/src/icu/icu4c/source/common/utext.cpp
Line | Count | Source (jump to first uncovered line) |
1 | | // © 2016 and later: Unicode, Inc. and others. |
2 | | // License & terms of use: http://www.unicode.org/copyright.html |
3 | | /* |
4 | | ******************************************************************************* |
5 | | * |
6 | | * Copyright (C) 2005-2016, International Business Machines |
7 | | * Corporation and others. All Rights Reserved. |
8 | | * |
9 | | ******************************************************************************* |
10 | | * file name: utext.cpp |
11 | | * encoding: UTF-8 |
12 | | * tab size: 8 (not used) |
13 | | * indentation:4 |
14 | | * |
15 | | * created on: 2005apr12 |
16 | | * created by: Markus W. Scherer |
17 | | */ |
18 | | |
19 | | #include <cstddef> |
20 | | |
21 | | #include "unicode/utypes.h" |
22 | | #include "unicode/ustring.h" |
23 | | #include "unicode/unistr.h" |
24 | | #include "unicode/chariter.h" |
25 | | #include "unicode/utext.h" |
26 | | #include "unicode/utf.h" |
27 | | #include "unicode/utf8.h" |
28 | | #include "unicode/utf16.h" |
29 | | #include "ustr_imp.h" |
30 | | #include "cmemory.h" |
31 | | #include "cstring.h" |
32 | | #include "uassert.h" |
33 | | #include "putilimp.h" |
34 | | |
35 | | U_NAMESPACE_USE |
36 | | |
37 | 14.4M | #define I32_FLAG(bitIndex) ((int32_t)1<<(bitIndex)) |
38 | | |
39 | | |
40 | | static UBool |
41 | 4.10k | utext_access(UText *ut, int64_t index, UBool forward) { |
42 | 4.10k | return ut->pFuncs->access(ut, index, forward); |
43 | 4.10k | } |
44 | | |
45 | | |
46 | | |
47 | | U_CAPI UBool U_EXPORT2 |
48 | 180k | utext_moveIndex32(UText *ut, int32_t delta) { |
49 | 180k | UChar32 c; |
50 | 180k | if (delta > 0) { |
51 | 721k | do { |
52 | 721k | if(ut->chunkOffset>=ut->chunkLength && !utext_access(ut, ut->chunkNativeLimit, true)) { |
53 | 796 | return false; |
54 | 796 | } |
55 | 720k | c = ut->chunkContents[ut->chunkOffset]; |
56 | 720k | if (U16_IS_SURROGATE(c)) { |
57 | 16.2k | c = utext_next32(ut); |
58 | 16.2k | if (c == U_SENTINEL) { |
59 | 0 | return false; |
60 | 0 | } |
61 | 704k | } else { |
62 | 704k | ut->chunkOffset++; |
63 | 704k | } |
64 | 720k | } while(--delta>0); |
65 | | |
66 | 180k | } else if (delta<0) { |
67 | 0 | do { |
68 | 0 | if(ut->chunkOffset<=0 && !utext_access(ut, ut->chunkNativeStart, false)) { |
69 | 0 | return false; |
70 | 0 | } |
71 | 0 | c = ut->chunkContents[ut->chunkOffset-1]; |
72 | 0 | if (U16_IS_SURROGATE(c)) { |
73 | 0 | c = utext_previous32(ut); |
74 | 0 | if (c == U_SENTINEL) { |
75 | 0 | return false; |
76 | 0 | } |
77 | 0 | } else { |
78 | 0 | ut->chunkOffset--; |
79 | 0 | } |
80 | 0 | } while(++delta<0); |
81 | 0 | } |
82 | | |
83 | 179k | return true; |
84 | 180k | } |
85 | | |
86 | | |
87 | | U_CAPI int64_t U_EXPORT2 |
88 | 209k | utext_nativeLength(UText *ut) { |
89 | 209k | return ut->pFuncs->nativeLength(ut); |
90 | 209k | } |
91 | | |
92 | | |
93 | | U_CAPI UBool U_EXPORT2 |
94 | 0 | utext_isLengthExpensive(const UText *ut) { |
95 | 0 | UBool r = (ut->providerProperties & I32_FLAG(UTEXT_PROVIDER_LENGTH_IS_EXPENSIVE)) != 0; |
96 | 0 | return r; |
97 | 0 | } |
98 | | |
99 | | |
100 | | U_CAPI int64_t U_EXPORT2 |
101 | 1.83G | utext_getNativeIndex(const UText *ut) { |
102 | 1.83G | if(ut->chunkOffset <= ut->nativeIndexingLimit) { |
103 | 1.75G | return ut->chunkNativeStart+ut->chunkOffset; |
104 | 1.75G | } else { |
105 | 80.3M | return ut->pFuncs->mapOffsetToNative(ut); |
106 | 80.3M | } |
107 | 1.83G | } |
108 | | |
109 | | |
110 | | U_CAPI void U_EXPORT2 |
111 | 964M | utext_setNativeIndex(UText *ut, int64_t index) { |
112 | 964M | if(index<ut->chunkNativeStart || index>=ut->chunkNativeLimit) { |
113 | | // The desired position is outside of the current chunk. |
114 | | // Access the new position. Assume a forward iteration from here, |
115 | | // which will also be optimimum for a single random access. |
116 | | // Reverse iterations may suffer slightly. |
117 | 722k | ut->pFuncs->access(ut, index, true); |
118 | 964M | } else if((int32_t)(index - ut->chunkNativeStart) <= ut->nativeIndexingLimit) { |
119 | | // utf-16 indexing. |
120 | 936M | ut->chunkOffset=(int32_t)(index-ut->chunkNativeStart); |
121 | 936M | } else { |
122 | 27.6M | ut->chunkOffset=ut->pFuncs->mapNativeIndexToUTF16(ut, index); |
123 | 27.6M | } |
124 | | // The convention is that the index must always be on a code point boundary. |
125 | | // Adjust the index position if it is in the middle of a surrogate pair. |
126 | 964M | if (ut->chunkOffset<ut->chunkLength) { |
127 | 964M | char16_t c= ut->chunkContents[ut->chunkOffset]; |
128 | 964M | if (U16_IS_TRAIL(c)) { |
129 | 27.7M | if (ut->chunkOffset==0) { |
130 | 1.32k | ut->pFuncs->access(ut, ut->chunkNativeStart, false); |
131 | 1.32k | } |
132 | 27.7M | if (ut->chunkOffset>0) { |
133 | 27.7M | char16_t lead = ut->chunkContents[ut->chunkOffset-1]; |
134 | 27.7M | if (U16_IS_LEAD(lead)) { |
135 | 11.5k | ut->chunkOffset--; |
136 | 11.5k | } |
137 | 27.7M | } |
138 | 27.7M | } |
139 | 964M | } |
140 | 964M | } |
141 | | |
142 | | |
143 | | |
144 | | U_CAPI int64_t U_EXPORT2 |
145 | 5.94M | utext_getPreviousNativeIndex(UText *ut) { |
146 | | // |
147 | | // Fast-path the common case. |
148 | | // Common means current position is not at the beginning of a chunk |
149 | | // and the preceding character is not supplementary. |
150 | | // |
151 | 5.94M | int32_t i = ut->chunkOffset - 1; |
152 | 5.94M | int64_t result; |
153 | 5.94M | if (i >= 0) { |
154 | 5.94M | char16_t c = ut->chunkContents[i]; |
155 | 5.94M | if (U16_IS_TRAIL(c) == false) { |
156 | 5.58M | if (i <= ut->nativeIndexingLimit) { |
157 | 5.58M | result = ut->chunkNativeStart + i; |
158 | 5.58M | } else { |
159 | 0 | ut->chunkOffset = i; |
160 | 0 | result = ut->pFuncs->mapOffsetToNative(ut); |
161 | 0 | ut->chunkOffset++; |
162 | 0 | } |
163 | 5.58M | return result; |
164 | 5.58M | } |
165 | 5.94M | } |
166 | | |
167 | | // If at the start of text, simply return 0. |
168 | 358k | if (ut->chunkOffset==0 && ut->chunkNativeStart==0) { |
169 | 0 | return 0; |
170 | 0 | } |
171 | | |
172 | | // Harder, less common cases. We are at a chunk boundary, or on a surrogate. |
173 | | // Keep it simple, use other functions to handle the edges. |
174 | | // |
175 | 358k | utext_previous32(ut); |
176 | 358k | result = UTEXT_GETNATIVEINDEX(ut); |
177 | 358k | utext_next32(ut); |
178 | 358k | return result; |
179 | 358k | } |
180 | | |
181 | | |
182 | | // |
183 | | // utext_current32. Get the UChar32 at the current position. |
184 | | // UText iteration position is always on a code point boundary, |
185 | | // never on the trail half of a surrogate pair. |
186 | | // |
187 | | U_CAPI UChar32 U_EXPORT2 |
188 | 210M | utext_current32(UText *ut) { |
189 | 210M | UChar32 c; |
190 | 210M | if (ut->chunkOffset==ut->chunkLength) { |
191 | | // Current position is just off the end of the chunk. |
192 | 816k | if (ut->pFuncs->access(ut, ut->chunkNativeLimit, true) == false) { |
193 | | // Off the end of the text. |
194 | 93.7k | return U_SENTINEL; |
195 | 93.7k | } |
196 | 816k | } |
197 | | |
198 | 210M | c = ut->chunkContents[ut->chunkOffset]; |
199 | 210M | if (U16_IS_LEAD(c) == false) { |
200 | | // Normal, non-supplementary case. |
201 | 205M | return c; |
202 | 205M | } |
203 | | |
204 | | // |
205 | | // Possible supplementary char. |
206 | | // |
207 | 4.73M | UChar32 trail = 0; |
208 | 4.73M | UChar32 supplementaryC = c; |
209 | 4.73M | if ((ut->chunkOffset+1) < ut->chunkLength) { |
210 | | // The trail surrogate is in the same chunk. |
211 | 4.73M | trail = ut->chunkContents[ut->chunkOffset+1]; |
212 | 4.73M | } else { |
213 | | // The trail surrogate is in a different chunk. |
214 | | // Because we must maintain the iteration position, we need to switch forward |
215 | | // into the new chunk, get the trail surrogate, then revert the chunk back to the |
216 | | // original one. |
217 | | // An edge case to be careful of: the entire text may end with an unpaired |
218 | | // leading surrogate. The attempt to access the trail will fail, but |
219 | | // the original position before the unpaired lead still needs to be restored. |
220 | 860 | int64_t nativePosition = ut->chunkNativeLimit; |
221 | 860 | if (ut->pFuncs->access(ut, nativePosition, true)) { |
222 | 0 | trail = ut->chunkContents[ut->chunkOffset]; |
223 | 0 | } |
224 | 860 | UBool r = ut->pFuncs->access(ut, nativePosition, false); // reverse iteration flag loads preceding chunk |
225 | 860 | U_ASSERT(r); |
226 | | // Here we need to restore chunkOffset since the access functions were called with |
227 | | // chunkNativeLimit but that is not where we were (we were 1 code unit before the |
228 | | // limit). Restoring was originally added in ICU-4669 but did not support access |
229 | | // functions that changed the chunk size, the following does. |
230 | 860 | ut->chunkOffset = ut->chunkLength - 1; |
231 | 860 | if(!r) { |
232 | 0 | return U_SENTINEL; |
233 | 0 | } |
234 | 860 | } |
235 | | |
236 | 4.73M | if (U16_IS_TRAIL(trail)) { |
237 | 4.36M | supplementaryC = U16_GET_SUPPLEMENTARY(c, trail); |
238 | 4.36M | } |
239 | 4.73M | return supplementaryC; |
240 | | |
241 | 4.73M | } |
242 | | |
243 | | |
244 | | U_CAPI UChar32 U_EXPORT2 |
245 | 4.71M | utext_char32At(UText *ut, int64_t nativeIndex) { |
246 | 4.71M | UChar32 c = U_SENTINEL; |
247 | | |
248 | | // Fast path the common case. |
249 | 4.71M | if (nativeIndex>=ut->chunkNativeStart && nativeIndex < ut->chunkNativeStart + ut->nativeIndexingLimit) { |
250 | 4.52M | ut->chunkOffset = (int32_t)(nativeIndex - ut->chunkNativeStart); |
251 | 4.52M | c = ut->chunkContents[ut->chunkOffset]; |
252 | 4.52M | if (U16_IS_SURROGATE(c) == false) { |
253 | 4.27M | return c; |
254 | 4.27M | } |
255 | 4.52M | } |
256 | | |
257 | | |
258 | 437k | utext_setNativeIndex(ut, nativeIndex); |
259 | 437k | if (nativeIndex>=ut->chunkNativeStart && ut->chunkOffset<ut->chunkLength) { |
260 | 401k | c = ut->chunkContents[ut->chunkOffset]; |
261 | 401k | if (U16_IS_SURROGATE(c)) { |
262 | | // For surrogates, let current32() deal with the complications |
263 | | // of supplementaries that may span chunk boundaries. |
264 | 250k | c = utext_current32(ut); |
265 | 250k | } |
266 | 401k | } |
267 | 437k | return c; |
268 | 4.71M | } |
269 | | |
270 | | |
271 | | U_CAPI UChar32 U_EXPORT2 |
272 | 1.13G | utext_next32(UText *ut) { |
273 | 1.13G | UChar32 c; |
274 | | |
275 | 1.13G | if (ut->chunkOffset >= ut->chunkLength) { |
276 | 4.95M | if (ut->pFuncs->access(ut, ut->chunkNativeLimit, true) == false) { |
277 | 1.99M | return U_SENTINEL; |
278 | 1.99M | } |
279 | 4.95M | } |
280 | | |
281 | 1.13G | c = ut->chunkContents[ut->chunkOffset++]; |
282 | 1.13G | if (U16_IS_LEAD(c) == false) { |
283 | | // Normal case, not supplementary. |
284 | | // (A trail surrogate seen here is just returned as is, as a surrogate value. |
285 | | // It cannot be part of a pair.) |
286 | 1.10G | return c; |
287 | 1.10G | } |
288 | | |
289 | 26.7M | if (ut->chunkOffset >= ut->chunkLength) { |
290 | 12.5k | if (ut->pFuncs->access(ut, ut->chunkNativeLimit, true) == false) { |
291 | | // c is an unpaired lead surrogate at the end of the text. |
292 | | // return it as it is. |
293 | 12.5k | return c; |
294 | 12.5k | } |
295 | 12.5k | } |
296 | 26.7M | UChar32 trail = ut->chunkContents[ut->chunkOffset]; |
297 | 26.7M | if (U16_IS_TRAIL(trail) == false) { |
298 | | // c was an unpaired lead surrogate, not at the end of the text. |
299 | | // return it as it is (unpaired). Iteration position is on the |
300 | | // following character, possibly in the next chunk, where the |
301 | | // trail surrogate would have been if it had existed. |
302 | 5.03M | return c; |
303 | 5.03M | } |
304 | | |
305 | 21.7M | UChar32 supplementary = U16_GET_SUPPLEMENTARY(c, trail); |
306 | 21.7M | ut->chunkOffset++; // move iteration position over the trail surrogate. |
307 | 21.7M | return supplementary; |
308 | 26.7M | } |
309 | | |
310 | | |
311 | | U_CAPI UChar32 U_EXPORT2 |
312 | 8.57M | utext_previous32(UText *ut) { |
313 | 8.57M | UChar32 c; |
314 | | |
315 | 8.57M | if (ut->chunkOffset <= 0) { |
316 | 64.4k | if (ut->pFuncs->access(ut, ut->chunkNativeStart, false) == false) { |
317 | 63.4k | return U_SENTINEL; |
318 | 63.4k | } |
319 | 64.4k | } |
320 | 8.51M | ut->chunkOffset--; |
321 | 8.51M | c = ut->chunkContents[ut->chunkOffset]; |
322 | 8.51M | if (U16_IS_TRAIL(c) == false) { |
323 | | // Normal case, not supplementary. |
324 | | // (A lead surrogate seen here is just returned as is, as a surrogate value. |
325 | | // It cannot be part of a pair.) |
326 | 7.41M | return c; |
327 | 7.41M | } |
328 | | |
329 | 1.09M | if (ut->chunkOffset <= 0) { |
330 | 325 | if (ut->pFuncs->access(ut, ut->chunkNativeStart, false) == false) { |
331 | | // c is an unpaired trail surrogate at the start of the text. |
332 | | // return it as it is. |
333 | 325 | return c; |
334 | 325 | } |
335 | 325 | } |
336 | | |
337 | 1.09M | UChar32 lead = ut->chunkContents[ut->chunkOffset-1]; |
338 | 1.09M | if (U16_IS_LEAD(lead) == false) { |
339 | | // c was an unpaired trail surrogate, not at the end of the text. |
340 | | // return it as it is (unpaired). Iteration position is at c |
341 | 1.01M | return c; |
342 | 1.01M | } |
343 | | |
344 | 77.3k | UChar32 supplementary = U16_GET_SUPPLEMENTARY(lead, c); |
345 | 77.3k | ut->chunkOffset--; // move iteration position over the lead surrogate. |
346 | 77.3k | return supplementary; |
347 | 1.09M | } |
348 | | |
349 | | |
350 | | |
351 | | U_CAPI UChar32 U_EXPORT2 |
352 | 0 | utext_next32From(UText *ut, int64_t index) { |
353 | 0 | UChar32 c = U_SENTINEL; |
354 | |
|
355 | 0 | if(index<ut->chunkNativeStart || index>=ut->chunkNativeLimit) { |
356 | | // Desired position is outside of the current chunk. |
357 | 0 | if(!ut->pFuncs->access(ut, index, true)) { |
358 | | // no chunk available here |
359 | 0 | return U_SENTINEL; |
360 | 0 | } |
361 | 0 | } else if (index - ut->chunkNativeStart <= (int64_t)ut->nativeIndexingLimit) { |
362 | | // Desired position is in chunk, with direct 1:1 native to UTF16 indexing |
363 | 0 | ut->chunkOffset = (int32_t)(index - ut->chunkNativeStart); |
364 | 0 | } else { |
365 | | // Desired position is in chunk, with non-UTF16 indexing. |
366 | 0 | ut->chunkOffset = ut->pFuncs->mapNativeIndexToUTF16(ut, index); |
367 | 0 | } |
368 | | |
369 | 0 | c = ut->chunkContents[ut->chunkOffset++]; |
370 | 0 | if (U16_IS_SURROGATE(c)) { |
371 | | // Surrogates. Many edge cases. Use other functions that already |
372 | | // deal with the problems. |
373 | 0 | utext_setNativeIndex(ut, index); |
374 | 0 | c = utext_next32(ut); |
375 | 0 | } |
376 | 0 | return c; |
377 | 0 | } |
378 | | |
379 | | |
380 | | U_CAPI UChar32 U_EXPORT2 |
381 | 0 | utext_previous32From(UText *ut, int64_t index) { |
382 | | // |
383 | | // Return the character preceding the specified index. |
384 | | // Leave the iteration position at the start of the character that was returned. |
385 | | // |
386 | 0 | UChar32 cPrev; // The character preceding cCurr, which is what we will return. |
387 | | |
388 | | // Address the chunk containing the position preceding the incoming index |
389 | | // A tricky edge case: |
390 | | // We try to test the requested native index against the chunkNativeStart to determine |
391 | | // whether the character preceding the one at the index is in the current chunk. |
392 | | // BUT, this test can fail with UTF-8 (or any other multibyte encoding), when the |
393 | | // requested index is on something other than the first position of the first char. |
394 | | // |
395 | 0 | if(index<=ut->chunkNativeStart || index>ut->chunkNativeLimit) { |
396 | | // Requested native index is outside of the current chunk. |
397 | 0 | if(!ut->pFuncs->access(ut, index, false)) { |
398 | | // no chunk available here |
399 | 0 | return U_SENTINEL; |
400 | 0 | } |
401 | 0 | } else if(index - ut->chunkNativeStart <= (int64_t)ut->nativeIndexingLimit) { |
402 | | // Direct UTF-16 indexing. |
403 | 0 | ut->chunkOffset = (int32_t)(index - ut->chunkNativeStart); |
404 | 0 | } else { |
405 | 0 | ut->chunkOffset=ut->pFuncs->mapNativeIndexToUTF16(ut, index); |
406 | 0 | if (ut->chunkOffset==0 && !ut->pFuncs->access(ut, index, false)) { |
407 | | // no chunk available here |
408 | 0 | return U_SENTINEL; |
409 | 0 | } |
410 | 0 | } |
411 | | |
412 | | // |
413 | | // Simple case with no surrogates. |
414 | | // |
415 | 0 | ut->chunkOffset--; |
416 | 0 | cPrev = ut->chunkContents[ut->chunkOffset]; |
417 | |
|
418 | 0 | if (U16_IS_SURROGATE(cPrev)) { |
419 | | // Possible supplementary. Many edge cases. |
420 | | // Let other functions do the heavy lifting. |
421 | 0 | utext_setNativeIndex(ut, index); |
422 | 0 | cPrev = utext_previous32(ut); |
423 | 0 | } |
424 | 0 | return cPrev; |
425 | 0 | } |
426 | | |
427 | | |
428 | | U_CAPI int32_t U_EXPORT2 |
429 | | utext_extract(UText *ut, |
430 | | int64_t start, int64_t limit, |
431 | | char16_t *dest, int32_t destCapacity, |
432 | 16.7k | UErrorCode *status) { |
433 | 16.7k | return ut->pFuncs->extract(ut, start, limit, dest, destCapacity, status); |
434 | 16.7k | } |
435 | | |
436 | | |
437 | | |
438 | | U_CAPI UBool U_EXPORT2 |
439 | 0 | utext_equals(const UText *a, const UText *b) { |
440 | 0 | if (a==nullptr || b==nullptr || |
441 | 0 | a->magic != UTEXT_MAGIC || |
442 | 0 | b->magic != UTEXT_MAGIC) { |
443 | | // Null or invalid arguments don't compare equal to anything. |
444 | 0 | return false; |
445 | 0 | } |
446 | | |
447 | 0 | if (a->pFuncs != b->pFuncs) { |
448 | | // Different types of text providers. |
449 | 0 | return false; |
450 | 0 | } |
451 | | |
452 | 0 | if (a->context != b->context) { |
453 | | // Different sources (different strings) |
454 | 0 | return false; |
455 | 0 | } |
456 | 0 | if (utext_getNativeIndex(a) != utext_getNativeIndex(b)) { |
457 | | // Different current position in the string. |
458 | 0 | return false; |
459 | 0 | } |
460 | | |
461 | 0 | return true; |
462 | 0 | } |
463 | | |
464 | | U_CAPI UBool U_EXPORT2 |
465 | | utext_isWritable(const UText *ut) |
466 | 0 | { |
467 | 0 | UBool b = (ut->providerProperties & I32_FLAG(UTEXT_PROVIDER_WRITABLE)) != 0; |
468 | 0 | return b; |
469 | 0 | } |
470 | | |
471 | | |
472 | | U_CAPI void U_EXPORT2 |
473 | 56.7k | utext_freeze(UText *ut) { |
474 | | // Zero out the WRITABLE flag. |
475 | 56.7k | ut->providerProperties &= ~(I32_FLAG(UTEXT_PROVIDER_WRITABLE)); |
476 | 56.7k | } |
477 | | |
478 | | |
479 | | U_CAPI UBool U_EXPORT2 |
480 | | utext_hasMetaData(const UText *ut) |
481 | 0 | { |
482 | 0 | UBool b = (ut->providerProperties & I32_FLAG(UTEXT_PROVIDER_HAS_META_DATA)) != 0; |
483 | 0 | return b; |
484 | 0 | } |
485 | | |
486 | | |
487 | | |
488 | | U_CAPI int32_t U_EXPORT2 |
489 | | utext_replace(UText *ut, |
490 | | int64_t nativeStart, int64_t nativeLimit, |
491 | | const char16_t *replacementText, int32_t replacementLength, |
492 | | UErrorCode *status) |
493 | 0 | { |
494 | 0 | if (U_FAILURE(*status)) { |
495 | 0 | return 0; |
496 | 0 | } |
497 | 0 | if ((ut->providerProperties & I32_FLAG(UTEXT_PROVIDER_WRITABLE)) == 0) { |
498 | 0 | *status = U_NO_WRITE_PERMISSION; |
499 | 0 | return 0; |
500 | 0 | } |
501 | 0 | int32_t i = ut->pFuncs->replace(ut, nativeStart, nativeLimit, replacementText, replacementLength, status); |
502 | 0 | return i; |
503 | 0 | } |
504 | | |
505 | | U_CAPI void U_EXPORT2 |
506 | | utext_copy(UText *ut, |
507 | | int64_t nativeStart, int64_t nativeLimit, |
508 | | int64_t destIndex, |
509 | | UBool move, |
510 | | UErrorCode *status) |
511 | 0 | { |
512 | 0 | if (U_FAILURE(*status)) { |
513 | 0 | return; |
514 | 0 | } |
515 | 0 | if ((ut->providerProperties & I32_FLAG(UTEXT_PROVIDER_WRITABLE)) == 0) { |
516 | 0 | *status = U_NO_WRITE_PERMISSION; |
517 | 0 | return; |
518 | 0 | } |
519 | 0 | ut->pFuncs->copy(ut, nativeStart, nativeLimit, destIndex, move, status); |
520 | 0 | } |
521 | | |
522 | | |
523 | | |
524 | | U_CAPI UText * U_EXPORT2 |
525 | 56.7k | utext_clone(UText *dest, const UText *src, UBool deep, UBool readOnly, UErrorCode *status) { |
526 | 56.7k | if (U_FAILURE(*status)) { |
527 | 0 | return dest; |
528 | 0 | } |
529 | 56.7k | UText *result = src->pFuncs->clone(dest, src, deep, status); |
530 | 56.7k | if (U_FAILURE(*status)) { |
531 | 0 | return result; |
532 | 0 | } |
533 | 56.7k | if (result == nullptr) { |
534 | 0 | *status = U_MEMORY_ALLOCATION_ERROR; |
535 | 0 | return result; |
536 | 0 | } |
537 | 56.7k | if (readOnly) { |
538 | 56.7k | utext_freeze(result); |
539 | 56.7k | } |
540 | 56.7k | return result; |
541 | 56.7k | } |
542 | | |
543 | | |
544 | | |
545 | | //------------------------------------------------------------------------------ |
546 | | // |
547 | | // UText common functions implementation |
548 | | // |
549 | | //------------------------------------------------------------------------------ |
550 | | |
551 | | // |
552 | | // UText.flags bit definitions |
553 | | // |
554 | | enum { |
555 | | UTEXT_HEAP_ALLOCATED = 1, // 1 if ICU has allocated this UText struct on the heap. |
556 | | // 0 if caller provided storage for the UText. |
557 | | |
558 | | UTEXT_EXTRA_HEAP_ALLOCATED = 2, // 1 if ICU has allocated extra storage as a separate |
559 | | // heap block. |
560 | | // 0 if there is no separate allocation. Either no extra |
561 | | // storage was requested, or it is appended to the end |
562 | | // of the main UText storage. |
563 | | |
564 | | UTEXT_OPEN = 4 // 1 if this UText is currently open |
565 | | // 0 if this UText is not open. |
566 | | }; |
567 | | |
568 | | |
569 | | // |
570 | | // Extended form of a UText. The purpose is to aid in computing the total size required |
571 | | // when a provider asks for a UText to be allocated with extra storage. |
572 | | |
573 | | struct ExtendedUText { |
574 | | UText ut; |
575 | | std::max_align_t extension; |
576 | | }; |
577 | | |
578 | | static const UText emptyText = UTEXT_INITIALIZER; |
579 | | |
580 | | U_CAPI UText * U_EXPORT2 |
581 | 4.84M | utext_setup(UText *ut, int32_t extraSpace, UErrorCode *status) { |
582 | 4.84M | if (U_FAILURE(*status)) { |
583 | 0 | return ut; |
584 | 0 | } |
585 | | |
586 | 4.84M | if (ut == nullptr) { |
587 | | // We need to heap-allocate storage for the new UText |
588 | 47.3k | int32_t spaceRequired = sizeof(UText); |
589 | 47.3k | if (extraSpace > 0) { |
590 | 0 | spaceRequired = sizeof(ExtendedUText) + extraSpace - sizeof(std::max_align_t); |
591 | 0 | } |
592 | 47.3k | ut = (UText *)uprv_malloc(spaceRequired); |
593 | 47.3k | if (ut == nullptr) { |
594 | 0 | *status = U_MEMORY_ALLOCATION_ERROR; |
595 | 0 | return nullptr; |
596 | 47.3k | } else { |
597 | 47.3k | *ut = emptyText; |
598 | 47.3k | ut->flags |= UTEXT_HEAP_ALLOCATED; |
599 | 47.3k | if (spaceRequired>0) { |
600 | 47.3k | ut->extraSize = extraSpace; |
601 | 47.3k | ut->pExtra = &((ExtendedUText *)ut)->extension; |
602 | 47.3k | } |
603 | 47.3k | } |
604 | 4.80M | } else { |
605 | | // We have been supplied with an already existing UText. |
606 | | // Verify that it really appears to be a UText. |
607 | 4.80M | if (ut->magic != UTEXT_MAGIC) { |
608 | 0 | *status = U_ILLEGAL_ARGUMENT_ERROR; |
609 | 0 | return ut; |
610 | 0 | } |
611 | | // If the ut is already open and there's a provider supplied close |
612 | | // function, call it. |
613 | 4.80M | if ((ut->flags & UTEXT_OPEN) && ut->pFuncs->close != nullptr) { |
614 | 27.6k | ut->pFuncs->close(ut); |
615 | 27.6k | } |
616 | 4.80M | ut->flags &= ~UTEXT_OPEN; |
617 | | |
618 | | // If extra space was requested by our caller, check whether |
619 | | // sufficient already exists, and allocate new if needed. |
620 | 4.80M | if (extraSpace > ut->extraSize) { |
621 | | // Need more space. If there is existing separately allocated space, |
622 | | // delete it first, then allocate new space. |
623 | 7.31k | if (ut->flags & UTEXT_EXTRA_HEAP_ALLOCATED) { |
624 | 0 | uprv_free(ut->pExtra); |
625 | 0 | ut->extraSize = 0; |
626 | 0 | } |
627 | 7.31k | ut->pExtra = uprv_malloc(extraSpace); |
628 | 7.31k | if (ut->pExtra == nullptr) { |
629 | 0 | *status = U_MEMORY_ALLOCATION_ERROR; |
630 | 7.31k | } else { |
631 | 7.31k | ut->extraSize = extraSpace; |
632 | 7.31k | ut->flags |= UTEXT_EXTRA_HEAP_ALLOCATED; |
633 | 7.31k | } |
634 | 7.31k | } |
635 | 4.80M | } |
636 | 4.84M | if (U_SUCCESS(*status)) { |
637 | 4.84M | ut->flags |= UTEXT_OPEN; |
638 | | |
639 | | // Initialize all remaining fields of the UText. |
640 | | // |
641 | 4.84M | ut->context = nullptr; |
642 | 4.84M | ut->chunkContents = nullptr; |
643 | 4.84M | ut->p = nullptr; |
644 | 4.84M | ut->q = nullptr; |
645 | 4.84M | ut->r = nullptr; |
646 | 4.84M | ut->a = 0; |
647 | 4.84M | ut->b = 0; |
648 | 4.84M | ut->c = 0; |
649 | 4.84M | ut->chunkOffset = 0; |
650 | 4.84M | ut->chunkLength = 0; |
651 | 4.84M | ut->chunkNativeStart = 0; |
652 | 4.84M | ut->chunkNativeLimit = 0; |
653 | 4.84M | ut->nativeIndexingLimit = 0; |
654 | 4.84M | ut->providerProperties = 0; |
655 | 4.84M | ut->privA = 0; |
656 | 4.84M | ut->privB = 0; |
657 | 4.84M | ut->privC = 0; |
658 | 4.84M | ut->privP = nullptr; |
659 | 4.84M | if (ut->pExtra!=nullptr && ut->extraSize>0) |
660 | 4.84M | uprv_memset(ut->pExtra, 0, ut->extraSize); |
661 | | |
662 | 4.84M | } |
663 | 4.84M | return ut; |
664 | 4.84M | } |
665 | | |
666 | | |
667 | | U_CAPI UText * U_EXPORT2 |
668 | 4.82M | utext_close(UText *ut) { |
669 | 4.82M | if (ut==nullptr || |
670 | 4.82M | ut->magic != UTEXT_MAGIC || |
671 | 4.82M | (ut->flags & UTEXT_OPEN) == 0) |
672 | 0 | { |
673 | | // The supplied ut is not an open UText. |
674 | | // Do nothing. |
675 | 0 | return ut; |
676 | 0 | } |
677 | | |
678 | | // If the provider gave us a close function, call it now. |
679 | | // This will clean up anything allocated specifically by the provider. |
680 | 4.82M | if (ut->pFuncs->close != nullptr) { |
681 | 4.82M | ut->pFuncs->close(ut); |
682 | 4.82M | } |
683 | 4.82M | ut->flags &= ~UTEXT_OPEN; |
684 | | |
685 | | // If we (the framework) allocated the UText or subsidiary storage, |
686 | | // delete it. |
687 | 4.82M | if (ut->flags & UTEXT_EXTRA_HEAP_ALLOCATED) { |
688 | 7.31k | uprv_free(ut->pExtra); |
689 | 7.31k | ut->pExtra = nullptr; |
690 | 7.31k | ut->flags &= ~UTEXT_EXTRA_HEAP_ALLOCATED; |
691 | 7.31k | ut->extraSize = 0; |
692 | 7.31k | } |
693 | | |
694 | | // Zero out function table of the closed UText. This is a defensive move, |
695 | | // intended to cause applications that inadvertently use a closed |
696 | | // utext to crash with null pointer errors. |
697 | 4.82M | ut->pFuncs = nullptr; |
698 | | |
699 | 4.82M | if (ut->flags & UTEXT_HEAP_ALLOCATED) { |
700 | | // This UText was allocated by UText setup. We need to free it. |
701 | | // Clear magic, so we can detect if the user messes up and immediately |
702 | | // tries to reopen another UText using the deleted storage. |
703 | 47.3k | ut->magic = 0; |
704 | 47.3k | uprv_free(ut); |
705 | 47.3k | ut = nullptr; |
706 | 47.3k | } |
707 | 4.82M | return ut; |
708 | 4.82M | } |
709 | | |
710 | | |
711 | | |
712 | | |
713 | | // |
714 | | // invalidateChunk Reset a chunk to have no contents, so that the next call |
715 | | // to access will cause new data to load. |
716 | | // This is needed when copy/move/replace operate directly on the |
717 | | // backing text, potentially putting it out of sync with the |
718 | | // contents in the chunk. |
719 | | // |
720 | | static void |
721 | 0 | invalidateChunk(UText *ut) { |
722 | 0 | ut->chunkLength = 0; |
723 | 0 | ut->chunkNativeLimit = 0; |
724 | 0 | ut->chunkNativeStart = 0; |
725 | 0 | ut->chunkOffset = 0; |
726 | 0 | ut->nativeIndexingLimit = 0; |
727 | 0 | } |
728 | | |
729 | | // |
730 | | // pinIndex Do range pinning on a native index parameter. |
731 | | // 64 bit pinning is done in place. |
732 | | // 32 bit truncated result is returned as a convenience for |
733 | | // use in providers that don't need 64 bits. |
734 | | static int32_t |
735 | 2.28M | pinIndex(int64_t &index, int64_t limit) { |
736 | 2.28M | if (index<0) { |
737 | 0 | index = 0; |
738 | 2.28M | } else if (index > limit) { |
739 | 6.49k | index = limit; |
740 | 6.49k | } |
741 | 2.28M | return static_cast<int32_t>(index); |
742 | 2.28M | } |
743 | | |
744 | | |
745 | | U_CDECL_BEGIN |
746 | | |
747 | | // |
748 | | // Pointer relocation function, |
749 | | // a utility used by shallow clone. |
750 | | // Adjust a pointer that refers to something within one UText (the source) |
751 | | // to refer to the same relative offset within a another UText (the target) |
752 | | // |
753 | 283k | static void adjustPointer(UText *dest, const void **destPtr, const UText *src) { |
754 | | // convert all pointers to (char *) so that byte address arithmetic will work. |
755 | 283k | char *dptr = (char *)*destPtr; |
756 | 283k | char *dUText = (char *)dest; |
757 | 283k | char *sUText = (char *)src; |
758 | | |
759 | 283k | if (dptr >= (char *)src->pExtra && dptr < ((char*)src->pExtra)+src->extraSize) { |
760 | | // target ptr was to something within the src UText's pExtra storage. |
761 | | // relocate it into the target UText's pExtra region. |
762 | 7.23k | *destPtr = ((char *)dest->pExtra) + (dptr - (char *)src->pExtra); |
763 | 276k | } else if (dptr>=sUText && dptr < sUText+src->sizeOfStruct) { |
764 | | // target ptr was pointing to somewhere within the source UText itself. |
765 | | // Move it to the same offset within the target UText. |
766 | 0 | *destPtr = dUText + (dptr-sUText); |
767 | 0 | } |
768 | 283k | } |
769 | | |
770 | | |
771 | | // |
772 | | // Clone. This is a generic copy-the-utext-by-value clone function that can be |
773 | | // used as-is with some utext types, and as a helper by other clones. |
774 | | // |
775 | | static UText * U_CALLCONV |
776 | 56.7k | shallowTextClone(UText * dest, const UText * src, UErrorCode * status) { |
777 | 56.7k | if (U_FAILURE(*status)) { |
778 | 0 | return nullptr; |
779 | 0 | } |
780 | 56.7k | int32_t srcExtraSize = src->extraSize; |
781 | | |
782 | | // |
783 | | // Use the generic text_setup to allocate storage if required. |
784 | | // |
785 | 56.7k | dest = utext_setup(dest, srcExtraSize, status); |
786 | 56.7k | if (U_FAILURE(*status)) { |
787 | 0 | return dest; |
788 | 0 | } |
789 | | |
790 | | // |
791 | | // flags (how the UText was allocated) and the pointer to the |
792 | | // extra storage must retain the values in the cloned utext that |
793 | | // were set up by utext_setup. Save them separately before |
794 | | // copying the whole struct. |
795 | | // |
796 | 56.7k | void *destExtra = dest->pExtra; |
797 | 56.7k | int32_t flags = dest->flags; |
798 | | |
799 | | |
800 | | // |
801 | | // Copy the whole UText struct by value. |
802 | | // Any "Extra" storage is copied also. |
803 | | // |
804 | 56.7k | int sizeToCopy = src->sizeOfStruct; |
805 | 56.7k | if (sizeToCopy > dest->sizeOfStruct) { |
806 | 0 | sizeToCopy = dest->sizeOfStruct; |
807 | 0 | } |
808 | 56.7k | uprv_memcpy(dest, src, sizeToCopy); |
809 | 56.7k | dest->pExtra = destExtra; |
810 | 56.7k | dest->flags = flags; |
811 | 56.7k | if (srcExtraSize > 0) { |
812 | 3.61k | uprv_memcpy(dest->pExtra, src->pExtra, srcExtraSize); |
813 | 3.61k | } |
814 | | |
815 | | // |
816 | | // Relocate any pointers in the target that refer to the UText itself |
817 | | // to point to the cloned copy rather than the original source. |
818 | | // |
819 | 56.7k | adjustPointer(dest, &dest->context, src); |
820 | 56.7k | adjustPointer(dest, &dest->p, src); |
821 | 56.7k | adjustPointer(dest, &dest->q, src); |
822 | 56.7k | adjustPointer(dest, &dest->r, src); |
823 | 56.7k | adjustPointer(dest, (const void **)&dest->chunkContents, src); |
824 | | |
825 | | // The newly shallow-cloned UText does _not_ own the underlying storage for the text. |
826 | | // (The source for the clone may or may not have owned the text.) |
827 | | |
828 | 56.7k | dest->providerProperties &= ~I32_FLAG(UTEXT_PROVIDER_OWNS_TEXT); |
829 | | |
830 | 56.7k | return dest; |
831 | 56.7k | } |
832 | | |
833 | | |
834 | | U_CDECL_END |
835 | | |
836 | | |
837 | | |
838 | | //------------------------------------------------------------------------------ |
839 | | // |
840 | | // UText implementation for UTF-8 char * strings (read-only) |
841 | | // Limitation: string length must be <= 0x7fffffff in length. |
842 | | // (length must for in an int32_t variable) |
843 | | // |
844 | | // Use of UText data members: |
845 | | // context pointer to UTF-8 string |
846 | | // utext.b is the input string length (bytes). |
847 | | // utext.c Length scanned so far in string |
848 | | // (for optimizing finding length of zero terminated strings.) |
849 | | // utext.p pointer to the current buffer |
850 | | // utext.q pointer to the other buffer. |
851 | | // |
852 | | //------------------------------------------------------------------------------ |
853 | | |
854 | | // Chunk size. |
855 | | // Must be less than 85 (256/3), because of byte mapping from char16_t indexes to native indexes. |
856 | | // Worst case is three native bytes to one char16_t. (Supplemenaries are 4 native bytes |
857 | | // to two UChars.) |
858 | | // The longest illegal byte sequence treated as a single error (and converted to U+FFFD) |
859 | | // is a three-byte sequence (truncated four-byte sequence). |
860 | | // |
861 | | enum { UTF8_TEXT_CHUNK_SIZE=32 }; |
862 | | |
863 | | // |
864 | | // UTF8Buf Two of these structs will be set up in the UText's extra allocated space. |
865 | | // Each contains the char16_t chunk buffer, the to and from native maps, and |
866 | | // header info. |
867 | | // |
868 | | // because backwards iteration fills the buffers starting at the end and |
869 | | // working towards the front, the filled part of the buffers may not begin |
870 | | // at the start of the available storage for the buffers. |
871 | | // |
872 | | // Buffer size is one bigger than the specified UTF8_TEXT_CHUNK_SIZE to allow for |
873 | | // the last character added being a supplementary, and thus requiring a surrogate |
874 | | // pair. Doing this is simpler than checking for the edge case. |
875 | | // |
876 | | |
877 | | struct UTF8Buf { |
878 | | int32_t bufNativeStart; // Native index of first char in char16_t buf |
879 | | int32_t bufNativeLimit; // Native index following last char in buf. |
880 | | int32_t bufStartIdx; // First filled position in buf. |
881 | | int32_t bufLimitIdx; // Limit of filled range in buf. |
882 | | int32_t bufNILimit; // Limit of native indexing part of buf |
883 | | int32_t toUCharsMapStart; // Native index corresponding to |
884 | | // mapToUChars[0]. |
885 | | // Set to bufNativeStart when filling forwards. |
886 | | // Set to computed value when filling backwards. |
887 | | |
888 | | char16_t buf[UTF8_TEXT_CHUNK_SIZE+4]; // The char16_t buffer. Requires one extra position beyond the |
889 | | // the chunk size, to allow for surrogate at the end. |
890 | | // Length must be identical to mapToNative array, below, |
891 | | // because of the way indexing works when the array is |
892 | | // filled backwards during a reverse iteration. Thus, |
893 | | // the additional extra size. |
894 | | uint8_t mapToNative[UTF8_TEXT_CHUNK_SIZE+4]; // map char16_t index in buf to |
895 | | // native offset from bufNativeStart. |
896 | | // Requires two extra slots, |
897 | | // one for a supplementary starting in the last normal position, |
898 | | // and one for an entry for the buffer limit position. |
899 | | uint8_t mapToUChars[UTF8_TEXT_CHUNK_SIZE*3+6]; // Map native offset from bufNativeStart to |
900 | | // corresponding offset in filled part of buf. |
901 | | int32_t align; |
902 | | }; |
903 | | |
904 | | U_CDECL_BEGIN |
905 | | |
906 | | // |
907 | | // utf8TextLength |
908 | | // |
909 | | // Get the length of the string. If we don't already know it, |
910 | | // we'll need to scan for the trailing nul. |
911 | | // |
912 | | static int64_t U_CALLCONV |
913 | 158k | utf8TextLength(UText *ut) { |
914 | 158k | if (ut->b < 0) { |
915 | | // Zero terminated string, and we haven't scanned to the end yet. |
916 | | // Scan it now. |
917 | 0 | const char *r = (const char *)ut->context + ut->c; |
918 | 0 | while (*r != 0) { |
919 | 0 | r++; |
920 | 0 | } |
921 | 0 | if ((r - (const char *)ut->context) < 0x7fffffff) { |
922 | 0 | ut->b = (int32_t)(r - (const char *)ut->context); |
923 | 0 | } else { |
924 | | // Actual string was bigger (more than 2 gig) than we |
925 | | // can handle. Clip it to 2 GB. |
926 | 0 | ut->b = 0x7fffffff; |
927 | 0 | } |
928 | 0 | ut->providerProperties &= ~I32_FLAG(UTEXT_PROVIDER_LENGTH_IS_EXPENSIVE); |
929 | 0 | } |
930 | 158k | return ut->b; |
931 | 158k | } |
932 | | |
933 | | |
934 | | |
935 | | |
936 | | |
937 | | |
938 | | static UBool U_CALLCONV |
939 | 4.24M | utf8TextAccess(UText *ut, int64_t index, UBool forward) { |
940 | | // |
941 | | // Apologies to those who are allergic to goto statements. |
942 | | // Consider each goto to a labelled block to be the equivalent of |
943 | | // call the named block as if it were a function(); |
944 | | // return; |
945 | | // |
946 | 4.24M | const uint8_t *s8=(const uint8_t *)ut->context; |
947 | 4.24M | UTF8Buf *u8b = nullptr; |
948 | 4.24M | int32_t length = ut->b; // Length of original utf-8 |
949 | 4.24M | int32_t ix= (int32_t)index; // Requested index, trimmed to 32 bits. |
950 | 4.24M | int32_t mapIndex = 0; |
951 | 4.24M | if (index<0) { |
952 | 0 | ix=0; |
953 | 4.24M | } else if (index > 0x7fffffff) { |
954 | | // Strings with 64 bit lengths not supported by this UTF-8 provider. |
955 | 0 | ix = 0x7fffffff; |
956 | 0 | } |
957 | | |
958 | | // Pin requested index to the string length. |
959 | 4.24M | if (ix>length) { |
960 | 0 | if (length>=0) { |
961 | 0 | ix=length; |
962 | 0 | } else if (ix>=ut->c) { |
963 | | // Zero terminated string, and requested index is beyond |
964 | | // the region that has already been scanned. |
965 | | // Scan up to either the end of the string or to the |
966 | | // requested position, whichever comes first. |
967 | 0 | while (ut->c<ix && s8[ut->c]!=0) { |
968 | 0 | ut->c++; |
969 | 0 | } |
970 | | // TODO: support for null terminated string length > 32 bits. |
971 | 0 | if (s8[ut->c] == 0) { |
972 | | // We just found the actual length of the string. |
973 | | // Trim the requested index back to that. |
974 | 0 | ix = ut->c; |
975 | 0 | ut->b = ut->c; |
976 | 0 | length = ut->c; |
977 | 0 | ut->providerProperties &= ~I32_FLAG(UTEXT_PROVIDER_LENGTH_IS_EXPENSIVE); |
978 | 0 | } |
979 | 0 | } |
980 | 0 | } |
981 | | |
982 | | // |
983 | | // Dispatch to the appropriate action for a forward iteration request. |
984 | | // |
985 | 4.24M | if (forward) { |
986 | 4.24M | if (ix==ut->chunkNativeLimit) { |
987 | | // Check for normal sequential iteration cases first. |
988 | 3.79M | if (ix==length) { |
989 | | // Just reached end of string |
990 | | // Don't swap buffers, but do set the |
991 | | // current buffer position. |
992 | 18.3k | ut->chunkOffset = ut->chunkLength; |
993 | 18.3k | return false; |
994 | 3.77M | } else { |
995 | | // End of current buffer. |
996 | | // check whether other buffer already has what we need. |
997 | 3.77M | UTF8Buf *altB = (UTF8Buf *)ut->q; |
998 | 3.77M | if (ix>=altB->bufNativeStart && ix<altB->bufNativeLimit) { |
999 | 363k | goto swapBuffers; |
1000 | 363k | } |
1001 | 3.77M | } |
1002 | 3.79M | } |
1003 | | |
1004 | | // A random access. Desired index could be in either or niether buf. |
1005 | | // For optimizing the order of testing, first check for the index |
1006 | | // being in the other buffer. This will be the case for uses that |
1007 | | // move back and forth over a fairly limited range |
1008 | 3.86M | { |
1009 | 3.86M | u8b = (UTF8Buf *)ut->q; // the alternate buffer |
1010 | 3.86M | if (ix>=u8b->bufNativeStart && ix<u8b->bufNativeLimit) { |
1011 | | // Requested index is in the other buffer. |
1012 | 407k | goto swapBuffers; |
1013 | 407k | } |
1014 | 3.45M | if (ix == length) { |
1015 | | // Requested index is end-of-string. |
1016 | | // (this is the case of randomly seeking to the end. |
1017 | | // The case of iterating off the end is handled earlier.) |
1018 | 25 | if (ix == ut->chunkNativeLimit) { |
1019 | | // Current buffer extends up to the end of the string. |
1020 | | // Leave it as the current buffer. |
1021 | 0 | ut->chunkOffset = ut->chunkLength; |
1022 | 0 | return false; |
1023 | 0 | } |
1024 | 25 | if (ix == u8b->bufNativeLimit) { |
1025 | | // Alternate buffer extends to the end of string. |
1026 | | // Swap it in as the current buffer. |
1027 | 25 | goto swapBuffersAndFail; |
1028 | 25 | } |
1029 | | |
1030 | | // Neither existing buffer extends to the end of the string. |
1031 | 0 | goto makeStubBuffer; |
1032 | 25 | } |
1033 | | |
1034 | 3.45M | if (ix<ut->chunkNativeStart || ix>=ut->chunkNativeLimit) { |
1035 | | // Requested index is in neither buffer. |
1036 | 3.45M | goto fillForward; |
1037 | 3.45M | } |
1038 | | |
1039 | | // Requested index is in this buffer. |
1040 | 0 | u8b = (UTF8Buf *)ut->p; // the current buffer |
1041 | 0 | mapIndex = ix - u8b->toUCharsMapStart; |
1042 | 0 | U_ASSERT(mapIndex < (int32_t)sizeof(UTF8Buf::mapToUChars)); |
1043 | 0 | ut->chunkOffset = u8b->mapToUChars[mapIndex] - u8b->bufStartIdx; |
1044 | 0 | return true; |
1045 | | |
1046 | 3.45M | } |
1047 | 3.45M | } |
1048 | | |
1049 | | |
1050 | | // |
1051 | | // Dispatch to the appropriate action for a |
1052 | | // Backwards Direction iteration request. |
1053 | | // |
1054 | 1.05k | if (ix==ut->chunkNativeStart) { |
1055 | | // Check for normal sequential iteration cases first. |
1056 | 1.05k | if (ix==0) { |
1057 | | // Just reached the start of string |
1058 | | // Don't swap buffers, but do set the |
1059 | | // current buffer position. |
1060 | 0 | ut->chunkOffset = 0; |
1061 | 0 | return false; |
1062 | 1.05k | } else { |
1063 | | // Start of current buffer. |
1064 | | // check whether other buffer already has what we need. |
1065 | 1.05k | UTF8Buf *altB = (UTF8Buf *)ut->q; |
1066 | 1.05k | if (ix>altB->bufNativeStart && ix<=altB->bufNativeLimit) { |
1067 | 1.05k | goto swapBuffers; |
1068 | 1.05k | } |
1069 | 1.05k | } |
1070 | 1.05k | } |
1071 | | |
1072 | | // A random access. Desired index could be in either or niether buf. |
1073 | | // For optimizing the order of testing, |
1074 | | // Most likely case: in the other buffer. |
1075 | | // Second most likely: in neither buffer. |
1076 | | // Unlikely, but must work: in the current buffer. |
1077 | 0 | u8b = (UTF8Buf *)ut->q; // the alternate buffer |
1078 | 0 | if (ix>u8b->bufNativeStart && ix<=u8b->bufNativeLimit) { |
1079 | | // Requested index is in the other buffer. |
1080 | 0 | goto swapBuffers; |
1081 | 0 | } |
1082 | | // Requested index is start-of-string. |
1083 | | // (this is the case of randomly seeking to the start. |
1084 | | // The case of iterating off the start is handled earlier.) |
1085 | 0 | if (ix==0) { |
1086 | 0 | if (u8b->bufNativeStart==0) { |
1087 | | // Alternate buffer contains the data for the start string. |
1088 | | // Make it be the current buffer. |
1089 | 0 | goto swapBuffersAndFail; |
1090 | 0 | } else { |
1091 | | // Request for data before the start of string, |
1092 | | // neither buffer is usable. |
1093 | | // set up a zero-length buffer. |
1094 | 0 | goto makeStubBuffer; |
1095 | 0 | } |
1096 | 0 | } |
1097 | | |
1098 | 0 | if (ix<=ut->chunkNativeStart || ix>ut->chunkNativeLimit) { |
1099 | | // Requested index is in neither buffer. |
1100 | 0 | goto fillReverse; |
1101 | 0 | } |
1102 | | |
1103 | | // Requested index is in this buffer. |
1104 | | // Set the utf16 buffer index. |
1105 | 0 | u8b = (UTF8Buf *)ut->p; |
1106 | 0 | mapIndex = ix - u8b->toUCharsMapStart; |
1107 | 0 | ut->chunkOffset = u8b->mapToUChars[mapIndex] - u8b->bufStartIdx; |
1108 | 0 | if (ut->chunkOffset==0) { |
1109 | | // This occurs when the first character in the text is |
1110 | | // a multi-byte UTF-8 char, and the requested index is to |
1111 | | // one of the trailing bytes. Because there is no preceding , |
1112 | | // character, this access fails. We can't pick up on the |
1113 | | // situation sooner because the requested index is not zero. |
1114 | 0 | return false; |
1115 | 0 | } else { |
1116 | 0 | return true; |
1117 | 0 | } |
1118 | | |
1119 | | |
1120 | | |
1121 | 771k | swapBuffers: |
1122 | | // The alternate buffer (ut->q) has the string data that was requested. |
1123 | | // Swap the primary and alternate buffers, and set the |
1124 | | // chunk index into the new primary buffer. |
1125 | 771k | { |
1126 | 771k | u8b = (UTF8Buf *)ut->q; |
1127 | 771k | ut->q = ut->p; |
1128 | 771k | ut->p = u8b; |
1129 | 771k | ut->chunkContents = &u8b->buf[u8b->bufStartIdx]; |
1130 | 771k | ut->chunkLength = u8b->bufLimitIdx - u8b->bufStartIdx; |
1131 | 771k | ut->chunkNativeStart = u8b->bufNativeStart; |
1132 | 771k | ut->chunkNativeLimit = u8b->bufNativeLimit; |
1133 | 771k | ut->nativeIndexingLimit = u8b->bufNILimit; |
1134 | | |
1135 | | // Index into the (now current) chunk |
1136 | | // Use the map to set the chunk index. It's more trouble than it's worth |
1137 | | // to check whether native indexing can be used. |
1138 | 771k | U_ASSERT(ix>=u8b->bufNativeStart); |
1139 | 771k | U_ASSERT(ix<=u8b->bufNativeLimit); |
1140 | 771k | mapIndex = ix - u8b->toUCharsMapStart; |
1141 | 771k | U_ASSERT(mapIndex>=0); |
1142 | 771k | U_ASSERT(mapIndex<(int32_t)sizeof(u8b->mapToUChars)); |
1143 | 771k | ut->chunkOffset = u8b->mapToUChars[mapIndex] - u8b->bufStartIdx; |
1144 | | |
1145 | 771k | return true; |
1146 | 0 | } |
1147 | | |
1148 | | |
1149 | 25 | swapBuffersAndFail: |
1150 | | // We got a request for either the start or end of the string, |
1151 | | // with iteration continuing in the out-of-bounds direction. |
1152 | | // The alternate buffer already contains the data up to the |
1153 | | // start/end. |
1154 | | // Swap the buffers, then return failure, indicating that we couldn't |
1155 | | // make things correct for continuing the iteration in the requested |
1156 | | // direction. The position & buffer are correct should the |
1157 | | // user decide to iterate in the opposite direction. |
1158 | 25 | u8b = (UTF8Buf *)ut->q; |
1159 | 25 | ut->q = ut->p; |
1160 | 25 | ut->p = u8b; |
1161 | 25 | ut->chunkContents = &u8b->buf[u8b->bufStartIdx]; |
1162 | 25 | ut->chunkLength = u8b->bufLimitIdx - u8b->bufStartIdx; |
1163 | 25 | ut->chunkNativeStart = u8b->bufNativeStart; |
1164 | 25 | ut->chunkNativeLimit = u8b->bufNativeLimit; |
1165 | 25 | ut->nativeIndexingLimit = u8b->bufNILimit; |
1166 | | |
1167 | | // Index into the (now current) chunk |
1168 | | // For this function (swapBuffersAndFail), the requested index |
1169 | | // will always be at either the start or end of the chunk. |
1170 | 25 | if (ix==u8b->bufNativeLimit) { |
1171 | 25 | ut->chunkOffset = ut->chunkLength; |
1172 | 25 | } else { |
1173 | 0 | ut->chunkOffset = 0; |
1174 | 0 | U_ASSERT(ix == u8b->bufNativeStart); |
1175 | 0 | } |
1176 | 25 | return false; |
1177 | | |
1178 | 0 | makeStubBuffer: |
1179 | | // The user has done a seek/access past the start or end |
1180 | | // of the string. Rather than loading data that is likely |
1181 | | // to never be used, just set up a zero-length buffer at |
1182 | | // the position. |
1183 | 0 | u8b = (UTF8Buf *)ut->q; |
1184 | 0 | u8b->bufNativeStart = ix; |
1185 | 0 | u8b->bufNativeLimit = ix; |
1186 | 0 | u8b->bufStartIdx = 0; |
1187 | 0 | u8b->bufLimitIdx = 0; |
1188 | 0 | u8b->bufNILimit = 0; |
1189 | 0 | u8b->toUCharsMapStart = ix; |
1190 | 0 | u8b->mapToNative[0] = 0; |
1191 | 0 | u8b->mapToUChars[0] = 0; |
1192 | 0 | goto swapBuffersAndFail; |
1193 | | |
1194 | | |
1195 | | |
1196 | 3.45M | fillForward: |
1197 | 3.45M | { |
1198 | | // Move the incoming index to a code point boundary. |
1199 | 3.45M | U8_SET_CP_START(s8, 0, ix); |
1200 | | |
1201 | | // Swap the UText buffers. |
1202 | | // We want to fill what was previously the alternate buffer, |
1203 | | // and make what was the current buffer be the new alternate. |
1204 | 3.45M | UTF8Buf *u8b_swap = (UTF8Buf *)ut->q; |
1205 | 3.45M | ut->q = ut->p; |
1206 | 3.45M | ut->p = u8b_swap; |
1207 | | |
1208 | 3.45M | int32_t strLen = ut->b; |
1209 | 3.45M | UBool nulTerminated = false; |
1210 | 3.45M | if (strLen < 0) { |
1211 | 0 | strLen = 0x7fffffff; |
1212 | 0 | nulTerminated = true; |
1213 | 0 | } |
1214 | | |
1215 | 3.45M | char16_t *buf = u8b_swap->buf; |
1216 | 3.45M | uint8_t *mapToNative = u8b_swap->mapToNative; |
1217 | 3.45M | uint8_t *mapToUChars = u8b_swap->mapToUChars; |
1218 | 3.45M | int32_t destIx = 0; |
1219 | 3.45M | int32_t srcIx = ix; |
1220 | 3.45M | UBool seenNonAscii = false; |
1221 | 3.45M | UChar32 c = 0; |
1222 | | |
1223 | | // Fill the chunk buffer and mapping arrays. |
1224 | 100M | while (destIx<UTF8_TEXT_CHUNK_SIZE) { |
1225 | 96.7M | c = s8[srcIx]; |
1226 | 96.7M | if (c>0 && c<0x80) { |
1227 | | // Special case ASCII range for speed. |
1228 | | // zero is excluded to simplify bounds checking. |
1229 | 14.6M | buf[destIx] = (char16_t)c; |
1230 | 14.6M | mapToNative[destIx] = (uint8_t)(srcIx - ix); |
1231 | 14.6M | mapToUChars[srcIx-ix] = (uint8_t)destIx; |
1232 | 14.6M | srcIx++; |
1233 | 14.6M | destIx++; |
1234 | 82.1M | } else { |
1235 | | // General case, handle everything. |
1236 | 82.1M | if (seenNonAscii == false) { |
1237 | 3.26M | seenNonAscii = true; |
1238 | 3.26M | u8b_swap->bufNILimit = destIx; |
1239 | 3.26M | } |
1240 | | |
1241 | 82.1M | int32_t cIx = srcIx; |
1242 | 82.1M | int32_t dIx = destIx; |
1243 | 82.1M | int32_t dIxSaved = destIx; |
1244 | 82.1M | U8_NEXT_OR_FFFD(s8, srcIx, strLen, c); |
1245 | 82.1M | if (c==0 && nulTerminated) { |
1246 | 0 | srcIx--; |
1247 | 0 | break; |
1248 | 0 | } |
1249 | | |
1250 | 82.1M | U16_APPEND_UNSAFE(buf, destIx, c); |
1251 | 95.8M | do { |
1252 | 95.8M | mapToNative[dIx++] = (uint8_t)(cIx - ix); |
1253 | 95.8M | } while (dIx < destIx); |
1254 | | |
1255 | 226M | do { |
1256 | 226M | mapToUChars[cIx++ - ix] = (uint8_t)dIxSaved; |
1257 | 226M | } while (cIx < srcIx); |
1258 | 82.1M | } |
1259 | 96.7M | if (srcIx>=strLen) { |
1260 | 5.24k | break; |
1261 | 5.24k | } |
1262 | | |
1263 | 96.7M | } |
1264 | | |
1265 | | // store Native <--> Chunk Map entries for the end of the buffer. |
1266 | | // There is no actual character here, but the index position is valid. |
1267 | 3.45M | mapToNative[destIx] = (uint8_t)(srcIx - ix); |
1268 | 3.45M | mapToUChars[srcIx - ix] = (uint8_t)destIx; |
1269 | | |
1270 | | // fill in Buffer descriptor |
1271 | 3.45M | u8b_swap->bufNativeStart = ix; |
1272 | 3.45M | u8b_swap->bufNativeLimit = srcIx; |
1273 | 3.45M | u8b_swap->bufStartIdx = 0; |
1274 | 3.45M | u8b_swap->bufLimitIdx = destIx; |
1275 | 3.45M | if (seenNonAscii == false) { |
1276 | 191k | u8b_swap->bufNILimit = destIx; |
1277 | 191k | } |
1278 | 3.45M | u8b_swap->toUCharsMapStart = u8b_swap->bufNativeStart; |
1279 | | |
1280 | | // Set UText chunk to refer to this buffer. |
1281 | 3.45M | ut->chunkContents = buf; |
1282 | 3.45M | ut->chunkOffset = 0; |
1283 | 3.45M | ut->chunkLength = u8b_swap->bufLimitIdx; |
1284 | 3.45M | ut->chunkNativeStart = u8b_swap->bufNativeStart; |
1285 | 3.45M | ut->chunkNativeLimit = u8b_swap->bufNativeLimit; |
1286 | 3.45M | ut->nativeIndexingLimit = u8b_swap->bufNILimit; |
1287 | | |
1288 | | // For zero terminated strings, keep track of the maximum point |
1289 | | // scanned so far. |
1290 | 3.45M | if (nulTerminated && srcIx>ut->c) { |
1291 | 0 | ut->c = srcIx; |
1292 | 0 | if (c==0) { |
1293 | | // We scanned to the end. |
1294 | | // Remember the actual length. |
1295 | 0 | ut->b = srcIx; |
1296 | 0 | ut->providerProperties &= ~I32_FLAG(UTEXT_PROVIDER_LENGTH_IS_EXPENSIVE); |
1297 | 0 | } |
1298 | 0 | } |
1299 | 3.45M | return true; |
1300 | 0 | } |
1301 | | |
1302 | | |
1303 | 0 | fillReverse: |
1304 | 0 | { |
1305 | | // Move the incoming index to a code point boundary. |
1306 | | // Can only do this if the incoming index is somewhere in the interior of the string. |
1307 | | // If index is at the end, there is no character there to look at. |
1308 | 0 | if (ix != ut->b) { |
1309 | | // Note: this function will only move the index back if it is on a trail byte |
1310 | | // and there is a preceding lead byte and the sequence from the lead |
1311 | | // through this trail could be part of a valid UTF-8 sequence |
1312 | | // Otherwise the index remains unchanged. |
1313 | 0 | U8_SET_CP_START(s8, 0, ix); |
1314 | 0 | } |
1315 | | |
1316 | | // Swap the UText buffers. |
1317 | | // We want to fill what was previously the alternate buffer, |
1318 | | // and make what was the current buffer be the new alternate. |
1319 | 0 | UTF8Buf *u8b_swap = (UTF8Buf *)ut->q; |
1320 | 0 | ut->q = ut->p; |
1321 | 0 | ut->p = u8b_swap; |
1322 | |
|
1323 | 0 | char16_t *buf = u8b_swap->buf; |
1324 | 0 | uint8_t *mapToNative = u8b_swap->mapToNative; |
1325 | 0 | uint8_t *mapToUChars = u8b_swap->mapToUChars; |
1326 | 0 | int32_t toUCharsMapStart = ix - sizeof(UTF8Buf::mapToUChars) + 1; |
1327 | | // Note that toUCharsMapStart can be negative. Happens when the remaining |
1328 | | // text from current position to the beginning is less than the buffer size. |
1329 | | // + 1 because mapToUChars must have a slot at the end for the bufNativeLimit entry. |
1330 | 0 | int32_t destIx = UTF8_TEXT_CHUNK_SIZE+2; // Start in the overflow region |
1331 | | // at end of buffer to leave room |
1332 | | // for a surrogate pair at the |
1333 | | // buffer start. |
1334 | 0 | int32_t srcIx = ix; |
1335 | 0 | int32_t bufNILimit = destIx; |
1336 | 0 | UChar32 c; |
1337 | | |
1338 | | // Map to/from Native Indexes, fill in for the position at the end of |
1339 | | // the buffer. |
1340 | | // |
1341 | 0 | mapToNative[destIx] = (uint8_t)(srcIx - toUCharsMapStart); |
1342 | 0 | mapToUChars[srcIx - toUCharsMapStart] = (uint8_t)destIx; |
1343 | | |
1344 | | // Fill the chunk buffer |
1345 | | // Work backwards, filling from the end of the buffer towards the front. |
1346 | | // |
1347 | 0 | while (destIx>2 && (srcIx - toUCharsMapStart > 5) && (srcIx > 0)) { |
1348 | 0 | srcIx--; |
1349 | 0 | destIx--; |
1350 | | |
1351 | | // Get last byte of the UTF-8 character |
1352 | 0 | c = s8[srcIx]; |
1353 | 0 | if (c<0x80) { |
1354 | | // Special case ASCII range for speed. |
1355 | 0 | buf[destIx] = (char16_t)c; |
1356 | 0 | U_ASSERT(toUCharsMapStart <= srcIx); |
1357 | 0 | mapToUChars[srcIx - toUCharsMapStart] = (uint8_t)destIx; |
1358 | 0 | mapToNative[destIx] = (uint8_t)(srcIx - toUCharsMapStart); |
1359 | 0 | } else { |
1360 | | // General case, handle everything non-ASCII. |
1361 | |
|
1362 | 0 | int32_t sIx = srcIx; // ix of last byte of multi-byte u8 char |
1363 | | |
1364 | | // Get the full character from the UTF8 string. |
1365 | | // use code derived from the macros in utf8.h |
1366 | | // Leaves srcIx pointing at the first byte of the UTF-8 char. |
1367 | | // |
1368 | 0 | c=utf8_prevCharSafeBody(s8, 0, &srcIx, c, -3); |
1369 | | // leaves srcIx at first byte of the multi-byte char. |
1370 | | |
1371 | | // Store the character in UTF-16 buffer. |
1372 | 0 | if (c<0x10000) { |
1373 | 0 | buf[destIx] = (char16_t)c; |
1374 | 0 | mapToNative[destIx] = (uint8_t)(srcIx - toUCharsMapStart); |
1375 | 0 | } else { |
1376 | 0 | buf[destIx] = U16_TRAIL(c); |
1377 | 0 | mapToNative[destIx] = (uint8_t)(srcIx - toUCharsMapStart); |
1378 | 0 | buf[--destIx] = U16_LEAD(c); |
1379 | 0 | mapToNative[destIx] = (uint8_t)(srcIx - toUCharsMapStart); |
1380 | 0 | } |
1381 | | |
1382 | | // Fill in the map from native indexes to UChars buf index. |
1383 | 0 | do { |
1384 | 0 | mapToUChars[sIx-- - toUCharsMapStart] = (uint8_t)destIx; |
1385 | 0 | } while (sIx >= srcIx); |
1386 | 0 | U_ASSERT(toUCharsMapStart <= (srcIx+1)); |
1387 | | |
1388 | | // Set native indexing limit to be the current position. |
1389 | | // We are processing a non-ascii, non-native-indexing char now; |
1390 | | // the limit will be here if the rest of the chars to be |
1391 | | // added to this buffer are ascii. |
1392 | 0 | bufNILimit = destIx; |
1393 | 0 | } |
1394 | 0 | } |
1395 | 0 | u8b_swap->bufNativeStart = srcIx; |
1396 | 0 | u8b_swap->bufNativeLimit = ix; |
1397 | 0 | u8b_swap->bufStartIdx = destIx; |
1398 | 0 | u8b_swap->bufLimitIdx = UTF8_TEXT_CHUNK_SIZE+2; |
1399 | 0 | u8b_swap->bufNILimit = bufNILimit - u8b_swap->bufStartIdx; |
1400 | 0 | u8b_swap->toUCharsMapStart = toUCharsMapStart; |
1401 | |
|
1402 | 0 | ut->chunkContents = &buf[u8b_swap->bufStartIdx]; |
1403 | 0 | ut->chunkLength = u8b_swap->bufLimitIdx - u8b_swap->bufStartIdx; |
1404 | 0 | ut->chunkOffset = ut->chunkLength; |
1405 | 0 | ut->chunkNativeStart = u8b_swap->bufNativeStart; |
1406 | 0 | ut->chunkNativeLimit = u8b_swap->bufNativeLimit; |
1407 | 0 | ut->nativeIndexingLimit = u8b_swap->bufNILimit; |
1408 | 0 | return true; |
1409 | 0 | } |
1410 | |
|
1411 | 0 | } |
1412 | | |
1413 | | |
1414 | | |
1415 | | // |
1416 | | // This is a slightly modified copy of u_strFromUTF8, |
1417 | | // Inserts a Replacement Char rather than failing on invalid UTF-8 |
1418 | | // Removes unnecessary features. |
1419 | | // |
1420 | | static char16_t* |
1421 | | utext_strFromUTF8(char16_t *dest, |
1422 | | int32_t destCapacity, |
1423 | | int32_t *pDestLength, |
1424 | | const char* src, |
1425 | | int32_t srcLength, // required. NUL terminated not supported. |
1426 | | UErrorCode *pErrorCode |
1427 | | ) |
1428 | 0 | { |
1429 | |
|
1430 | 0 | char16_t *pDest = dest; |
1431 | 0 | char16_t *pDestLimit = (dest!=nullptr)?(dest+destCapacity):nullptr; |
1432 | 0 | UChar32 ch=0; |
1433 | 0 | int32_t index = 0; |
1434 | 0 | int32_t reqLength = 0; |
1435 | 0 | uint8_t* pSrc = (uint8_t*) src; |
1436 | | |
1437 | |
|
1438 | 0 | while((index < srcLength)&&(pDest<pDestLimit)){ |
1439 | 0 | ch = pSrc[index++]; |
1440 | 0 | if(ch <=0x7f){ |
1441 | 0 | *pDest++=(char16_t)ch; |
1442 | 0 | }else{ |
1443 | 0 | ch=utf8_nextCharSafeBody(pSrc, &index, srcLength, ch, -3); |
1444 | 0 | if(U_IS_BMP(ch)){ |
1445 | 0 | *(pDest++)=(char16_t)ch; |
1446 | 0 | }else{ |
1447 | 0 | *(pDest++)=U16_LEAD(ch); |
1448 | 0 | if(pDest<pDestLimit){ |
1449 | 0 | *(pDest++)=U16_TRAIL(ch); |
1450 | 0 | }else{ |
1451 | 0 | reqLength++; |
1452 | 0 | break; |
1453 | 0 | } |
1454 | 0 | } |
1455 | 0 | } |
1456 | 0 | } |
1457 | | /* donot fill the dest buffer just count the UChars needed */ |
1458 | 0 | while(index < srcLength){ |
1459 | 0 | ch = pSrc[index++]; |
1460 | 0 | if(ch <= 0x7f){ |
1461 | 0 | reqLength++; |
1462 | 0 | }else{ |
1463 | 0 | ch=utf8_nextCharSafeBody(pSrc, &index, srcLength, ch, -3); |
1464 | 0 | reqLength+=U16_LENGTH(ch); |
1465 | 0 | } |
1466 | 0 | } |
1467 | |
|
1468 | 0 | reqLength+=(int32_t)(pDest - dest); |
1469 | |
|
1470 | 0 | if(pDestLength){ |
1471 | 0 | *pDestLength = reqLength; |
1472 | 0 | } |
1473 | | |
1474 | | /* Terminate the buffer */ |
1475 | 0 | u_terminateUChars(dest,destCapacity,reqLength,pErrorCode); |
1476 | |
|
1477 | 0 | return dest; |
1478 | 0 | } |
1479 | | |
1480 | | |
1481 | | |
1482 | | static int32_t U_CALLCONV |
1483 | | utf8TextExtract(UText *ut, |
1484 | | int64_t start, int64_t limit, |
1485 | | char16_t *dest, int32_t destCapacity, |
1486 | 0 | UErrorCode *pErrorCode) { |
1487 | 0 | if(U_FAILURE(*pErrorCode)) { |
1488 | 0 | return 0; |
1489 | 0 | } |
1490 | 0 | if(destCapacity<0 || (dest==nullptr && destCapacity>0)) { |
1491 | 0 | *pErrorCode=U_ILLEGAL_ARGUMENT_ERROR; |
1492 | 0 | return 0; |
1493 | 0 | } |
1494 | 0 | int32_t length = ut->b; |
1495 | 0 | int32_t start32 = pinIndex(start, length); |
1496 | 0 | int32_t limit32 = pinIndex(limit, length); |
1497 | |
|
1498 | 0 | if(start32>limit32) { |
1499 | 0 | *pErrorCode=U_INDEX_OUTOFBOUNDS_ERROR; |
1500 | 0 | return 0; |
1501 | 0 | } |
1502 | | |
1503 | | |
1504 | | // adjust the incoming indexes to land on code point boundaries if needed. |
1505 | | // adjust by no more than three, because that is the largest number of trail bytes |
1506 | | // in a well formed UTF8 character. |
1507 | 0 | const uint8_t *buf = (const uint8_t *)ut->context; |
1508 | 0 | int i; |
1509 | 0 | if (start32 < ut->chunkNativeLimit) { |
1510 | 0 | for (i=0; i<3; i++) { |
1511 | 0 | if (U8_IS_SINGLE(buf[start32]) || U8_IS_LEAD(buf[start32]) || start32==0) { |
1512 | 0 | break; |
1513 | 0 | } |
1514 | 0 | start32--; |
1515 | 0 | } |
1516 | 0 | } |
1517 | |
|
1518 | 0 | if (limit32 < ut->chunkNativeLimit) { |
1519 | 0 | for (i=0; i<3; i++) { |
1520 | 0 | if (U8_IS_SINGLE(buf[limit32]) || U8_IS_LEAD(buf[limit32]) || limit32==0) { |
1521 | 0 | break; |
1522 | 0 | } |
1523 | 0 | limit32--; |
1524 | 0 | } |
1525 | 0 | } |
1526 | | |
1527 | | // Do the actual extract. |
1528 | 0 | int32_t destLength=0; |
1529 | 0 | utext_strFromUTF8(dest, destCapacity, &destLength, |
1530 | 0 | (const char *)ut->context+start32, limit32-start32, |
1531 | 0 | pErrorCode); |
1532 | 0 | utf8TextAccess(ut, limit32, true); |
1533 | 0 | return destLength; |
1534 | 0 | } |
1535 | | |
1536 | | // |
1537 | | // utf8TextMapOffsetToNative |
1538 | | // |
1539 | | // Map a chunk (UTF-16) offset to a native index. |
1540 | | static int64_t U_CALLCONV |
1541 | 139M | utf8TextMapOffsetToNative(const UText *ut) { |
1542 | | // |
1543 | 139M | UTF8Buf *u8b = (UTF8Buf *)ut->p; |
1544 | 139M | U_ASSERT(ut->chunkOffset>ut->nativeIndexingLimit && ut->chunkOffset<=ut->chunkLength); |
1545 | 139M | int32_t nativeOffset = u8b->mapToNative[ut->chunkOffset + u8b->bufStartIdx] + u8b->toUCharsMapStart; |
1546 | 139M | U_ASSERT(nativeOffset >= ut->chunkNativeStart && nativeOffset <= ut->chunkNativeLimit); |
1547 | 139M | return nativeOffset; |
1548 | 139M | } |
1549 | | |
1550 | | // |
1551 | | // Map a native index to the corresponding chunk offset |
1552 | | // |
1553 | | static int32_t U_CALLCONV |
1554 | 27.6M | utf8TextMapIndexToUTF16(const UText *ut, int64_t index64) { |
1555 | 27.6M | U_ASSERT(index64 <= 0x7fffffff); |
1556 | 27.6M | int32_t index = (int32_t)index64; |
1557 | 27.6M | UTF8Buf *u8b = (UTF8Buf *)ut->p; |
1558 | 27.6M | U_ASSERT(index>=ut->chunkNativeStart+ut->nativeIndexingLimit); |
1559 | 27.6M | U_ASSERT(index<=ut->chunkNativeLimit); |
1560 | 27.6M | int32_t mapIndex = index - u8b->toUCharsMapStart; |
1561 | 27.6M | U_ASSERT(mapIndex < (int32_t)sizeof(UTF8Buf::mapToUChars)); |
1562 | 27.6M | int32_t offset = u8b->mapToUChars[mapIndex] - u8b->bufStartIdx; |
1563 | 27.6M | U_ASSERT(offset>=0 && offset<=ut->chunkLength); |
1564 | 27.6M | return offset; |
1565 | 27.6M | } |
1566 | | |
1567 | | static UText * U_CALLCONV |
1568 | | utf8TextClone(UText *dest, const UText *src, UBool deep, UErrorCode *status) |
1569 | 3.61k | { |
1570 | | // First do a generic shallow clone. Does everything needed for the UText struct itself. |
1571 | 3.61k | dest = shallowTextClone(dest, src, status); |
1572 | | |
1573 | | // For deep clones, make a copy of the string. |
1574 | | // The copied storage is owned by the newly created clone. |
1575 | | // |
1576 | | // TODO: There is an issue with using utext_nativeLength(). |
1577 | | // That function is non-const in cases where the input was NUL terminated |
1578 | | // and the length has not yet been determined. |
1579 | | // This function (clone()) is const. |
1580 | | // There potentially a thread safety issue lurking here. |
1581 | | // |
1582 | 3.61k | if (deep && U_SUCCESS(*status)) { |
1583 | 0 | int32_t len = (int32_t)utext_nativeLength((UText *)src); |
1584 | 0 | char *copyStr = (char *)uprv_malloc(len+1); |
1585 | 0 | if (copyStr == nullptr) { |
1586 | 0 | *status = U_MEMORY_ALLOCATION_ERROR; |
1587 | 0 | } else { |
1588 | 0 | uprv_memcpy(copyStr, src->context, len+1); |
1589 | 0 | dest->context = copyStr; |
1590 | 0 | dest->providerProperties |= I32_FLAG(UTEXT_PROVIDER_OWNS_TEXT); |
1591 | 0 | } |
1592 | 0 | } |
1593 | 3.61k | return dest; |
1594 | 3.61k | } |
1595 | | |
1596 | | |
1597 | | static void U_CALLCONV |
1598 | 7.31k | utf8TextClose(UText *ut) { |
1599 | | // Most of the work of close is done by the generic UText framework close. |
1600 | | // All that needs to be done here is to delete the UTF8 string if the UText |
1601 | | // owns it. This occurs if the UText was created by cloning. |
1602 | 7.31k | if (ut->providerProperties & I32_FLAG(UTEXT_PROVIDER_OWNS_TEXT)) { |
1603 | 0 | char *s = (char *)ut->context; |
1604 | 0 | uprv_free(s); |
1605 | 0 | ut->context = nullptr; |
1606 | 0 | } |
1607 | 7.31k | } |
1608 | | |
1609 | | U_CDECL_END |
1610 | | |
1611 | | |
1612 | | static const struct UTextFuncs utf8Funcs = |
1613 | | { |
1614 | | sizeof(UTextFuncs), |
1615 | | 0, 0, 0, // Reserved alignment padding |
1616 | | utf8TextClone, |
1617 | | utf8TextLength, |
1618 | | utf8TextAccess, |
1619 | | utf8TextExtract, |
1620 | | nullptr, /* replace*/ |
1621 | | nullptr, /* copy */ |
1622 | | utf8TextMapOffsetToNative, |
1623 | | utf8TextMapIndexToUTF16, |
1624 | | utf8TextClose, |
1625 | | nullptr, // spare 1 |
1626 | | nullptr, // spare 2 |
1627 | | nullptr // spare 3 |
1628 | | }; |
1629 | | |
1630 | | |
1631 | | static const char gEmptyString[] = {0}; |
1632 | | |
1633 | | U_CAPI UText * U_EXPORT2 |
1634 | 3.69k | utext_openUTF8(UText *ut, const char *s, int64_t length, UErrorCode *status) { |
1635 | 3.69k | if(U_FAILURE(*status)) { |
1636 | 0 | return nullptr; |
1637 | 0 | } |
1638 | 3.69k | if(s==nullptr && length==0) { |
1639 | 0 | s = gEmptyString; |
1640 | 0 | } |
1641 | | |
1642 | 3.69k | if(s==nullptr || length<-1 || length>INT32_MAX) { |
1643 | 0 | *status=U_ILLEGAL_ARGUMENT_ERROR; |
1644 | 0 | return nullptr; |
1645 | 0 | } |
1646 | | |
1647 | 3.69k | ut = utext_setup(ut, sizeof(UTF8Buf) * 2, status); |
1648 | 3.69k | if (U_FAILURE(*status)) { |
1649 | 0 | return ut; |
1650 | 0 | } |
1651 | | |
1652 | 3.69k | ut->pFuncs = &utf8Funcs; |
1653 | 3.69k | ut->context = s; |
1654 | 3.69k | ut->b = (int32_t)length; |
1655 | 3.69k | ut->c = (int32_t)length; |
1656 | 3.69k | if (ut->c < 0) { |
1657 | 0 | ut->c = 0; |
1658 | 0 | ut->providerProperties |= I32_FLAG(UTEXT_PROVIDER_LENGTH_IS_EXPENSIVE); |
1659 | 0 | } |
1660 | 3.69k | ut->p = ut->pExtra; |
1661 | 3.69k | ut->q = (char *)ut->pExtra + sizeof(UTF8Buf); |
1662 | 3.69k | return ut; |
1663 | | |
1664 | 3.69k | } |
1665 | | |
1666 | | |
1667 | | |
1668 | | |
1669 | | |
1670 | | |
1671 | | |
1672 | | |
1673 | | //------------------------------------------------------------------------------ |
1674 | | // |
1675 | | // UText implementation wrapper for Replaceable (read/write) |
1676 | | // |
1677 | | // Use of UText data members: |
1678 | | // context pointer to Replaceable. |
1679 | | // p pointer to Replaceable if it is owned by the UText. |
1680 | | // |
1681 | | //------------------------------------------------------------------------------ |
1682 | | |
1683 | | |
1684 | | |
1685 | | // minimum chunk size for this implementation: 3 |
1686 | | // to allow for possible trimming for code point boundaries |
1687 | | enum { REP_TEXT_CHUNK_SIZE=10 }; |
1688 | | |
1689 | | struct ReplExtra { |
1690 | | /* |
1691 | | * Chunk UChars. |
1692 | | * +1 to simplify filling with surrogate pair at the end. |
1693 | | */ |
1694 | | char16_t s[REP_TEXT_CHUNK_SIZE+1]; |
1695 | | }; |
1696 | | |
1697 | | |
1698 | | U_CDECL_BEGIN |
1699 | | |
1700 | | static UText * U_CALLCONV |
1701 | 0 | repTextClone(UText *dest, const UText *src, UBool deep, UErrorCode *status) { |
1702 | | // First do a generic shallow clone. Does everything needed for the UText struct itself. |
1703 | 0 | dest = shallowTextClone(dest, src, status); |
1704 | | |
1705 | | // For deep clones, make a copy of the Replaceable. |
1706 | | // The copied Replaceable storage is owned by the newly created UText clone. |
1707 | | // A non-nullptr pointer in UText.p is the signal to the close() function to delete |
1708 | | // it. |
1709 | | // |
1710 | 0 | if (deep && U_SUCCESS(*status)) { |
1711 | 0 | const Replaceable *replSrc = (const Replaceable *)src->context; |
1712 | 0 | dest->context = replSrc->clone(); |
1713 | 0 | dest->providerProperties |= I32_FLAG(UTEXT_PROVIDER_OWNS_TEXT); |
1714 | | |
1715 | | // with deep clone, the copy is writable, even when the source is not. |
1716 | 0 | dest->providerProperties |= I32_FLAG(UTEXT_PROVIDER_WRITABLE); |
1717 | 0 | } |
1718 | 0 | return dest; |
1719 | 0 | } |
1720 | | |
1721 | | |
1722 | | static void U_CALLCONV |
1723 | 0 | repTextClose(UText *ut) { |
1724 | | // Most of the work of close is done by the generic UText framework close. |
1725 | | // All that needs to be done here is delete the Replaceable if the UText |
1726 | | // owns it. This occurs if the UText was created by cloning. |
1727 | 0 | if (ut->providerProperties & I32_FLAG(UTEXT_PROVIDER_OWNS_TEXT)) { |
1728 | 0 | Replaceable *rep = (Replaceable *)ut->context; |
1729 | 0 | delete rep; |
1730 | 0 | ut->context = nullptr; |
1731 | 0 | } |
1732 | 0 | } |
1733 | | |
1734 | | |
1735 | | static int64_t U_CALLCONV |
1736 | 0 | repTextLength(UText *ut) { |
1737 | 0 | const Replaceable *replSrc = (const Replaceable *)ut->context; |
1738 | 0 | int32_t len = replSrc->length(); |
1739 | 0 | return len; |
1740 | 0 | } |
1741 | | |
1742 | | |
1743 | | static UBool U_CALLCONV |
1744 | 0 | repTextAccess(UText *ut, int64_t index, UBool forward) { |
1745 | 0 | const Replaceable *rep=(const Replaceable *)ut->context; |
1746 | 0 | int32_t length=rep->length(); // Full length of the input text (bigger than a chunk) |
1747 | | |
1748 | | // clip the requested index to the limits of the text. |
1749 | 0 | int32_t index32 = pinIndex(index, length); |
1750 | 0 | U_ASSERT(index<=INT32_MAX); |
1751 | | |
1752 | | |
1753 | | /* |
1754 | | * Compute start/limit boundaries around index, for a segment of text |
1755 | | * to be extracted. |
1756 | | * To allow for the possibility that our user gave an index to the trailing |
1757 | | * half of a surrogate pair, we must request one extra preceding char16_t when |
1758 | | * going in the forward direction. This will ensure that the buffer has the |
1759 | | * entire code point at the specified index. |
1760 | | */ |
1761 | 0 | if(forward) { |
1762 | |
|
1763 | 0 | if (index32>=ut->chunkNativeStart && index32<ut->chunkNativeLimit) { |
1764 | | // Buffer already contains the requested position. |
1765 | 0 | ut->chunkOffset = (int32_t)(index - ut->chunkNativeStart); |
1766 | 0 | return true; |
1767 | 0 | } |
1768 | 0 | if (index32>=length && ut->chunkNativeLimit==length) { |
1769 | | // Request for end of string, and buffer already extends up to it. |
1770 | | // Can't get the data, but don't change the buffer. |
1771 | 0 | ut->chunkOffset = length - (int32_t)ut->chunkNativeStart; |
1772 | 0 | return false; |
1773 | 0 | } |
1774 | | |
1775 | 0 | ut->chunkNativeLimit = index + REP_TEXT_CHUNK_SIZE - 1; |
1776 | | // Going forward, so we want to have the buffer with stuff at and beyond |
1777 | | // the requested index. The -1 gets us one code point before the |
1778 | | // requested index also, to handle the case of the index being on |
1779 | | // a trail surrogate of a surrogate pair. |
1780 | 0 | if(ut->chunkNativeLimit > length) { |
1781 | 0 | ut->chunkNativeLimit = length; |
1782 | 0 | } |
1783 | | // unless buffer ran off end, start is index-1. |
1784 | 0 | ut->chunkNativeStart = ut->chunkNativeLimit - REP_TEXT_CHUNK_SIZE; |
1785 | 0 | if(ut->chunkNativeStart < 0) { |
1786 | 0 | ut->chunkNativeStart = 0; |
1787 | 0 | } |
1788 | 0 | } else { |
1789 | | // Reverse iteration. Fill buffer with data preceding the requested index. |
1790 | 0 | if (index32>ut->chunkNativeStart && index32<=ut->chunkNativeLimit) { |
1791 | | // Requested position already in buffer. |
1792 | 0 | ut->chunkOffset = index32 - (int32_t)ut->chunkNativeStart; |
1793 | 0 | return true; |
1794 | 0 | } |
1795 | 0 | if (index32==0 && ut->chunkNativeStart==0) { |
1796 | | // Request for start, buffer already begins at start. |
1797 | | // No data, but keep the buffer as is. |
1798 | 0 | ut->chunkOffset = 0; |
1799 | 0 | return false; |
1800 | 0 | } |
1801 | | |
1802 | | // Figure out the bounds of the chunk to extract for reverse iteration. |
1803 | | // Need to worry about chunk not splitting surrogate pairs, and while still |
1804 | | // containing the data we need. |
1805 | | // Fix by requesting a chunk that includes an extra char16_t at the end. |
1806 | | // If this turns out to be a lead surrogate, we can lop it off and still have |
1807 | | // the data we wanted. |
1808 | 0 | ut->chunkNativeStart = index32 + 1 - REP_TEXT_CHUNK_SIZE; |
1809 | 0 | if (ut->chunkNativeStart < 0) { |
1810 | 0 | ut->chunkNativeStart = 0; |
1811 | 0 | } |
1812 | |
|
1813 | 0 | ut->chunkNativeLimit = index32 + 1; |
1814 | 0 | if (ut->chunkNativeLimit > length) { |
1815 | 0 | ut->chunkNativeLimit = length; |
1816 | 0 | } |
1817 | 0 | } |
1818 | | |
1819 | | // Extract the new chunk of text from the Replaceable source. |
1820 | 0 | ReplExtra *ex = (ReplExtra *)ut->pExtra; |
1821 | | // UnicodeString with its buffer a writable alias to the chunk buffer |
1822 | 0 | UnicodeString buffer(ex->s, 0 /*buffer length*/, REP_TEXT_CHUNK_SIZE /*buffer capacity*/); |
1823 | 0 | rep->extractBetween((int32_t)ut->chunkNativeStart, (int32_t)ut->chunkNativeLimit, buffer); |
1824 | |
|
1825 | 0 | ut->chunkContents = ex->s; |
1826 | 0 | ut->chunkLength = (int32_t)(ut->chunkNativeLimit - ut->chunkNativeStart); |
1827 | 0 | ut->chunkOffset = (int32_t)(index32 - ut->chunkNativeStart); |
1828 | | |
1829 | | // Surrogate pairs from the input text must not span chunk boundaries. |
1830 | | // If end of chunk could be the start of a surrogate, trim it off. |
1831 | 0 | if (ut->chunkNativeLimit < length && |
1832 | 0 | U16_IS_LEAD(ex->s[ut->chunkLength-1])) { |
1833 | 0 | ut->chunkLength--; |
1834 | 0 | ut->chunkNativeLimit--; |
1835 | 0 | if (ut->chunkOffset > ut->chunkLength) { |
1836 | 0 | ut->chunkOffset = ut->chunkLength; |
1837 | 0 | } |
1838 | 0 | } |
1839 | | |
1840 | | // if the first char16_t in the chunk could be the trailing half of a surrogate pair, |
1841 | | // trim it off. |
1842 | 0 | if(ut->chunkNativeStart>0 && U16_IS_TRAIL(ex->s[0])) { |
1843 | 0 | ++(ut->chunkContents); |
1844 | 0 | ++(ut->chunkNativeStart); |
1845 | 0 | --(ut->chunkLength); |
1846 | 0 | --(ut->chunkOffset); |
1847 | 0 | } |
1848 | | |
1849 | | // adjust the index/chunkOffset to a code point boundary |
1850 | 0 | U16_SET_CP_START(ut->chunkContents, 0, ut->chunkOffset); |
1851 | | |
1852 | | // Use fast indexing for get/setNativeIndex() |
1853 | 0 | ut->nativeIndexingLimit = ut->chunkLength; |
1854 | |
|
1855 | 0 | return true; |
1856 | 0 | } |
1857 | | |
1858 | | |
1859 | | |
1860 | | static int32_t U_CALLCONV |
1861 | | repTextExtract(UText *ut, |
1862 | | int64_t start, int64_t limit, |
1863 | | char16_t *dest, int32_t destCapacity, |
1864 | 0 | UErrorCode *status) { |
1865 | 0 | const Replaceable *rep=(const Replaceable *)ut->context; |
1866 | 0 | int32_t length=rep->length(); |
1867 | |
|
1868 | 0 | if(U_FAILURE(*status)) { |
1869 | 0 | return 0; |
1870 | 0 | } |
1871 | 0 | if(destCapacity<0 || (dest==nullptr && destCapacity>0)) { |
1872 | 0 | *status=U_ILLEGAL_ARGUMENT_ERROR; |
1873 | 0 | } |
1874 | 0 | if(start>limit) { |
1875 | 0 | *status=U_INDEX_OUTOFBOUNDS_ERROR; |
1876 | 0 | return 0; |
1877 | 0 | } |
1878 | | |
1879 | 0 | int32_t start32 = pinIndex(start, length); |
1880 | 0 | int32_t limit32 = pinIndex(limit, length); |
1881 | | |
1882 | | // adjust start, limit if they point to trail half of surrogates |
1883 | 0 | if (start32<length && U16_IS_TRAIL(rep->charAt(start32)) && |
1884 | 0 | U_IS_SUPPLEMENTARY(rep->char32At(start32))){ |
1885 | 0 | start32--; |
1886 | 0 | } |
1887 | 0 | if (limit32<length && U16_IS_TRAIL(rep->charAt(limit32)) && |
1888 | 0 | U_IS_SUPPLEMENTARY(rep->char32At(limit32))){ |
1889 | 0 | limit32--; |
1890 | 0 | } |
1891 | |
|
1892 | 0 | length=limit32-start32; |
1893 | 0 | if(length>destCapacity) { |
1894 | 0 | limit32 = start32 + destCapacity; |
1895 | 0 | } |
1896 | 0 | UnicodeString buffer(dest, 0, destCapacity); // writable alias |
1897 | 0 | rep->extractBetween(start32, limit32, buffer); |
1898 | 0 | repTextAccess(ut, limit32, true); |
1899 | |
|
1900 | 0 | return u_terminateUChars(dest, destCapacity, length, status); |
1901 | 0 | } |
1902 | | |
1903 | | static int32_t U_CALLCONV |
1904 | | repTextReplace(UText *ut, |
1905 | | int64_t start, int64_t limit, |
1906 | | const char16_t *src, int32_t length, |
1907 | 0 | UErrorCode *status) { |
1908 | 0 | Replaceable *rep=(Replaceable *)ut->context; |
1909 | 0 | int32_t oldLength; |
1910 | |
|
1911 | 0 | if(U_FAILURE(*status)) { |
1912 | 0 | return 0; |
1913 | 0 | } |
1914 | 0 | if(src==nullptr && length!=0) { |
1915 | 0 | *status=U_ILLEGAL_ARGUMENT_ERROR; |
1916 | 0 | return 0; |
1917 | 0 | } |
1918 | 0 | oldLength=rep->length(); // will subtract from new length |
1919 | 0 | if(start>limit ) { |
1920 | 0 | *status=U_INDEX_OUTOFBOUNDS_ERROR; |
1921 | 0 | return 0; |
1922 | 0 | } |
1923 | | |
1924 | 0 | int32_t start32 = pinIndex(start, oldLength); |
1925 | 0 | int32_t limit32 = pinIndex(limit, oldLength); |
1926 | | |
1927 | | // Snap start & limit to code point boundaries. |
1928 | 0 | if (start32<oldLength && U16_IS_TRAIL(rep->charAt(start32)) && |
1929 | 0 | start32>0 && U16_IS_LEAD(rep->charAt(start32-1))) |
1930 | 0 | { |
1931 | 0 | start32--; |
1932 | 0 | } |
1933 | 0 | if (limit32<oldLength && U16_IS_LEAD(rep->charAt(limit32-1)) && |
1934 | 0 | U16_IS_TRAIL(rep->charAt(limit32))) |
1935 | 0 | { |
1936 | 0 | limit32++; |
1937 | 0 | } |
1938 | | |
1939 | | // Do the actual replace operation using methods of the Replaceable class |
1940 | 0 | UnicodeString replStr(length < 0, src, length); // read-only alias |
1941 | 0 | rep->handleReplaceBetween(start32, limit32, replStr); |
1942 | 0 | int32_t newLength = rep->length(); |
1943 | 0 | int32_t lengthDelta = newLength - oldLength; |
1944 | | |
1945 | | // Is the UText chunk buffer OK? |
1946 | 0 | if (ut->chunkNativeLimit > start32) { |
1947 | | // this replace operation may have impacted the current chunk. |
1948 | | // invalidate it, which will force a reload on the next access. |
1949 | 0 | invalidateChunk(ut); |
1950 | 0 | } |
1951 | | |
1952 | | // set the iteration position to the end of the newly inserted replacement text. |
1953 | 0 | int32_t newIndexPos = limit32 + lengthDelta; |
1954 | 0 | repTextAccess(ut, newIndexPos, true); |
1955 | |
|
1956 | 0 | return lengthDelta; |
1957 | 0 | } |
1958 | | |
1959 | | |
1960 | | static void U_CALLCONV |
1961 | | repTextCopy(UText *ut, |
1962 | | int64_t start, int64_t limit, |
1963 | | int64_t destIndex, |
1964 | | UBool move, |
1965 | | UErrorCode *status) |
1966 | 0 | { |
1967 | 0 | Replaceable *rep=(Replaceable *)ut->context; |
1968 | 0 | int32_t length=rep->length(); |
1969 | |
|
1970 | 0 | if(U_FAILURE(*status)) { |
1971 | 0 | return; |
1972 | 0 | } |
1973 | 0 | if (start>limit || (start<destIndex && destIndex<limit)) |
1974 | 0 | { |
1975 | 0 | *status=U_INDEX_OUTOFBOUNDS_ERROR; |
1976 | 0 | return; |
1977 | 0 | } |
1978 | | |
1979 | 0 | int32_t start32 = pinIndex(start, length); |
1980 | 0 | int32_t limit32 = pinIndex(limit, length); |
1981 | 0 | int32_t destIndex32 = pinIndex(destIndex, length); |
1982 | | |
1983 | | // TODO: snap input parameters to code point boundaries. |
1984 | |
|
1985 | 0 | if(move) { |
1986 | | // move: copy to destIndex, then replace original with nothing |
1987 | 0 | int32_t segLength=limit32-start32; |
1988 | 0 | rep->copy(start32, limit32, destIndex32); |
1989 | 0 | if(destIndex32<start32) { |
1990 | 0 | start32+=segLength; |
1991 | 0 | limit32+=segLength; |
1992 | 0 | } |
1993 | 0 | rep->handleReplaceBetween(start32, limit32, UnicodeString()); |
1994 | 0 | } else { |
1995 | | // copy |
1996 | 0 | rep->copy(start32, limit32, destIndex32); |
1997 | 0 | } |
1998 | | |
1999 | | // If the change to the text touched the region in the chunk buffer, |
2000 | | // invalidate the buffer. |
2001 | 0 | int32_t firstAffectedIndex = destIndex32; |
2002 | 0 | if (move && start32<firstAffectedIndex) { |
2003 | 0 | firstAffectedIndex = start32; |
2004 | 0 | } |
2005 | 0 | if (firstAffectedIndex < ut->chunkNativeLimit) { |
2006 | | // changes may have affected range covered by the chunk |
2007 | 0 | invalidateChunk(ut); |
2008 | 0 | } |
2009 | | |
2010 | | // Put iteration position at the newly inserted (moved) block, |
2011 | 0 | int32_t nativeIterIndex = destIndex32 + limit32 - start32; |
2012 | 0 | if (move && destIndex32>start32) { |
2013 | | // moved a block of text towards the end of the string. |
2014 | 0 | nativeIterIndex = destIndex32; |
2015 | 0 | } |
2016 | | |
2017 | | // Set position, reload chunk if needed. |
2018 | 0 | repTextAccess(ut, nativeIterIndex, true); |
2019 | 0 | } |
2020 | | |
2021 | | static const struct UTextFuncs repFuncs = |
2022 | | { |
2023 | | sizeof(UTextFuncs), |
2024 | | 0, 0, 0, // Reserved alignment padding |
2025 | | repTextClone, |
2026 | | repTextLength, |
2027 | | repTextAccess, |
2028 | | repTextExtract, |
2029 | | repTextReplace, |
2030 | | repTextCopy, |
2031 | | nullptr, // MapOffsetToNative, |
2032 | | nullptr, // MapIndexToUTF16, |
2033 | | repTextClose, |
2034 | | nullptr, // spare 1 |
2035 | | nullptr, // spare 2 |
2036 | | nullptr // spare 3 |
2037 | | }; |
2038 | | |
2039 | | |
2040 | | U_CAPI UText * U_EXPORT2 |
2041 | | utext_openReplaceable(UText *ut, Replaceable *rep, UErrorCode *status) |
2042 | 0 | { |
2043 | 0 | if(U_FAILURE(*status)) { |
2044 | 0 | return nullptr; |
2045 | 0 | } |
2046 | 0 | if(rep==nullptr) { |
2047 | 0 | *status=U_ILLEGAL_ARGUMENT_ERROR; |
2048 | 0 | return nullptr; |
2049 | 0 | } |
2050 | 0 | ut = utext_setup(ut, sizeof(ReplExtra), status); |
2051 | 0 | if(U_FAILURE(*status)) { |
2052 | 0 | return ut; |
2053 | 0 | } |
2054 | | |
2055 | 0 | ut->providerProperties = I32_FLAG(UTEXT_PROVIDER_WRITABLE); |
2056 | 0 | if(rep->hasMetaData()) { |
2057 | 0 | ut->providerProperties |=I32_FLAG(UTEXT_PROVIDER_HAS_META_DATA); |
2058 | 0 | } |
2059 | |
|
2060 | 0 | ut->pFuncs = &repFuncs; |
2061 | 0 | ut->context = rep; |
2062 | 0 | return ut; |
2063 | 0 | } |
2064 | | |
2065 | | U_CDECL_END |
2066 | | |
2067 | | |
2068 | | |
2069 | | |
2070 | | |
2071 | | |
2072 | | |
2073 | | |
2074 | | //------------------------------------------------------------------------------ |
2075 | | // |
2076 | | // UText implementation for UnicodeString (read/write) and |
2077 | | // for const UnicodeString (read only) |
2078 | | // (same implementation, only the flags are different) |
2079 | | // |
2080 | | // Use of UText data members: |
2081 | | // context pointer to UnicodeString |
2082 | | // p pointer to UnicodeString IF this UText owns the string |
2083 | | // and it must be deleted on close(). nullptr otherwise. |
2084 | | // |
2085 | | //------------------------------------------------------------------------------ |
2086 | | |
2087 | | U_CDECL_BEGIN |
2088 | | |
2089 | | |
2090 | | static UText * U_CALLCONV |
2091 | 15.6k | unistrTextClone(UText *dest, const UText *src, UBool deep, UErrorCode *status) { |
2092 | | // First do a generic shallow clone. Does everything needed for the UText struct itself. |
2093 | 15.6k | dest = shallowTextClone(dest, src, status); |
2094 | | |
2095 | | // For deep clones, make a copy of the UnicodeSring. |
2096 | | // The copied UnicodeString storage is owned by the newly created UText clone. |
2097 | | // A non-nullptr pointer in UText.p is the signal to the close() function to delete |
2098 | | // the UText. |
2099 | | // |
2100 | 15.6k | if (deep && U_SUCCESS(*status)) { |
2101 | 0 | const UnicodeString *srcString = (const UnicodeString *)src->context; |
2102 | 0 | dest->context = new UnicodeString(*srcString); |
2103 | 0 | dest->providerProperties |= I32_FLAG(UTEXT_PROVIDER_OWNS_TEXT); |
2104 | | |
2105 | | // with deep clone, the copy is writable, even when the source is not. |
2106 | 0 | dest->providerProperties |= I32_FLAG(UTEXT_PROVIDER_WRITABLE); |
2107 | 0 | } |
2108 | 15.6k | return dest; |
2109 | 15.6k | } |
2110 | | |
2111 | | static void U_CALLCONV |
2112 | 4.75M | unistrTextClose(UText *ut) { |
2113 | | // Most of the work of close is done by the generic UText framework close. |
2114 | | // All that needs to be done here is delete the UnicodeString if the UText |
2115 | | // owns it. This occurs if the UText was created by cloning. |
2116 | 4.75M | if (ut->providerProperties & I32_FLAG(UTEXT_PROVIDER_OWNS_TEXT)) { |
2117 | 0 | UnicodeString *str = (UnicodeString *)ut->context; |
2118 | 0 | delete str; |
2119 | 0 | ut->context = nullptr; |
2120 | 0 | } |
2121 | 4.75M | } |
2122 | | |
2123 | | |
2124 | | static int64_t U_CALLCONV |
2125 | 23.3k | unistrTextLength(UText *t) { |
2126 | 23.3k | return ((const UnicodeString *)t->context)->length(); |
2127 | 23.3k | } |
2128 | | |
2129 | | |
2130 | | static UBool U_CALLCONV |
2131 | 2.27M | unistrTextAccess(UText *ut, int64_t index, UBool forward) { |
2132 | 2.27M | int32_t length = ut->chunkLength; |
2133 | 2.27M | ut->chunkOffset = pinIndex(index, length); |
2134 | | |
2135 | | // Check whether request is at the start or end |
2136 | 2.27M | UBool retVal = (forward && index<length) || (!forward && index>0); |
2137 | 2.27M | return retVal; |
2138 | 2.27M | } |
2139 | | |
2140 | | |
2141 | | |
2142 | | static int32_t U_CALLCONV |
2143 | | unistrTextExtract(UText *t, |
2144 | | int64_t start, int64_t limit, |
2145 | | char16_t *dest, int32_t destCapacity, |
2146 | 3.28k | UErrorCode *pErrorCode) { |
2147 | 3.28k | const UnicodeString *us=(const UnicodeString *)t->context; |
2148 | 3.28k | int32_t length=us->length(); |
2149 | | |
2150 | 3.28k | if(U_FAILURE(*pErrorCode)) { |
2151 | 662 | return 0; |
2152 | 662 | } |
2153 | 2.61k | if(destCapacity<0 || (dest==nullptr && destCapacity>0)) { |
2154 | 0 | *pErrorCode=U_ILLEGAL_ARGUMENT_ERROR; |
2155 | 0 | } |
2156 | 2.61k | if(start<0 || start>limit) { |
2157 | 662 | *pErrorCode=U_INDEX_OUTOFBOUNDS_ERROR; |
2158 | 662 | return 0; |
2159 | 662 | } |
2160 | | |
2161 | 1.95k | int32_t start32 = start<length ? us->getChar32Start((int32_t)start) : length; |
2162 | 1.95k | int32_t limit32 = limit<length ? us->getChar32Start((int32_t)limit) : length; |
2163 | | |
2164 | 1.95k | length=limit32-start32; |
2165 | 1.95k | if (destCapacity>0 && dest!=nullptr) { |
2166 | 1.95k | int32_t trimmedLength = length; |
2167 | 1.95k | if(trimmedLength>destCapacity) { |
2168 | 0 | trimmedLength=destCapacity; |
2169 | 0 | } |
2170 | 1.95k | us->extract(start32, trimmedLength, dest); |
2171 | 1.95k | t->chunkOffset = start32+trimmedLength; |
2172 | 1.95k | } else { |
2173 | 0 | t->chunkOffset = start32; |
2174 | 0 | } |
2175 | 1.95k | u_terminateUChars(dest, destCapacity, length, pErrorCode); |
2176 | 1.95k | return length; |
2177 | 2.61k | } |
2178 | | |
2179 | | static int32_t U_CALLCONV |
2180 | | unistrTextReplace(UText *ut, |
2181 | | int64_t start, int64_t limit, |
2182 | | const char16_t *src, int32_t length, |
2183 | 0 | UErrorCode *pErrorCode) { |
2184 | 0 | UnicodeString *us=(UnicodeString *)ut->context; |
2185 | 0 | int32_t oldLength; |
2186 | |
|
2187 | 0 | if(U_FAILURE(*pErrorCode)) { |
2188 | 0 | return 0; |
2189 | 0 | } |
2190 | 0 | if(src==nullptr && length!=0) { |
2191 | 0 | *pErrorCode=U_ILLEGAL_ARGUMENT_ERROR; |
2192 | 0 | } |
2193 | 0 | if(start>limit) { |
2194 | 0 | *pErrorCode=U_INDEX_OUTOFBOUNDS_ERROR; |
2195 | 0 | return 0; |
2196 | 0 | } |
2197 | 0 | oldLength=us->length(); |
2198 | 0 | int32_t start32 = pinIndex(start, oldLength); |
2199 | 0 | int32_t limit32 = pinIndex(limit, oldLength); |
2200 | 0 | if (start32 < oldLength) { |
2201 | 0 | start32 = us->getChar32Start(start32); |
2202 | 0 | } |
2203 | 0 | if (limit32 < oldLength) { |
2204 | 0 | limit32 = us->getChar32Start(limit32); |
2205 | 0 | } |
2206 | | |
2207 | | // replace |
2208 | 0 | us->replace(start32, limit32-start32, src, length); |
2209 | 0 | int32_t newLength = us->length(); |
2210 | | |
2211 | | // Update the chunk description. |
2212 | 0 | ut->chunkContents = us->getBuffer(); |
2213 | 0 | ut->chunkLength = newLength; |
2214 | 0 | ut->chunkNativeLimit = newLength; |
2215 | 0 | ut->nativeIndexingLimit = newLength; |
2216 | | |
2217 | | // Set iteration position to the point just following the newly inserted text. |
2218 | 0 | int32_t lengthDelta = newLength - oldLength; |
2219 | 0 | ut->chunkOffset = limit32 + lengthDelta; |
2220 | |
|
2221 | 0 | return lengthDelta; |
2222 | 0 | } |
2223 | | |
2224 | | static void U_CALLCONV |
2225 | | unistrTextCopy(UText *ut, |
2226 | | int64_t start, int64_t limit, |
2227 | | int64_t destIndex, |
2228 | | UBool move, |
2229 | 0 | UErrorCode *pErrorCode) { |
2230 | 0 | UnicodeString *us=(UnicodeString *)ut->context; |
2231 | 0 | int32_t length=us->length(); |
2232 | |
|
2233 | 0 | if(U_FAILURE(*pErrorCode)) { |
2234 | 0 | return; |
2235 | 0 | } |
2236 | 0 | int32_t start32 = pinIndex(start, length); |
2237 | 0 | int32_t limit32 = pinIndex(limit, length); |
2238 | 0 | int32_t destIndex32 = pinIndex(destIndex, length); |
2239 | |
|
2240 | 0 | if( start32>limit32 || (start32<destIndex32 && destIndex32<limit32)) { |
2241 | 0 | *pErrorCode=U_INDEX_OUTOFBOUNDS_ERROR; |
2242 | 0 | return; |
2243 | 0 | } |
2244 | | |
2245 | 0 | if(move) { |
2246 | | // move: copy to destIndex, then remove original |
2247 | 0 | int32_t segLength=limit32-start32; |
2248 | 0 | us->copy(start32, limit32, destIndex32); |
2249 | 0 | if(destIndex32<start32) { |
2250 | 0 | start32+=segLength; |
2251 | 0 | } |
2252 | 0 | us->remove(start32, segLength); |
2253 | 0 | } else { |
2254 | | // copy |
2255 | 0 | us->copy(start32, limit32, destIndex32); |
2256 | 0 | } |
2257 | | |
2258 | | // update chunk description, set iteration position. |
2259 | 0 | ut->chunkContents = us->getBuffer(); |
2260 | 0 | if (move==false) { |
2261 | | // copy operation, string length grows |
2262 | 0 | ut->chunkLength += limit32-start32; |
2263 | 0 | ut->chunkNativeLimit = ut->chunkLength; |
2264 | 0 | ut->nativeIndexingLimit = ut->chunkLength; |
2265 | 0 | } |
2266 | | |
2267 | | // Iteration position to end of the newly inserted text. |
2268 | 0 | ut->chunkOffset = destIndex32+limit32-start32; |
2269 | 0 | if (move && destIndex32>start32) { |
2270 | 0 | ut->chunkOffset = destIndex32; |
2271 | 0 | } |
2272 | |
|
2273 | 0 | } |
2274 | | |
2275 | | static const struct UTextFuncs unistrFuncs = |
2276 | | { |
2277 | | sizeof(UTextFuncs), |
2278 | | 0, 0, 0, // Reserved alignment padding |
2279 | | unistrTextClone, |
2280 | | unistrTextLength, |
2281 | | unistrTextAccess, |
2282 | | unistrTextExtract, |
2283 | | unistrTextReplace, |
2284 | | unistrTextCopy, |
2285 | | nullptr, // MapOffsetToNative, |
2286 | | nullptr, // MapIndexToUTF16, |
2287 | | unistrTextClose, |
2288 | | nullptr, // spare 1 |
2289 | | nullptr, // spare 2 |
2290 | | nullptr // spare 3 |
2291 | | }; |
2292 | | |
2293 | | |
2294 | | |
2295 | | U_CDECL_END |
2296 | | |
2297 | | |
2298 | | U_CAPI UText * U_EXPORT2 |
2299 | 4.71M | utext_openUnicodeString(UText *ut, UnicodeString *s, UErrorCode *status) { |
2300 | 4.71M | ut = utext_openConstUnicodeString(ut, s, status); |
2301 | 4.71M | if (U_SUCCESS(*status)) { |
2302 | 4.71M | ut->providerProperties |= I32_FLAG(UTEXT_PROVIDER_WRITABLE); |
2303 | 4.71M | } |
2304 | 4.71M | return ut; |
2305 | 4.71M | } |
2306 | | |
2307 | | |
2308 | | |
2309 | | U_CAPI UText * U_EXPORT2 |
2310 | 4.73M | utext_openConstUnicodeString(UText *ut, const UnicodeString *s, UErrorCode *status) { |
2311 | 4.73M | if (U_SUCCESS(*status) && s->isBogus()) { |
2312 | | // The UnicodeString is bogus, but we still need to detach the UText |
2313 | | // from whatever it was hooked to before, if anything. |
2314 | 0 | utext_openUChars(ut, nullptr, 0, status); |
2315 | 0 | *status = U_ILLEGAL_ARGUMENT_ERROR; |
2316 | 0 | return ut; |
2317 | 0 | } |
2318 | 4.73M | ut = utext_setup(ut, 0, status); |
2319 | | // note: use the standard (writable) function table for UnicodeString. |
2320 | | // The flag settings disable writing, so having the functions in |
2321 | | // the table is harmless. |
2322 | 4.73M | if (U_SUCCESS(*status)) { |
2323 | 4.73M | ut->pFuncs = &unistrFuncs; |
2324 | 4.73M | ut->context = s; |
2325 | 4.73M | ut->providerProperties = I32_FLAG(UTEXT_PROVIDER_STABLE_CHUNKS); |
2326 | 4.73M | ut->chunkContents = s->getBuffer(); |
2327 | 4.73M | ut->chunkLength = s->length(); |
2328 | 4.73M | ut->chunkNativeStart = 0; |
2329 | 4.73M | ut->chunkNativeLimit = ut->chunkLength; |
2330 | 4.73M | ut->nativeIndexingLimit = ut->chunkLength; |
2331 | 4.73M | } |
2332 | 4.73M | return ut; |
2333 | 4.73M | } |
2334 | | |
2335 | | //------------------------------------------------------------------------------ |
2336 | | // |
2337 | | // UText implementation for const char16_t * strings |
2338 | | // |
2339 | | // Use of UText data members: |
2340 | | // context pointer to UnicodeString |
2341 | | // a length. -1 if not yet known. |
2342 | | // |
2343 | | // TODO: support 64 bit lengths. |
2344 | | // |
2345 | | //------------------------------------------------------------------------------ |
2346 | | |
2347 | | U_CDECL_BEGIN |
2348 | | |
2349 | | |
2350 | | static UText * U_CALLCONV |
2351 | 37.4k | ucstrTextClone(UText *dest, const UText * src, UBool deep, UErrorCode * status) { |
2352 | | // First do a generic shallow clone. |
2353 | 37.4k | dest = shallowTextClone(dest, src, status); |
2354 | | |
2355 | | // For deep clones, make a copy of the string. |
2356 | | // The copied storage is owned by the newly created clone. |
2357 | | // A non-nullptr pointer in UText.p is the signal to the close() function to delete |
2358 | | // it. |
2359 | | // |
2360 | 37.4k | if (deep && U_SUCCESS(*status)) { |
2361 | 0 | U_ASSERT(utext_nativeLength(dest) < INT32_MAX); |
2362 | 0 | int32_t len = (int32_t)utext_nativeLength(dest); |
2363 | | |
2364 | | // The cloned string IS going to be NUL terminated, whether or not the original was. |
2365 | 0 | const char16_t *srcStr = (const char16_t *)src->context; |
2366 | 0 | char16_t *copyStr = (char16_t *)uprv_malloc((len+1) * sizeof(char16_t)); |
2367 | 0 | if (copyStr == nullptr) { |
2368 | 0 | *status = U_MEMORY_ALLOCATION_ERROR; |
2369 | 0 | } else { |
2370 | 0 | int64_t i; |
2371 | 0 | for (i=0; i<len; i++) { |
2372 | 0 | copyStr[i] = srcStr[i]; |
2373 | 0 | } |
2374 | 0 | copyStr[len] = 0; |
2375 | 0 | dest->context = copyStr; |
2376 | 0 | dest->providerProperties |= I32_FLAG(UTEXT_PROVIDER_OWNS_TEXT); |
2377 | 0 | } |
2378 | 0 | } |
2379 | 37.4k | return dest; |
2380 | 37.4k | } |
2381 | | |
2382 | | |
2383 | | static void U_CALLCONV |
2384 | 88.8k | ucstrTextClose(UText *ut) { |
2385 | | // Most of the work of close is done by the generic UText framework close. |
2386 | | // All that needs to be done here is delete the string if the UText |
2387 | | // owns it. This occurs if the UText was created by cloning. |
2388 | 88.8k | if (ut->providerProperties & I32_FLAG(UTEXT_PROVIDER_OWNS_TEXT)) { |
2389 | 0 | char16_t *s = (char16_t *)ut->context; |
2390 | 0 | uprv_free(s); |
2391 | 0 | ut->context = nullptr; |
2392 | 0 | } |
2393 | 88.8k | } |
2394 | | |
2395 | | |
2396 | | |
2397 | | static int64_t U_CALLCONV |
2398 | 27.0k | ucstrTextLength(UText *ut) { |
2399 | 27.0k | if (ut->a < 0) { |
2400 | | // null terminated, we don't yet know the length. Scan for it. |
2401 | | // Access is not convenient for doing this |
2402 | | // because the current iteration position can't be changed. |
2403 | 0 | const char16_t *str = (const char16_t *)ut->context; |
2404 | 0 | for (;;) { |
2405 | 0 | if (str[ut->chunkNativeLimit] == 0) { |
2406 | 0 | break; |
2407 | 0 | } |
2408 | 0 | ut->chunkNativeLimit++; |
2409 | 0 | } |
2410 | 0 | ut->a = ut->chunkNativeLimit; |
2411 | 0 | ut->chunkLength = (int32_t)ut->chunkNativeLimit; |
2412 | 0 | ut->nativeIndexingLimit = ut->chunkLength; |
2413 | 0 | ut->providerProperties &= ~I32_FLAG(UTEXT_PROVIDER_LENGTH_IS_EXPENSIVE); |
2414 | 0 | } |
2415 | 27.0k | return ut->a; |
2416 | 27.0k | } |
2417 | | |
2418 | | |
2419 | | static UBool U_CALLCONV |
2420 | 75.0k | ucstrTextAccess(UText *ut, int64_t index, UBool forward) { |
2421 | 75.0k | const char16_t *str = (const char16_t *)ut->context; |
2422 | | |
2423 | | // pin the requested index to the bounds of the string, |
2424 | | // and set current iteration position. |
2425 | 75.0k | if (index<0) { |
2426 | 2.78k | index = 0; |
2427 | 72.2k | } else if (index < ut->chunkNativeLimit) { |
2428 | | // The request data is within the chunk as it is known so far. |
2429 | | // Put index on a code point boundary. |
2430 | 6.85k | U16_SET_CP_START(str, 0, index); |
2431 | 65.3k | } else if (ut->a >= 0) { |
2432 | | // We know the length of this string, and the user is requesting something |
2433 | | // at or beyond the length. Pin the requested index to the length. |
2434 | 65.3k | index = ut->a; |
2435 | 65.3k | } else { |
2436 | | // Null terminated string, length not yet known, and the requested index |
2437 | | // is beyond where we have scanned so far. |
2438 | | // Scan to 32 UChars beyond the requested index. The strategy here is |
2439 | | // to avoid fully scanning a long string when the caller only wants to |
2440 | | // see a few characters at its beginning. |
2441 | 0 | int32_t scanLimit = (int32_t)index + 32; |
2442 | 0 | if ((index + 32)>INT32_MAX || (index + 32)<0 ) { // note: int64 expression |
2443 | 0 | scanLimit = INT32_MAX; |
2444 | 0 | } |
2445 | |
|
2446 | 0 | int32_t chunkLimit = (int32_t)ut->chunkNativeLimit; |
2447 | 0 | for (; chunkLimit<scanLimit; chunkLimit++) { |
2448 | 0 | if (str[chunkLimit] == 0) { |
2449 | | // We found the end of the string. Remember it, pin the requested index to it, |
2450 | | // and bail out of here. |
2451 | 0 | ut->a = chunkLimit; |
2452 | 0 | ut->chunkLength = chunkLimit; |
2453 | 0 | ut->nativeIndexingLimit = chunkLimit; |
2454 | 0 | if (index >= chunkLimit) { |
2455 | 0 | index = chunkLimit; |
2456 | 0 | } else { |
2457 | 0 | U16_SET_CP_START(str, 0, index); |
2458 | 0 | } |
2459 | |
|
2460 | 0 | ut->chunkNativeLimit = chunkLimit; |
2461 | 0 | ut->providerProperties &= ~I32_FLAG(UTEXT_PROVIDER_LENGTH_IS_EXPENSIVE); |
2462 | 0 | goto breakout; |
2463 | 0 | } |
2464 | 0 | } |
2465 | | // We scanned through the next batch of UChars without finding the end. |
2466 | 0 | U16_SET_CP_START(str, 0, index); |
2467 | 0 | if (chunkLimit == INT32_MAX) { |
2468 | | // Scanned to the limit of a 32 bit length. |
2469 | | // Forceably trim the overlength string back so length fits in int32 |
2470 | | // TODO: add support for 64 bit strings. |
2471 | 0 | ut->a = chunkLimit; |
2472 | 0 | ut->chunkLength = chunkLimit; |
2473 | 0 | ut->nativeIndexingLimit = chunkLimit; |
2474 | 0 | if (index > chunkLimit) { |
2475 | 0 | index = chunkLimit; |
2476 | 0 | } |
2477 | 0 | ut->chunkNativeLimit = chunkLimit; |
2478 | 0 | ut->providerProperties &= ~I32_FLAG(UTEXT_PROVIDER_LENGTH_IS_EXPENSIVE); |
2479 | 0 | } else { |
2480 | | // The endpoint of a chunk must not be left in the middle of a surrogate pair. |
2481 | | // If the current end is on a lead surrogate, back the end up by one. |
2482 | | // It doesn't matter if the end char happens to be an unpaired surrogate, |
2483 | | // and it's simpler not to worry about it. |
2484 | 0 | if (U16_IS_LEAD(str[chunkLimit-1])) { |
2485 | 0 | --chunkLimit; |
2486 | 0 | } |
2487 | | // Null-terminated chunk with end still unknown. |
2488 | | // Update the chunk length to reflect what has been scanned thus far. |
2489 | | // That the full length is still unknown is (still) flagged by |
2490 | | // ut->a being < 0. |
2491 | 0 | ut->chunkNativeLimit = chunkLimit; |
2492 | 0 | ut->nativeIndexingLimit = chunkLimit; |
2493 | 0 | ut->chunkLength = chunkLimit; |
2494 | 0 | } |
2495 | |
|
2496 | 0 | } |
2497 | 75.0k | breakout: |
2498 | 75.0k | U_ASSERT(index<=INT32_MAX); |
2499 | 75.0k | ut->chunkOffset = (int32_t)index; |
2500 | | |
2501 | | // Check whether request is at the start or end |
2502 | 75.0k | UBool retVal = (forward && index<ut->chunkNativeLimit) || (!forward && index>0); |
2503 | 75.0k | return retVal; |
2504 | 75.0k | } |
2505 | | |
2506 | | |
2507 | | |
2508 | | static int32_t U_CALLCONV |
2509 | | ucstrTextExtract(UText *ut, |
2510 | | int64_t start, int64_t limit, |
2511 | | char16_t *dest, int32_t destCapacity, |
2512 | | UErrorCode *pErrorCode) |
2513 | 13.4k | { |
2514 | 13.4k | if(U_FAILURE(*pErrorCode)) { |
2515 | 0 | return 0; |
2516 | 0 | } |
2517 | 13.4k | if(destCapacity<0 || (dest==nullptr && destCapacity>0) || start>limit) { |
2518 | 0 | *pErrorCode=U_ILLEGAL_ARGUMENT_ERROR; |
2519 | 0 | return 0; |
2520 | 0 | } |
2521 | | |
2522 | | //const char16_t *s=(const char16_t *)ut->context; |
2523 | 13.4k | int32_t si, di; |
2524 | | |
2525 | 13.4k | int32_t start32; |
2526 | 13.4k | int32_t limit32; |
2527 | | |
2528 | | // Access the start. Does two things we need: |
2529 | | // Pins 'start' to the length of the string, if it came in out-of-bounds. |
2530 | | // Snaps 'start' to the beginning of a code point. |
2531 | 13.4k | ucstrTextAccess(ut, start, true); |
2532 | 13.4k | const char16_t *s=ut->chunkContents; |
2533 | 13.4k | start32 = ut->chunkOffset; |
2534 | | |
2535 | 13.4k | int32_t strLength=(int32_t)ut->a; |
2536 | 13.4k | if (strLength >= 0) { |
2537 | 13.4k | limit32 = pinIndex(limit, strLength); |
2538 | 13.4k | } else { |
2539 | 0 | limit32 = pinIndex(limit, INT32_MAX); |
2540 | 0 | } |
2541 | 13.4k | di = 0; |
2542 | 102k | for (si=start32; si<limit32; si++) { |
2543 | 88.6k | if (strLength<0 && s[si]==0) { |
2544 | | // Just hit the end of a null-terminated string. |
2545 | 0 | ut->a = si; // set string length for this UText |
2546 | 0 | ut->chunkNativeLimit = si; |
2547 | 0 | ut->chunkLength = si; |
2548 | 0 | ut->nativeIndexingLimit = si; |
2549 | 0 | strLength = si; |
2550 | 0 | limit32 = si; |
2551 | 0 | break; |
2552 | 0 | } |
2553 | 88.6k | U_ASSERT(di>=0); /* to ensure di never exceeds INT32_MAX, which must not happen logically */ |
2554 | 88.6k | if (di<destCapacity) { |
2555 | | // only store if there is space. |
2556 | 88.6k | dest[di] = s[si]; |
2557 | 88.6k | } else { |
2558 | 0 | if (strLength>=0) { |
2559 | | // We have filled the destination buffer, and the string length is known. |
2560 | | // Cut the loop short. There is no need to scan string termination. |
2561 | 0 | di = limit32 - start32; |
2562 | 0 | si = limit32; |
2563 | 0 | break; |
2564 | 0 | } |
2565 | 0 | } |
2566 | 88.6k | di++; |
2567 | 88.6k | } |
2568 | | |
2569 | | // If the limit index points to a lead surrogate of a pair, |
2570 | | // add the corresponding trail surrogate to the destination. |
2571 | 13.4k | if (si>0 && U16_IS_LEAD(s[si-1]) && |
2572 | 13.4k | ((si<strLength || strLength<0) && U16_IS_TRAIL(s[si]))) |
2573 | 3 | { |
2574 | 3 | if (di<destCapacity) { |
2575 | | // store only if there is space in the output buffer. |
2576 | 3 | dest[di++] = s[si]; |
2577 | 3 | } |
2578 | 3 | si++; |
2579 | 3 | } |
2580 | | |
2581 | | // Put iteration position at the point just following the extracted text |
2582 | 13.4k | if (si <= ut->chunkNativeLimit) { |
2583 | 13.4k | ut->chunkOffset = si; |
2584 | 13.4k | } else { |
2585 | 0 | ucstrTextAccess(ut, si, true); |
2586 | 0 | } |
2587 | | |
2588 | | // Add a terminating NUL if space in the buffer permits, |
2589 | | // and set the error status as required. |
2590 | 13.4k | u_terminateUChars(dest, destCapacity, di, pErrorCode); |
2591 | 13.4k | return di; |
2592 | 13.4k | } |
2593 | | |
2594 | | static const struct UTextFuncs ucstrFuncs = |
2595 | | { |
2596 | | sizeof(UTextFuncs), |
2597 | | 0, 0, 0, // Reserved alignment padding |
2598 | | ucstrTextClone, |
2599 | | ucstrTextLength, |
2600 | | ucstrTextAccess, |
2601 | | ucstrTextExtract, |
2602 | | nullptr, // Replace |
2603 | | nullptr, // Copy |
2604 | | nullptr, // MapOffsetToNative, |
2605 | | nullptr, // MapIndexToUTF16, |
2606 | | ucstrTextClose, |
2607 | | nullptr, // spare 1 |
2608 | | nullptr, // spare 2 |
2609 | | nullptr, // spare 3 |
2610 | | }; |
2611 | | |
2612 | | U_CDECL_END |
2613 | | |
2614 | | static const char16_t gEmptyUString[] = {0}; |
2615 | | |
2616 | | U_CAPI UText * U_EXPORT2 |
2617 | 51.4k | utext_openUChars(UText *ut, const char16_t *s, int64_t length, UErrorCode *status) { |
2618 | 51.4k | if (U_FAILURE(*status)) { |
2619 | 0 | return nullptr; |
2620 | 0 | } |
2621 | 51.4k | if(s==nullptr && length==0) { |
2622 | 32.4k | s = gEmptyUString; |
2623 | 32.4k | } |
2624 | 51.4k | if (s==nullptr || length < -1 || length>INT32_MAX) { |
2625 | 0 | *status = U_ILLEGAL_ARGUMENT_ERROR; |
2626 | 0 | return nullptr; |
2627 | 0 | } |
2628 | 51.4k | ut = utext_setup(ut, 0, status); |
2629 | 51.4k | if (U_SUCCESS(*status)) { |
2630 | 51.4k | ut->pFuncs = &ucstrFuncs; |
2631 | 51.4k | ut->context = s; |
2632 | 51.4k | ut->providerProperties = I32_FLAG(UTEXT_PROVIDER_STABLE_CHUNKS); |
2633 | 51.4k | if (length==-1) { |
2634 | 0 | ut->providerProperties |= I32_FLAG(UTEXT_PROVIDER_LENGTH_IS_EXPENSIVE); |
2635 | 0 | } |
2636 | 51.4k | ut->a = length; |
2637 | 51.4k | ut->chunkContents = s; |
2638 | 51.4k | ut->chunkNativeStart = 0; |
2639 | 51.4k | ut->chunkNativeLimit = length>=0? length : 0; |
2640 | 51.4k | ut->chunkLength = (int32_t)ut->chunkNativeLimit; |
2641 | 51.4k | ut->chunkOffset = 0; |
2642 | 51.4k | ut->nativeIndexingLimit = ut->chunkLength; |
2643 | 51.4k | } |
2644 | 51.4k | return ut; |
2645 | 51.4k | } |
2646 | | |
2647 | | |
2648 | | //------------------------------------------------------------------------------ |
2649 | | // |
2650 | | // UText implementation for text from ICU CharacterIterators |
2651 | | // |
2652 | | // Use of UText data members: |
2653 | | // context pointer to the CharacterIterator |
2654 | | // a length of the full text. |
2655 | | // p pointer to buffer 1 |
2656 | | // b start index of local buffer 1 contents |
2657 | | // q pointer to buffer 2 |
2658 | | // c start index of local buffer 2 contents |
2659 | | // r pointer to the character iterator if the UText owns it. |
2660 | | // Null otherwise. |
2661 | | // |
2662 | | //------------------------------------------------------------------------------ |
2663 | 0 | #define CIBufSize 16 |
2664 | | |
2665 | | U_CDECL_BEGIN |
2666 | | static void U_CALLCONV |
2667 | 0 | charIterTextClose(UText *ut) { |
2668 | | // Most of the work of close is done by the generic UText framework close. |
2669 | | // All that needs to be done here is delete the CharacterIterator if the UText |
2670 | | // owns it. This occurs if the UText was created by cloning. |
2671 | 0 | CharacterIterator *ci = (CharacterIterator *)ut->r; |
2672 | 0 | delete ci; |
2673 | 0 | ut->r = nullptr; |
2674 | 0 | } |
2675 | | |
2676 | | static int64_t U_CALLCONV |
2677 | 0 | charIterTextLength(UText *ut) { |
2678 | 0 | return (int32_t)ut->a; |
2679 | 0 | } |
2680 | | |
2681 | | static UBool U_CALLCONV |
2682 | 0 | charIterTextAccess(UText *ut, int64_t index, UBool forward) { |
2683 | 0 | CharacterIterator *ci = (CharacterIterator *)ut->context; |
2684 | |
|
2685 | 0 | int32_t clippedIndex = (int32_t)index; |
2686 | 0 | if (clippedIndex<0) { |
2687 | 0 | clippedIndex=0; |
2688 | 0 | } else if (clippedIndex>=ut->a) { |
2689 | 0 | clippedIndex=(int32_t)ut->a; |
2690 | 0 | } |
2691 | 0 | int32_t neededIndex = clippedIndex; |
2692 | 0 | if (!forward && neededIndex>0) { |
2693 | | // reverse iteration, want the position just before what was asked for. |
2694 | 0 | neededIndex--; |
2695 | 0 | } else if (forward && neededIndex==ut->a && neededIndex>0) { |
2696 | | // Forward iteration, don't ask for something past the end of the text. |
2697 | 0 | neededIndex--; |
2698 | 0 | } |
2699 | | |
2700 | | // Find the native index of the start of the buffer containing what we want. |
2701 | 0 | neededIndex -= neededIndex % CIBufSize; |
2702 | |
|
2703 | 0 | char16_t *buf = nullptr; |
2704 | 0 | UBool needChunkSetup = true; |
2705 | 0 | int i; |
2706 | 0 | if (ut->chunkNativeStart == neededIndex) { |
2707 | | // The buffer we want is already the current chunk. |
2708 | 0 | needChunkSetup = false; |
2709 | 0 | } else if (ut->b == neededIndex) { |
2710 | | // The first buffer (buffer p) has what we need. |
2711 | 0 | buf = (char16_t *)ut->p; |
2712 | 0 | } else if (ut->c == neededIndex) { |
2713 | | // The second buffer (buffer q) has what we need. |
2714 | 0 | buf = (char16_t *)ut->q; |
2715 | 0 | } else { |
2716 | | // Neither buffer already has what we need. |
2717 | | // Load new data from the character iterator. |
2718 | | // Use the buf that is not the current buffer. |
2719 | 0 | buf = (char16_t *)ut->p; |
2720 | 0 | if (ut->p == ut->chunkContents) { |
2721 | 0 | buf = (char16_t *)ut->q; |
2722 | 0 | } |
2723 | 0 | ci->setIndex(neededIndex); |
2724 | 0 | for (i=0; i<CIBufSize; i++) { |
2725 | 0 | buf[i] = ci->nextPostInc(); |
2726 | 0 | if (i+neededIndex > ut->a) { |
2727 | 0 | break; |
2728 | 0 | } |
2729 | 0 | } |
2730 | 0 | } |
2731 | | |
2732 | | // We have a buffer with the data we need. |
2733 | | // Set it up as the current chunk, if it wasn't already. |
2734 | 0 | if (needChunkSetup) { |
2735 | 0 | ut->chunkContents = buf; |
2736 | 0 | ut->chunkLength = CIBufSize; |
2737 | 0 | ut->chunkNativeStart = neededIndex; |
2738 | 0 | ut->chunkNativeLimit = neededIndex + CIBufSize; |
2739 | 0 | if (ut->chunkNativeLimit > ut->a) { |
2740 | 0 | ut->chunkNativeLimit = ut->a; |
2741 | 0 | ut->chunkLength = (int32_t)(ut->chunkNativeLimit)-(int32_t)(ut->chunkNativeStart); |
2742 | 0 | } |
2743 | 0 | ut->nativeIndexingLimit = ut->chunkLength; |
2744 | 0 | U_ASSERT(ut->chunkOffset>=0 && ut->chunkOffset<=CIBufSize); |
2745 | 0 | } |
2746 | 0 | ut->chunkOffset = clippedIndex - (int32_t)ut->chunkNativeStart; |
2747 | 0 | UBool success = (forward? ut->chunkOffset<ut->chunkLength : ut->chunkOffset>0); |
2748 | 0 | return success; |
2749 | 0 | } |
2750 | | |
2751 | | static UText * U_CALLCONV |
2752 | 0 | charIterTextClone(UText *dest, const UText *src, UBool deep, UErrorCode * status) { |
2753 | 0 | if (U_FAILURE(*status)) { |
2754 | 0 | return nullptr; |
2755 | 0 | } |
2756 | | |
2757 | 0 | if (deep) { |
2758 | | // There is no CharacterIterator API for cloning the underlying text storage. |
2759 | 0 | *status = U_UNSUPPORTED_ERROR; |
2760 | 0 | return nullptr; |
2761 | 0 | } else { |
2762 | 0 | CharacterIterator *srcCI =(CharacterIterator *)src->context; |
2763 | 0 | srcCI = srcCI->clone(); |
2764 | 0 | dest = utext_openCharacterIterator(dest, srcCI, status); |
2765 | 0 | if (U_FAILURE(*status)) { |
2766 | 0 | return dest; |
2767 | 0 | } |
2768 | | // cast off const on getNativeIndex. |
2769 | | // For CharacterIterator based UTexts, this is safe, the operation is const. |
2770 | 0 | int64_t ix = utext_getNativeIndex((UText *)src); |
2771 | 0 | utext_setNativeIndex(dest, ix); |
2772 | 0 | dest->r = srcCI; // flags that this UText owns the CharacterIterator |
2773 | 0 | } |
2774 | 0 | return dest; |
2775 | 0 | } |
2776 | | |
2777 | | static int32_t U_CALLCONV |
2778 | | charIterTextExtract(UText *ut, |
2779 | | int64_t start, int64_t limit, |
2780 | | char16_t *dest, int32_t destCapacity, |
2781 | | UErrorCode *status) |
2782 | 0 | { |
2783 | 0 | if(U_FAILURE(*status)) { |
2784 | 0 | return 0; |
2785 | 0 | } |
2786 | 0 | if(destCapacity<0 || (dest==nullptr && destCapacity>0) || start>limit) { |
2787 | 0 | *status=U_ILLEGAL_ARGUMENT_ERROR; |
2788 | 0 | return 0; |
2789 | 0 | } |
2790 | 0 | int32_t length = (int32_t)ut->a; |
2791 | 0 | int32_t start32 = pinIndex(start, length); |
2792 | 0 | int32_t limit32 = pinIndex(limit, length); |
2793 | 0 | int32_t desti = 0; |
2794 | 0 | int32_t srci; |
2795 | 0 | int32_t copyLimit; |
2796 | |
|
2797 | 0 | CharacterIterator *ci = (CharacterIterator *)ut->context; |
2798 | 0 | ci->setIndex32(start32); // Moves ix to lead of surrogate pair, if needed. |
2799 | 0 | srci = ci->getIndex(); |
2800 | 0 | copyLimit = srci; |
2801 | 0 | while (srci<limit32) { |
2802 | 0 | UChar32 c = ci->next32PostInc(); |
2803 | 0 | int32_t len = U16_LENGTH(c); |
2804 | 0 | U_ASSERT(desti+len>0); /* to ensure desti+len never exceeds MAX_INT32, which must not happen logically */ |
2805 | 0 | if (desti+len <= destCapacity) { |
2806 | 0 | U16_APPEND_UNSAFE(dest, desti, c); |
2807 | 0 | copyLimit = srci+len; |
2808 | 0 | } else { |
2809 | 0 | desti += len; |
2810 | 0 | *status = U_BUFFER_OVERFLOW_ERROR; |
2811 | 0 | } |
2812 | 0 | srci += len; |
2813 | 0 | } |
2814 | |
|
2815 | 0 | charIterTextAccess(ut, copyLimit, true); |
2816 | |
|
2817 | 0 | u_terminateUChars(dest, destCapacity, desti, status); |
2818 | 0 | return desti; |
2819 | 0 | } |
2820 | | |
2821 | | static const struct UTextFuncs charIterFuncs = |
2822 | | { |
2823 | | sizeof(UTextFuncs), |
2824 | | 0, 0, 0, // Reserved alignment padding |
2825 | | charIterTextClone, |
2826 | | charIterTextLength, |
2827 | | charIterTextAccess, |
2828 | | charIterTextExtract, |
2829 | | nullptr, // Replace |
2830 | | nullptr, // Copy |
2831 | | nullptr, // MapOffsetToNative, |
2832 | | nullptr, // MapIndexToUTF16, |
2833 | | charIterTextClose, |
2834 | | nullptr, // spare 1 |
2835 | | nullptr, // spare 2 |
2836 | | nullptr // spare 3 |
2837 | | }; |
2838 | | U_CDECL_END |
2839 | | |
2840 | | |
2841 | | U_CAPI UText * U_EXPORT2 |
2842 | 0 | utext_openCharacterIterator(UText *ut, CharacterIterator *ci, UErrorCode *status) { |
2843 | 0 | if (U_FAILURE(*status)) { |
2844 | 0 | return nullptr; |
2845 | 0 | } |
2846 | | |
2847 | 0 | if (ci->startIndex() > 0) { |
2848 | | // No support for CharacterIterators that do not start indexing from zero. |
2849 | 0 | *status = U_UNSUPPORTED_ERROR; |
2850 | 0 | return nullptr; |
2851 | 0 | } |
2852 | | |
2853 | | // Extra space in UText for 2 buffers of CIBufSize UChars each. |
2854 | 0 | int32_t extraSpace = 2 * CIBufSize * sizeof(char16_t); |
2855 | 0 | ut = utext_setup(ut, extraSpace, status); |
2856 | 0 | if (U_SUCCESS(*status)) { |
2857 | 0 | ut->pFuncs = &charIterFuncs; |
2858 | 0 | ut->context = ci; |
2859 | 0 | ut->providerProperties = 0; |
2860 | 0 | ut->a = ci->endIndex(); // Length of text |
2861 | 0 | ut->p = ut->pExtra; // First buffer |
2862 | 0 | ut->b = -1; // Native index of first buffer contents |
2863 | 0 | ut->q = (char16_t*)ut->pExtra+CIBufSize; // Second buffer |
2864 | 0 | ut->c = -1; // Native index of second buffer contents |
2865 | | |
2866 | | // Initialize current chunk contents to be empty. |
2867 | | // First access will fault something in. |
2868 | | // Note: The initial nativeStart and chunkOffset must sum to zero |
2869 | | // so that getNativeIndex() will correctly compute to zero |
2870 | | // if no call to Access() has ever been made. They can't be both |
2871 | | // zero without Access() thinking that the chunk is valid. |
2872 | 0 | ut->chunkContents = (char16_t *)ut->p; |
2873 | 0 | ut->chunkNativeStart = -1; |
2874 | 0 | ut->chunkOffset = 1; |
2875 | 0 | ut->chunkNativeLimit = 0; |
2876 | 0 | ut->chunkLength = 0; |
2877 | 0 | ut->nativeIndexingLimit = ut->chunkOffset; // enables native indexing |
2878 | 0 | } |
2879 | 0 | return ut; |
2880 | 0 | } |