 | 0 | UnicodeSet *uset; |
1203 | 0 | ParsePosition pos; |
1204 | 0 | int startPos; |
1205 | 0 | int i; |
1206 | |
|
1207 | 0 | if (U_FAILURE(*fRB->fStatus)) { |
1208 | 0 | return; |
1209 | 0 | } |
1210 | | |
1211 | 0 | pos.setIndex(fScanIndex); |
1212 | 0 | startPos = fScanIndex; |
1213 | 0 | UErrorCode localStatus = U_ZERO_ERROR; |
1214 | 0 | uset = new UnicodeSet(); |
1215 | 0 | if (uset == nullptr) { |
1216 | 0 | localStatus = U_MEMORY_ALLOCATION_ERROR; |
1217 | 0 | } else { |
1218 | 0 | uset->applyPatternIgnoreSpace(fRB->fRules, pos, fSymbolTable, localStatus); |
1219 | 0 | } |
1220 | 0 | if (U_FAILURE(localStatus)) { |
1221 | | // TODO: Get more accurate position of the error from UnicodeSet's return info. |
1222 | | // UnicodeSet appears to not be reporting correctly at this time. |
1223 | | #ifdef RBBI_DEBUG |
1224 | | RBBIDebugPrintf("UnicodeSet parse position.ErrorIndex = %d\n", pos.getIndex()); |
1225 | | #endif |
1226 | 0 | error(localStatus); |
1227 | 0 | delete uset; |
1228 | 0 | return; |
1229 | 0 | } |
1230 | | |
1231 | | // Verify that the set contains at least one code point. |
1232 | | // |
1233 | 0 | U_ASSERT(uset!=nullptr); |
1234 | 0 | if (uset->isEmpty()) { |
1235 | | // This set is empty. |
1236 | | // Make it an error, because it almost certainly is not what the user wanted. |
1237 | | // Also, avoids having to think about corner cases in the tree manipulation code |
1238 | | // that occurs later on. |
1239 | 0 | error(U_BRK_RULE_EMPTY_SET); |
1240 | 0 | delete uset; |
1241 | 0 | return; |
1242 | 0 | } |
1243 | | |
1244 | | |
1245 | | // Advance the RBBI parse position over the UnicodeSet pattern. |
1246 | | // Don't just set fScanIndex because the line/char positions maintained |
1247 | | // for error reporting would be thrown off. |
1248 | 0 | i = pos.getIndex(); |
1249 | 0 | for (;;) { |
1250 | 0 | if (fNextIndex >= i) { |
1251 | 0 | break; |
1252 | 0 | } |
1253 | 0 | nextCharLL(); |
1254 | 0 | } |
1255 | |
|
1256 | 0 | if (U_SUCCESS(*fRB->fStatus)) { |
1257 | 0 | RBBINode *n; |
1258 | |
|
1259 | 0 | n = pushNewNode(RBBINode::setRef); |
1260 | 0 | if (U_FAILURE(*fRB->fStatus)) { |
1261 | 0 | return; |
1262 | 0 | } |
1263 | 0 | n->fFirstPos = startPos; |
1264 | 0 | n->fLastPos = fNextIndex; |
1265 | 0 | fRB->fRules.extractBetween(n->fFirstPos, n->fLastPos, n->fText); |
1266 | | // findSetFor() serves several purposes here: |
1267 | | // - Adopts storage for the UnicodeSet, will be responsible for deleting. |
1268 | | // - Maintains collection of all sets in use, needed later for establishing |
1269 | | // character categories for run time engine. |
1270 | | // - Eliminates mulitiple instances of the same set. |
1271 | | // - Creates a new uset node if necessary (if this isn't a duplicate.) |
1272 | 0 | findSetFor(n->fText, n, uset); |
1273 | 0 | } |
1274 | |
|
1275 | 0 | } |
1276 | | |
1277 | 0 | int32_t RBBIRuleScanner::numRules() { |
1278 | 0 | return fRuleNum; |
1279 | 0 | } |
1280 | | |
1281 | | U_NAMESPACE_END |
1282 | | |
1283 | | #endif /* #if !UCONFIG_NO_BREAK_ITERATION */ |