Coverage Report

Created: 2025-09-05 07:16

/src/icu/icu4c/source/i18n/astro.cpp
Line
Count
Source (jump to first uncovered line)
1
// © 2016 and later: Unicode, Inc. and others.
2
// License & terms of use: http://www.unicode.org/copyright.html
3
/************************************************************************
4
 * Copyright (C) 1996-2012, International Business Machines Corporation
5
 * and others. All Rights Reserved.
6
 ************************************************************************
7
 *  2003-nov-07   srl       Port from Java
8
 */
9
10
#include "astro.h"
11
12
#if !UCONFIG_NO_FORMATTING
13
14
#include "unicode/calendar.h"
15
#include <math.h>
16
#include <float.h>
17
#include "unicode/putil.h"
18
#include "uhash.h"
19
#include "umutex.h"
20
#include "ucln_in.h"
21
#include "putilimp.h"
22
#include <stdio.h>  // for toString()
23
24
#if defined (PI) 
25
#undef PI
26
#endif
27
28
#ifdef U_DEBUG_ASTRO
29
# include "uresimp.h" // for debugging
30
31
static void debug_astro_loc(const char *f, int32_t l)
32
{
33
  fprintf(stderr, "%s:%d: ", f, l);
34
}
35
36
static void debug_astro_msg(const char *pat, ...)
37
{
38
  va_list ap;
39
  va_start(ap, pat);
40
  vfprintf(stderr, pat, ap);
41
  fflush(stderr);
42
}
43
#include "unicode/datefmt.h"
44
#include "unicode/ustring.h"
45
static const char * debug_astro_date(UDate d) {
46
  static char gStrBuf[1024];
47
  static DateFormat *df = nullptr;
48
  if(df == nullptr) {
49
    df = DateFormat::createDateTimeInstance(DateFormat::MEDIUM, DateFormat::MEDIUM, Locale::getUS());
50
    df->adoptTimeZone(TimeZone::getGMT()->clone());
51
  }
52
  UnicodeString str;
53
  df->format(d,str);
54
  u_austrncpy(gStrBuf,str.getTerminatedBuffer(),sizeof(gStrBuf)-1);
55
  return gStrBuf;
56
}
57
58
// must use double parens, i.e.:  U_DEBUG_ASTRO_MSG(("four is: %d",4));
59
#define U_DEBUG_ASTRO_MSG(x) {debug_astro_loc(__FILE__,__LINE__);debug_astro_msg x;}
60
#else
61
#define U_DEBUG_ASTRO_MSG(x)
62
#endif
63
64
8.41M
static inline UBool isINVALID(double d) {
65
8.41M
  return(uprv_isNaN(d));
66
8.41M
}
67
68
static icu::UMutex ccLock;
69
70
U_CDECL_BEGIN
71
0
static UBool calendar_astro_cleanup() {
72
0
  return true;
73
0
}
74
U_CDECL_END
75
76
U_NAMESPACE_BEGIN
77
78
/**
79
 * The number of standard hours in one sidereal day.
80
 * Approximately 24.93.
81
 * @internal
82
 * @deprecated ICU 2.4. This class may be removed or modified.
83
 */
84
#define SIDEREAL_DAY (23.93446960027)
85
86
/**
87
 * The number of sidereal hours in one mean solar day.
88
 * Approximately 24.07.
89
 * @internal
90
 * @deprecated ICU 2.4. This class may be removed or modified.
91
 */
92
#define SOLAR_DAY  (24.065709816)
93
94
/**
95
 * The average number of solar days from one new moon to the next.  This is the time
96
 * it takes for the moon to return the same ecliptic longitude as the sun.
97
 * It is longer than the sidereal month because the sun's longitude increases
98
 * during the year due to the revolution of the earth around the sun.
99
 * Approximately 29.53.
100
 *
101
 * @see #SIDEREAL_MONTH
102
 * @internal
103
 * @deprecated ICU 2.4. This class may be removed or modified.
104
 */
105
const double CalendarAstronomer::SYNODIC_MONTH  = 29.530588853;
106
107
/**
108
 * The average number of days it takes
109
 * for the moon to return to the same ecliptic longitude relative to the
110
 * stellar background.  This is referred to as the sidereal month.
111
 * It is shorter than the synodic month due to
112
 * the revolution of the earth around the sun.
113
 * Approximately 27.32.
114
 *
115
 * @see #SYNODIC_MONTH
116
 * @internal
117
 * @deprecated ICU 2.4. This class may be removed or modified.
118
 */
119
#define SIDEREAL_MONTH  27.32166
120
121
/**
122
 * The average number number of days between successive vernal equinoxes.
123
 * Due to the precession of the earth's
124
 * axis, this is not precisely the same as the sidereal year.
125
 * Approximately 365.24
126
 *
127
 * @see #SIDEREAL_YEAR
128
 * @internal
129
 * @deprecated ICU 2.4. This class may be removed or modified.
130
 */
131
2.20M
#define TROPICAL_YEAR  365.242191
132
133
/**
134
 * The average number of days it takes
135
 * for the sun to return to the same position against the fixed stellar
136
 * background.  This is the duration of one orbit of the earth about the sun
137
 * as it would appear to an outside observer.
138
 * Due to the precession of the earth's
139
 * axis, this is not precisely the same as the tropical year.
140
 * Approximately 365.25.
141
 *
142
 * @see #TROPICAL_YEAR
143
 * @internal
144
 * @deprecated ICU 2.4. This class may be removed or modified.
145
 */
146
#define SIDEREAL_YEAR  365.25636
147
148
//-------------------------------------------------------------------------
149
// Time-related constants
150
//-------------------------------------------------------------------------
151
152
/**
153
 * The number of milliseconds in one second.
154
 * @internal
155
 * @deprecated ICU 2.4. This class may be removed or modified.
156
 */
157
#define SECOND_MS  U_MILLIS_PER_SECOND
158
159
/**
160
 * The number of milliseconds in one minute.
161
 * @internal
162
 * @deprecated ICU 2.4. This class may be removed or modified.
163
 */
164
509k
#define MINUTE_MS  U_MILLIS_PER_MINUTE
165
166
/**
167
 * The number of milliseconds in one hour.
168
 * @internal
169
 * @deprecated ICU 2.4. This class may be removed or modified.
170
 */
171
#define HOUR_MS   U_MILLIS_PER_HOUR
172
173
/**
174
 * The number of milliseconds in one day.
175
 * @internal
176
 * @deprecated ICU 2.4. This class may be removed or modified.
177
 */
178
2.71M
#define DAY_MS U_MILLIS_PER_DAY
179
180
/**
181
 * The start of the julian day numbering scheme used by astronomers, which
182
 * is 1/1/4713 BC (Julian), 12:00 GMT.  This is given as the number of milliseconds
183
 * since 1/1/1970 AD (Gregorian), a negative number.
184
 * Note that julian day numbers and
185
 * the Julian calendar are <em>not</em> the same thing.  Also note that
186
 * julian days start at <em>noon</em>, not midnight.
187
 * @internal
188
 * @deprecated ICU 2.4. This class may be removed or modified.
189
 */
190
2.20M
#define JULIAN_EPOCH_MS  -210866760000000.0
191
192
193
/**
194
 * Milliseconds value for 0.0 January 2000 AD.
195
 */
196
#define EPOCH_2000_MS  946598400000.0
197
198
//-------------------------------------------------------------------------
199
// Assorted private data used for conversions
200
//-------------------------------------------------------------------------
201
202
// My own copies of these so compilers are more likely to optimize them away
203
const double CalendarAstronomer::PI = 3.14159265358979323846;
204
205
2.96M
#define CalendarAstronomer_PI2  (CalendarAstronomer::PI*2.0)
206
#define RAD_HOUR  ( 12 / CalendarAstronomer::PI )     // radians -> hours
207
2.00M
#define DEG_RAD ( CalendarAstronomer::PI / 180 )      // degrees -> radians
208
#define RAD_DEG  ( 180 / CalendarAstronomer::PI )     // radians -> degrees
209
210
/***
211
 * Given 'value', add or subtract 'range' until 0 <= 'value' < range.
212
 * The modulus operator.
213
 */
214
18.0M
inline static double normalize(double value, double range)  {
215
18.0M
    return value - range * ClockMath::floorDivide(value, range);
216
18.0M
}
217
218
/**
219
 * Normalize an angle so that it's in the range 0 - 2pi.
220
 * For positive angles this is just (angle % 2pi), but the Java
221
 * mod operator doesn't work that way for negative numbers....
222
 */
223
15.1M
inline static double norm2PI(double angle)  {
224
15.1M
    return normalize(angle, CalendarAstronomer::PI * 2.0);
225
15.1M
}
226
227
/**
228
 * Normalize an angle into the range -PI - PI
229
 */
230
2.90M
inline static  double normPI(double angle)  {
231
2.90M
    return normalize(angle + CalendarAstronomer::PI, CalendarAstronomer::PI * 2.0) - CalendarAstronomer::PI;
232
2.90M
}
233
234
//-------------------------------------------------------------------------
235
// Constructors
236
//-------------------------------------------------------------------------
237
238
/**
239
 * Construct a new <code>CalendarAstronomer</code> object that is initialized to
240
 * the current date and time.
241
 * @internal
242
 * @deprecated ICU 2.4. This class may be removed or modified.
243
 */
244
CalendarAstronomer::CalendarAstronomer():
245
0
  fTime(Calendar::getNow()), moonPosition(0,0), moonPositionSet(false) {
246
0
  clearCache();
247
0
}
248
249
/**
250
 * Construct a new <code>CalendarAstronomer</code> object that is initialized to
251
 * the specified date and time.
252
 * @internal
253
 * @deprecated ICU 2.4. This class may be removed or modified.
254
 */
255
752k
CalendarAstronomer::CalendarAstronomer(UDate d): fTime(d), moonPosition(0,0), moonPositionSet(false) {
256
752k
  clearCache();
257
752k
}
258
259
CalendarAstronomer::~CalendarAstronomer()
260
752k
{
261
752k
}
262
263
//-------------------------------------------------------------------------
264
// Time and date getters and setters
265
//-------------------------------------------------------------------------
266
267
/**
268
 * Set the current date and time of this <code>CalendarAstronomer</code> object.  All
269
 * astronomical calculations are performed based on this time setting.
270
 *
271
 * @param aTime the date and time, expressed as the number of milliseconds since
272
 *              1/1/1970 0:00 GMT (Gregorian).
273
 *
274
 * @see #setDate
275
 * @see #getTime
276
 * @internal
277
 * @deprecated ICU 2.4. This class may be removed or modified.
278
 */
279
1.96M
void CalendarAstronomer::setTime(UDate aTime) {
280
1.96M
    fTime = aTime;
281
1.96M
    clearCache();
282
1.96M
}
283
284
/**
285
 * Get the current time of this <code>CalendarAstronomer</code> object,
286
 * represented as the number of milliseconds since
287
 * 1/1/1970 AD 0:00 GMT (Gregorian).
288
 *
289
 * @see #setTime
290
 * @see #getDate
291
 * @internal
292
 * @deprecated ICU 2.4. This class may be removed or modified.
293
 */
294
0
UDate CalendarAstronomer::getTime() {
295
0
    return fTime;
296
0
}
297
298
/**
299
 * Get the current time of this <code>CalendarAstronomer</code> object,
300
 * expressed as a "julian day number", which is the number of elapsed
301
 * days since 1/1/4713 BC (Julian), 12:00 GMT.
302
 *
303
 * @see #setJulianDay
304
 * @see #JULIAN_EPOCH_MS
305
 * @internal
306
 * @deprecated ICU 2.4. This class may be removed or modified.
307
 */
308
6.21M
double CalendarAstronomer::getJulianDay() {
309
6.21M
    if (isINVALID(julianDay)) {
310
2.20M
        julianDay = (fTime - JULIAN_EPOCH_MS) / static_cast<double>(DAY_MS);
311
2.20M
    }
312
6.21M
    return julianDay;
313
6.21M
}
314
315
//-------------------------------------------------------------------------
316
// Coordinate transformations, all based on the current time of this object
317
//-------------------------------------------------------------------------
318
319
/**
320
 * Convert from ecliptic to equatorial coordinates.
321
 *
322
 * @param eclipLong     The ecliptic longitude
323
 * @param eclipLat      The ecliptic latitude
324
 *
325
 * @return              The corresponding point in equatorial coordinates.
326
 * @internal
327
 * @deprecated ICU 2.4. This class may be removed or modified.
328
 */
329
CalendarAstronomer::Equatorial& CalendarAstronomer::eclipticToEquatorial(CalendarAstronomer::Equatorial& result, double eclipLong, double eclipLat)
330
2.00M
{
331
    // See page 42 of "Practical Astronomy with your Calculator",
332
    // by Peter Duffet-Smith, for details on the algorithm.
333
334
2.00M
    double obliq = eclipticObliquity();
335
2.00M
    double sinE = ::sin(obliq);
336
2.00M
    double cosE = cos(obliq);
337
338
2.00M
    double sinL = ::sin(eclipLong);
339
2.00M
    double cosL = cos(eclipLong);
340
341
2.00M
    double sinB = ::sin(eclipLat);
342
2.00M
    double cosB = cos(eclipLat);
343
2.00M
    double tanB = tan(eclipLat);
344
345
2.00M
    result.set(atan2(sinL*cosE - tanB*sinE, cosL),
346
2.00M
        asin(sinB*cosE + cosB*sinE*sinL) );
347
2.00M
    return result;
348
2.00M
}
349
350
//-------------------------------------------------------------------------
351
// The Sun
352
//-------------------------------------------------------------------------
353
354
//
355
// Parameters of the Sun's orbit as of the epoch Jan 0.0 1990
356
// Angles are in radians (after multiplying by CalendarAstronomer::PI/180)
357
//
358
4.20M
#define JD_EPOCH  2447891.5 // Julian day of epoch
359
360
2.20M
#define SUN_ETA_G    (279.403303 * CalendarAstronomer::PI/180) // Ecliptic longitude at epoch
361
4.41M
#define SUN_OMEGA_G  (282.768422 * CalendarAstronomer::PI/180) // Ecliptic longitude of perigee
362
2.20M
#define SUN_E         0.016713          // Eccentricity of orbit
363
//double sunR0        1.495585e8        // Semi-major axis in KM
364
//double sunTheta0    (0.533128 * CalendarAstronomer::PI/180) // Angular diameter at R0
365
366
// The following three methods, which compute the sun parameters
367
// given above for an arbitrary epoch (whatever time the object is
368
// set to), make only a small difference as compared to using the
369
// above constants.  E.g., Sunset times might differ by ~12
370
// seconds.  Furthermore, the eta-g computation is befuddled by
371
// Duffet-Smith's incorrect coefficients (p.86).  I've corrected
372
// the first-order coefficient but the others may be off too - no
373
// way of knowing without consulting another source.
374
375
//  /**
376
//   * Return the sun's ecliptic longitude at perigee for the current time.
377
//   * See Duffett-Smith, p. 86.
378
//   * @return radians
379
//   */
380
//  private double getSunOmegaG() {
381
//      double T = getJulianCentury();
382
//      return (281.2208444 + (1.719175 + 0.000452778*T)*T) * DEG_RAD;
383
//  }
384
385
//  /**
386
//   * Return the sun's ecliptic longitude for the current time.
387
//   * See Duffett-Smith, p. 86.
388
//   * @return radians
389
//   */
390
//  private double getSunEtaG() {
391
//      double T = getJulianCentury();
392
//      //return (279.6966778 + (36000.76892 + 0.0003025*T)*T) * DEG_RAD;
393
//      //
394
//      // The above line is from Duffett-Smith, and yields manifestly wrong
395
//      // results.  The below constant is derived empirically to match the
396
//      // constant he gives for the 1990 EPOCH.
397
//      //
398
//      return (279.6966778 + (-0.3262541582718024 + 0.0003025*T)*T) * DEG_RAD;
399
//  }
400
401
//  /**
402
//   * Return the sun's eccentricity of orbit for the current time.
403
//   * See Duffett-Smith, p. 86.
404
//   * @return double
405
//   */
406
//  private double getSunE() {
407
//      double T = getJulianCentury();
408
//      return 0.01675104 - (0.0000418 + 0.000000126*T)*T;
409
//  }
410
411
/**
412
 * Find the "true anomaly" (longitude) of an object from
413
 * its mean anomaly and the eccentricity of its orbit.  This uses
414
 * an iterative solution to Kepler's equation.
415
 *
416
 * @param meanAnomaly   The object's longitude calculated as if it were in
417
 *                      a regular, circular orbit, measured in radians
418
 *                      from the point of perigee.
419
 *
420
 * @param eccentricity  The eccentricity of the orbit
421
 *
422
 * @return The true anomaly (longitude) measured in radians
423
 */
424
static double trueAnomaly(double meanAnomaly, double eccentricity)
425
2.20M
{
426
    // First, solve Kepler's equation iteratively
427
    // Duffett-Smith, p.90
428
2.20M
    double delta;
429
2.20M
    double E = meanAnomaly;
430
4.40M
    do {
431
4.40M
        delta = E - eccentricity * ::sin(E) - meanAnomaly;
432
4.40M
        E = E - delta / (1 - eccentricity * ::cos(E));
433
4.40M
    }
434
4.40M
    while (uprv_fabs(delta) > 1e-5); // epsilon = 1e-5 rad
435
436
2.20M
    return 2.0 * ::atan( ::tan(E/2) * ::sqrt( (1+eccentricity)
437
2.20M
                                             /(1-eccentricity) ) );
438
2.20M
}
439
440
/**
441
 * The longitude of the sun at the time specified by this object.
442
 * The longitude is measured in radians along the ecliptic
443
 * from the "first point of Aries," the point at which the ecliptic
444
 * crosses the earth's equatorial plane at the vernal equinox.
445
 * <p>
446
 * Currently, this method uses an approximation of the two-body Kepler's
447
 * equation for the earth and the sun.  It does not take into account the
448
 * perturbations caused by the other planets, the moon, etc.
449
 * @internal
450
 * @deprecated ICU 2.4. This class may be removed or modified.
451
 */
452
double CalendarAstronomer::getSunLongitude()
453
2.20M
{
454
    // See page 86 of "Practical Astronomy with your Calculator",
455
    // by Peter Duffet-Smith, for details on the algorithm.
456
457
2.20M
    if (isINVALID(sunLongitude)) {
458
2.20M
        getSunLongitude(getJulianDay(), sunLongitude, meanAnomalySun);
459
2.20M
    }
460
2.20M
    return sunLongitude;
461
2.20M
}
462
463
/**
464
 * TODO Make this public when the entire class is package-private.
465
 */
466
/*public*/ void CalendarAstronomer::getSunLongitude(double jDay, double &longitude, double &meanAnomaly)
467
2.20M
{
468
    // See page 86 of "Practical Astronomy with your Calculator",
469
    // by Peter Duffet-Smith, for details on the algorithm.
470
471
2.20M
    double day = jDay - JD_EPOCH;       // Days since epoch
472
473
    // Find the angular distance the sun in a fictitious
474
    // circular orbit has travelled since the epoch.
475
2.20M
    double epochAngle = norm2PI(CalendarAstronomer_PI2/TROPICAL_YEAR*day);
476
477
    // The epoch wasn't at the sun's perigee; find the angular distance
478
    // since perigee, which is called the "mean anomaly"
479
2.20M
    meanAnomaly = norm2PI(epochAngle + SUN_ETA_G - SUN_OMEGA_G);
480
481
    // Now find the "true anomaly", e.g. the real solar longitude
482
    // by solving Kepler's equation for an elliptical orbit
483
    // NOTE: The 3rd ed. of the book lists omega_g and eta_g in different
484
    // equations; omega_g is to be correct.
485
2.20M
    longitude =  norm2PI(trueAnomaly(meanAnomaly, SUN_E) + SUN_OMEGA_G);
486
2.20M
}
487
488
/**
489
 * Constant representing the winter solstice.
490
 * For use with {@link #getSunTime getSunTime}.
491
 * Note: In this case, "winter" refers to the northern hemisphere's seasons.
492
 * @internal
493
 * @deprecated ICU 2.4. This class may be removed or modified.
494
 */
495
4.89k
double CalendarAstronomer::WINTER_SOLSTICE() {
496
4.89k
    return  ((CalendarAstronomer::PI*3)/2);
497
4.89k
}
498
499
509k
CalendarAstronomer::AngleFunc::~AngleFunc() {}
500
501
/**
502
 * Find the next time at which the sun's ecliptic longitude will have
503
 * the desired value.
504
 * @internal
505
 * @deprecated ICU 2.4. This class may be removed or modified.
506
 */
507
class SunTimeAngleFunc : public CalendarAstronomer::AngleFunc {
508
public:
509
    virtual ~SunTimeAngleFunc();
510
19.0k
    virtual double eval(CalendarAstronomer& a) override { return a.getSunLongitude(); }
511
};
512
513
SunTimeAngleFunc::~SunTimeAngleFunc() {}
514
515
UDate CalendarAstronomer::getSunTime(double desired, UBool next)
516
4.89k
{
517
4.89k
    SunTimeAngleFunc func;
518
4.89k
    return timeOfAngle( func,
519
4.89k
                        desired,
520
4.89k
                        TROPICAL_YEAR,
521
4.89k
                        MINUTE_MS,
522
4.89k
                        next);
523
4.89k
}
524
525
//-------------------------------------------------------------------------
526
// The Moon
527
//-------------------------------------------------------------------------
528
529
2.00M
#define moonL0  (318.351648 * CalendarAstronomer::PI/180 )   // Mean long. at epoch
530
2.00M
#define moonP0 ( 36.340410 * CalendarAstronomer::PI/180 )   // Mean long. of perigee
531
2.00M
#define moonN0 ( 318.510107 * CalendarAstronomer::PI/180 )   // Mean long. of node
532
4.00M
#define moonI  (   5.145366 * CalendarAstronomer::PI/180 )   // Inclination of orbit
533
#define moonE  (   0.054900 )            // Eccentricity of orbit
534
535
// These aren't used right now
536
#define moonA  (   3.84401e5 )           // semi-major axis (km)
537
#define moonT0 (   0.5181 * CalendarAstronomer::PI/180 )     // Angular size at distance A
538
#define moonPi (   0.9507 * CalendarAstronomer::PI/180 )     // Parallax at distance A
539
540
/**
541
 * The position of the moon at the time set on this
542
 * object, in equatorial coordinates.
543
 * @internal
544
 * @deprecated ICU 2.4. This class may be removed or modified.
545
 */
546
const CalendarAstronomer::Equatorial& CalendarAstronomer::getMoonPosition()
547
2.00M
{
548
    //
549
    // See page 142 of "Practical Astronomy with your Calculator",
550
    // by Peter Duffet-Smith, for details on the algorithm.
551
    //
552
2.00M
    if (moonPositionSet == false) {
553
        // Calculate the solar longitude.  Has the side effect of
554
        // filling in "meanAnomalySun" as well.
555
2.00M
        getSunLongitude();
556
557
        //
558
        // Find the # of days since the epoch of our orbital parameters.
559
        // TODO: Convert the time of day portion into ephemeris time
560
        //
561
2.00M
        double day = getJulianDay() - JD_EPOCH;       // Days since epoch
562
563
        // Calculate the mean longitude and anomaly of the moon, based on
564
        // a circular orbit.  Similar to the corresponding solar calculation.
565
2.00M
        double meanLongitude = norm2PI(13.1763966*PI/180*day + moonL0);
566
2.00M
        double meanAnomalyMoon = norm2PI(meanLongitude - 0.1114041*PI/180 * day - moonP0);
567
568
        //
569
        // Calculate the following corrections:
570
        //  Evection:   the sun's gravity affects the moon's eccentricity
571
        //  Annual Eqn: variation in the effect due to earth-sun distance
572
        //  A3:         correction factor (for ???)
573
        //
574
2.00M
        double evection = 1.2739*PI/180 * ::sin(2 * (meanLongitude - sunLongitude)
575
2.00M
            - meanAnomalyMoon);
576
2.00M
        double annual   = 0.1858*PI/180 * ::sin(meanAnomalySun);
577
2.00M
        double a3       = 0.3700*PI/180 * ::sin(meanAnomalySun);
578
579
2.00M
        meanAnomalyMoon += evection - annual - a3;
580
581
        //
582
        // More correction factors:
583
        //  center  equation of the center correction
584
        //  a4      yet another error correction (???)
585
        //
586
        // TODO: Skip the equation of the center correction and solve Kepler's eqn?
587
        //
588
2.00M
        double center = 6.2886*PI/180 * ::sin(meanAnomalyMoon);
589
2.00M
        double a4 =     0.2140*PI/180 * ::sin(2 * meanAnomalyMoon);
590
591
        // Now find the moon's corrected longitude
592
2.00M
        double moonLongitude = meanLongitude + evection + center - annual + a4;
593
594
        //
595
        // And finally, find the variation, caused by the fact that the sun's
596
        // gravitational pull on the moon varies depending on which side of
597
        // the earth the moon is on
598
        //
599
2.00M
        double variation = 0.6583*CalendarAstronomer::PI/180 * ::sin(2*(moonLongitude - sunLongitude));
600
601
2.00M
        moonLongitude += variation;
602
603
        //
604
        // What we've calculated so far is the moon's longitude in the plane
605
        // of its own orbit.  Now map to the ecliptic to get the latitude
606
        // and longitude.  First we need to find the longitude of the ascending
607
        // node, the position on the ecliptic where it is crossed by the moon's
608
        // orbit as it crosses from the southern to the northern hemisphere.
609
        //
610
2.00M
        double nodeLongitude = norm2PI(moonN0 - 0.0529539*PI/180 * day);
611
612
2.00M
        nodeLongitude -= 0.16*PI/180 * ::sin(meanAnomalySun);
613
614
2.00M
        double y = ::sin(moonLongitude - nodeLongitude);
615
2.00M
        double x = cos(moonLongitude - nodeLongitude);
616
617
2.00M
        moonEclipLong = ::atan2(y*cos(moonI), x) + nodeLongitude;
618
2.00M
        double moonEclipLat = ::asin(y * ::sin(moonI));
619
620
2.00M
        eclipticToEquatorial(moonPosition, moonEclipLong, moonEclipLat);
621
2.00M
        moonPositionSet = true;
622
2.00M
    }
623
2.00M
    return moonPosition;
624
2.00M
}
625
626
/**
627
 * The "age" of the moon at the time specified in this object.
628
 * This is really the angle between the
629
 * current ecliptic longitudes of the sun and the moon,
630
 * measured in radians.
631
 *
632
 * @internal
633
 * @deprecated ICU 2.4. This class may be removed or modified.
634
 */
635
2.00M
double CalendarAstronomer::getMoonAge() {
636
    // See page 147 of "Practical Astronomy with your Calculator",
637
    // by Peter Duffet-Smith, for details on the algorithm.
638
    //
639
    // Force the moon's position to be calculated.  We're going to use
640
    // some the intermediate results cached during that calculation.
641
    //
642
2.00M
    getMoonPosition();
643
644
2.00M
    return norm2PI(moonEclipLong - sunLongitude);
645
2.00M
}
646
647
/**
648
 * Constant representing a new moon.
649
 * For use with {@link #getMoonTime getMoonTime}
650
 * @internal
651
 * @deprecated ICU 2.4. This class may be removed or modified.
652
 */
653
504k
CalendarAstronomer::MoonAge CalendarAstronomer::NEW_MOON() {
654
504k
    return  CalendarAstronomer::MoonAge(0);
655
504k
}
656
657
/**
658
 * Constant representing the moon's last quarter.
659
 * For use with {@link #getMoonTime getMoonTime}
660
 * @internal
661
 * @deprecated ICU 2.4. This class may be removed or modified.
662
 */
663
664
class MoonTimeAngleFunc : public CalendarAstronomer::AngleFunc {
665
public:
666
    virtual ~MoonTimeAngleFunc();
667
1.94M
    virtual double eval(CalendarAstronomer& a) override { return a.getMoonAge(); }
668
};
669
670
MoonTimeAngleFunc::~MoonTimeAngleFunc() {}
671
672
/*const CalendarAstronomer::MoonAge CalendarAstronomer::LAST_QUARTER() {
673
  return  CalendarAstronomer::MoonAge((CalendarAstronomer::PI*3)/2);
674
}*/
675
676
/**
677
 * Find the next or previous time at which the moon will be in the
678
 * desired phase.
679
 * <p>
680
 * @param desired   The desired phase of the moon.
681
 * @param next      <tt>true</tt> if the next occurrence of the phase
682
 *                  is desired, <tt>false</tt> for the previous occurrence.
683
 * @internal
684
 * @deprecated ICU 2.4. This class may be removed or modified.
685
 */
686
504k
UDate CalendarAstronomer::getMoonTime(const CalendarAstronomer::MoonAge& desired, UBool next) {
687
504k
    MoonTimeAngleFunc func;
688
504k
    return timeOfAngle( func,
689
504k
                        desired.value,
690
504k
                        SYNODIC_MONTH,
691
504k
                        MINUTE_MS,
692
504k
                        next);
693
504k
}
694
695
//-------------------------------------------------------------------------
696
// Interpolation methods for finding the time at which a given event occurs
697
//-------------------------------------------------------------------------
698
699
UDate CalendarAstronomer::timeOfAngle(AngleFunc& func, double desired,
700
                                      double periodDays, double epsilon, UBool next)
701
509k
{
702
    // Find the value of the function at the current time
703
509k
    double lastAngle = func.eval(*this);
704
705
    // Find out how far we are from the desired angle
706
509k
    double deltaAngle = norm2PI(desired - lastAngle) ;
707
708
    // Using the average period, estimate the next (or previous) time at
709
    // which the desired angle occurs.
710
509k
    double deltaT =  (deltaAngle + (next ? 0.0 : - CalendarAstronomer_PI2 )) * (periodDays*DAY_MS) / CalendarAstronomer_PI2;
711
712
509k
    double lastDeltaT = deltaT; // Liu
713
509k
    UDate startTime = fTime; // Liu
714
715
509k
    setTime(fTime + uprv_ceil(deltaT));
716
717
    // Now iterate until we get the error below epsilon.  Throughout
718
    // this loop we use normPI to get values in the range -Pi to Pi,
719
    // since we're using them as correction factors rather than absolute angles.
720
1.45M
    do {
721
        // Evaluate the function at the time we've estimated
722
1.45M
        double angle = func.eval(*this);
723
724
        // Find the # of milliseconds per radian at this point on the curve
725
1.45M
        double factor = uprv_fabs(deltaT / normPI(angle-lastAngle));
726
727
        // Correct the time estimate based on how far off the angle is
728
1.45M
        deltaT = normPI(desired - angle) * factor;
729
730
        // HACK:
731
        //
732
        // If abs(deltaT) begins to diverge we need to quit this loop.
733
        // This only appears to happen when attempting to locate, for
734
        // example, a new moon on the day of the new moon.  E.g.:
735
        //
736
        // This result is correct:
737
        // newMoon(7508(Mon Jul 23 00:00:00 CST 1990,false))=
738
        //   Sun Jul 22 10:57:41 CST 1990
739
        //
740
        // But attempting to make the same call a day earlier causes deltaT
741
        // to diverge:
742
        // CalendarAstronomer.timeOfAngle() diverging: 1.348508727575625E9 ->
743
        //   1.3649828540224032E9
744
        // newMoon(7507(Sun Jul 22 00:00:00 CST 1990,false))=
745
        //   Sun Jul 08 13:56:15 CST 1990
746
        //
747
        // As a temporary solution, we catch this specific condition and
748
        // adjust our start time by one eighth period days (either forward
749
        // or backward) and try again.
750
        // Liu 11/9/00
751
1.45M
        if (uprv_fabs(deltaT) > uprv_fabs(lastDeltaT)) {
752
822
            double delta = uprv_ceil (periodDays * DAY_MS / 8.0);
753
822
            setTime(startTime + (next ? delta : -delta));
754
822
            return timeOfAngle(func, desired, periodDays, epsilon, next);
755
822
        }
756
757
1.45M
        lastDeltaT = deltaT;
758
1.45M
        lastAngle = angle;
759
760
1.45M
        setTime(fTime + uprv_ceil(deltaT));
761
1.45M
    }
762
1.45M
    while (uprv_fabs(deltaT) > epsilon);
763
764
509k
    return fTime;
765
509k
}
766
767
/**
768
 * Return the obliquity of the ecliptic (the angle between the ecliptic
769
 * and the earth's equator) at the current time.  This varies due to
770
 * the precession of the earth's axis.
771
 *
772
 * @return  the obliquity of the ecliptic relative to the equator,
773
 *          measured in radians.
774
 */
775
2.00M
double CalendarAstronomer::eclipticObliquity() {
776
2.00M
    const double epoch = 2451545.0;     // 2000 AD, January 1.5
777
778
2.00M
    double T = (getJulianDay() - epoch) / 36525;
779
780
2.00M
    double eclipObliquity = 23.439292
781
2.00M
        - 46.815/3600 * T
782
2.00M
        - 0.0006/3600 * T*T
783
2.00M
        + 0.00181/3600 * T*T*T;
784
785
2.00M
    return eclipObliquity * DEG_RAD;
786
2.00M
}
787
788
789
//-------------------------------------------------------------------------
790
// Private data
791
//-------------------------------------------------------------------------
792
2.71M
void CalendarAstronomer::clearCache() {
793
2.71M
    const double INVALID = uprv_getNaN();
794
795
2.71M
    julianDay       = INVALID;
796
2.71M
    sunLongitude    = INVALID;
797
2.71M
    meanAnomalySun  = INVALID;
798
2.71M
    moonEclipLong   = INVALID;
799
800
2.71M
    moonPositionSet = false;
801
2.71M
}
802
803
// Debugging functions
804
UnicodeString CalendarAstronomer::Ecliptic::toString() const
805
0
{
806
#ifdef U_DEBUG_ASTRO
807
    char tmp[800];
808
    snprintf(tmp, sizeof(tmp), "[%.5f,%.5f]", longitude*RAD_DEG, latitude*RAD_DEG);
809
    return UnicodeString(tmp, "");
810
#else
811
0
    return {};
812
0
#endif
813
0
}
814
815
UnicodeString CalendarAstronomer::Equatorial::toString() const
816
0
{
817
#ifdef U_DEBUG_ASTRO
818
    char tmp[400];
819
    snprintf(tmp, sizeof(tmp), "%f,%f",
820
        (ascension*RAD_DEG), (declination*RAD_DEG));
821
    return UnicodeString(tmp, "");
822
#else
823
0
    return {};
824
0
#endif
825
0
}
826
827
828
// =============== Calendar Cache ================
829
830
7
void CalendarCache::createCache(CalendarCache** cache, UErrorCode& status) {
831
7
    ucln_i18n_registerCleanup(UCLN_I18N_ASTRO_CALENDAR, calendar_astro_cleanup);
832
7
    if(cache == nullptr) {
833
0
        status = U_MEMORY_ALLOCATION_ERROR;
834
7
    } else {
835
7
        *cache = new CalendarCache(32, status);
836
7
        if(U_FAILURE(status)) {
837
0
            delete *cache;
838
0
            *cache = nullptr;
839
0
        }
840
7
    }
841
7
}
842
843
627k
int32_t CalendarCache::get(CalendarCache** cache, int32_t key, UErrorCode &status) {
844
627k
    int32_t res;
845
846
627k
    if(U_FAILURE(status)) {
847
19
        return 0;
848
19
    }
849
627k
    umtx_lock(&ccLock);
850
851
627k
    if(*cache == nullptr) {
852
7
        createCache(cache, status);
853
7
        if(U_FAILURE(status)) {
854
0
            umtx_unlock(&ccLock);
855
0
            return 0;
856
0
        }
857
7
    }
858
859
627k
    res = uhash_igeti((*cache)->fTable, key);
860
627k
    U_DEBUG_ASTRO_MSG(("%p: GET: [%d] == %d\n", (*cache)->fTable, key, res));
861
862
627k
    umtx_unlock(&ccLock);
863
627k
    return res;
864
627k
}
865
866
52.6k
void CalendarCache::put(CalendarCache** cache, int32_t key, int32_t value, UErrorCode &status) {
867
52.6k
    if(U_FAILURE(status)) {
868
0
        return;
869
0
    }
870
52.6k
    umtx_lock(&ccLock);
871
872
52.6k
    if(*cache == nullptr) {
873
0
        createCache(cache, status);
874
0
        if(U_FAILURE(status)) {
875
0
            umtx_unlock(&ccLock);
876
0
            return;
877
0
        }
878
0
    }
879
880
52.6k
    uhash_iputi((*cache)->fTable, key, value, &status);
881
52.6k
    U_DEBUG_ASTRO_MSG(("%p: PUT: [%d] := %d\n", (*cache)->fTable, key, value));
882
883
52.6k
    umtx_unlock(&ccLock);
884
52.6k
}
885
886
7
CalendarCache::CalendarCache(int32_t size, UErrorCode &status) {
887
7
    fTable = uhash_openSize(uhash_hashLong, uhash_compareLong, nullptr, size, &status);
888
7
    U_DEBUG_ASTRO_MSG(("%p: Opening.\n", fTable));
889
7
}
890
891
0
CalendarCache::~CalendarCache() {
892
0
    if(fTable != nullptr) {
893
0
        U_DEBUG_ASTRO_MSG(("%p: Closing.\n", fTable));
894
0
        uhash_close(fTable);
895
0
    }
896
0
}
897
898
U_NAMESPACE_END
899
900
#endif //  !UCONFIG_NO_FORMATTING