Coverage Report

Created: 2025-10-24 06:54

next uncovered line (L), next uncovered region (R), next uncovered branch (B)
/src/icu/icu4c/source/i18n/number_decimalquantity.h
Line
Count
Source
1
// © 2017 and later: Unicode, Inc. and others.
2
// License & terms of use: http://www.unicode.org/copyright.html
3
4
#include "unicode/utypes.h"
5
6
#if !UCONFIG_NO_FORMATTING
7
#ifndef __NUMBER_DECIMALQUANTITY_H__
8
#define __NUMBER_DECIMALQUANTITY_H__
9
10
#include <cstdint>
11
#include "unicode/umachine.h"
12
#include "standardplural.h"
13
#include "plurrule_impl.h"
14
#include "number_types.h"
15
16
U_NAMESPACE_BEGIN
17
namespace number::impl {
18
19
// Forward-declare (maybe don't want number_utils.h included here):
20
class DecNum;
21
22
/**
23
 * A class for representing a number to be processed by the decimal formatting pipeline. Includes
24
 * methods for rounding, plural rules, and decimal digit extraction.
25
 *
26
 * <p>By design, this is NOT IMMUTABLE and NOT THREAD SAFE. It is intended to be an intermediate
27
 * object holding state during a pass through the decimal formatting pipeline.
28
 *
29
 * <p>Represents numbers and digit display properties using Binary Coded Decimal (BCD).
30
 *
31
 * <p>Java has multiple implementations for testing, but C++ has only one implementation.
32
 */
33
class U_I18N_API DecimalQuantity : public IFixedDecimal, public UMemory {
34
  public:
35
    /** Copy constructor. */
36
    DecimalQuantity(const DecimalQuantity &other);
37
38
    /** Move constructor. */
39
    DecimalQuantity(DecimalQuantity &&src) noexcept;
40
41
    DecimalQuantity();
42
43
    ~DecimalQuantity() override;
44
45
    /**
46
     * Sets this instance to be equal to another instance.
47
     *
48
     * @param other The instance to copy from.
49
     */
50
    DecimalQuantity &operator=(const DecimalQuantity &other);
51
52
    /** Move assignment */
53
    DecimalQuantity &operator=(DecimalQuantity&& src) noexcept;
54
55
    /**
56
     * If the minimum integer digits are greater than `minInt`,
57
     * sets it to `minInt`.
58
     *
59
     * @param minInt The minimum number of integer digits.
60
     */
61
    void decreaseMinIntegerTo(int32_t minInt);
62
63
    /**
64
     * Sets the minimum integer digits that this {@link DecimalQuantity} should generate.
65
     * This method does not perform rounding.
66
     *
67
     * @param minInt The minimum number of integer digits.
68
     */
69
    void increaseMinIntegerTo(int32_t minInt);
70
71
    /**
72
     * Sets the minimum fraction digits that this {@link DecimalQuantity} should generate.
73
     * This method does not perform rounding.
74
     *
75
     * @param minFrac The minimum number of fraction digits.
76
     */
77
    void setMinFraction(int32_t minFrac);
78
79
    /**
80
     * Truncates digits from the upper magnitude of the number in order to satisfy the
81
     * specified maximum number of integer digits.
82
     *
83
     * @param maxInt The maximum number of integer digits.
84
     */
85
    void applyMaxInteger(int32_t maxInt);
86
87
    /**
88
     * Rounds the number to a specified interval, such as 0.05.
89
     *
90
     * <p>If rounding to a power of ten, use the more efficient {@link #roundToMagnitude} instead.
91
     *
92
     * @param increment The increment to which to round.
93
     * @param magnitude The power of 10 to which to round.
94
     * @param roundingMode The {@link RoundingMode} to use if rounding is necessary.
95
     */
96
    void roundToIncrement(
97
        uint64_t increment,
98
        digits_t magnitude,
99
        RoundingMode roundingMode,
100
        UErrorCode& status);
101
102
    /** Removes all fraction digits. */
103
    void truncate();
104
105
    /**
106
     * Rounds the number to the nearest multiple of 5 at the specified magnitude.
107
     * For example, when magnitude == -2, this performs rounding to the nearest 0.05.
108
     *
109
     * @param magnitude The magnitude at which the digit should become either 0 or 5.
110
     * @param roundingMode Rounding strategy.
111
     */
112
    void roundToNickel(int32_t magnitude, RoundingMode roundingMode, UErrorCode& status);
113
114
    /**
115
     * Rounds the number to a specified magnitude (power of ten).
116
     *
117
     * @param roundingMagnitude The power of ten to which to round. For example, a value of -2 will
118
     *     round to 2 decimal places.
119
     * @param roundingMode The {@link RoundingMode} to use if rounding is necessary.
120
     */
121
    void roundToMagnitude(int32_t magnitude, RoundingMode roundingMode, UErrorCode& status);
122
123
    /**
124
     * Rounds the number to an infinite number of decimal points. This has no effect except for
125
     * forcing the double in {@link DecimalQuantity_AbstractBCD} to adopt its exact representation.
126
     */
127
    void roundToInfinity();
128
129
    /**
130
     * Multiply the internal value. Uses decNumber.
131
     *
132
     * @param multiplicand The value by which to multiply.
133
     */
134
    void multiplyBy(const DecNum& multiplicand, UErrorCode& status);
135
136
    /**
137
     * Divide the internal value. Uses decNumber.
138
     *
139
     * @param multiplicand The value by which to multiply.
140
     */
141
    void divideBy(const DecNum& divisor, UErrorCode& status);
142
143
    /** Flips the sign from positive to negative and back. */
144
    void negate();
145
146
    /**
147
     * Scales the number by a power of ten. For example, if the value is currently "1234.56", calling
148
     * this method with delta=-3 will change the value to "1.23456".
149
     *
150
     * @param delta The number of magnitudes of ten to change by.
151
     * @return true if integer overflow occurred; false otherwise.
152
     */
153
    bool adjustMagnitude(int32_t delta);
154
155
    /**
156
     * Scales the number such that the least significant nonzero digit is at magnitude 0.
157
     *
158
     * @return The previous magnitude of the least significant digit.
159
     */
160
    int32_t adjustToZeroScale();
161
162
    /**
163
     * @return The power of ten corresponding to the most significant nonzero digit.
164
     * The number must not be zero.
165
     */
166
    int32_t getMagnitude() const;
167
168
    /**
169
     * @return The value of the (suppressed) exponent after the number has been
170
     * put into a notation with exponents (ex: compact, scientific).  Ex: given
171
     * the number 1000 as "1K" / "1E3", the return value will be 3 (positive).
172
     */
173
    int32_t getExponent() const;
174
175
    /**
176
     * Adjusts the value for the (suppressed) exponent stored when using
177
     * notation with exponents (ex: compact, scientific).
178
     *
179
     * <p>Adjusting the exponent is decoupled from {@link #adjustMagnitude} in
180
     * order to allow flexibility for {@link StandardPlural} to be selected in
181
     * formatting (ex: for compact notation) either with or without the exponent
182
     * applied in the value of the number.
183
     * @param delta
184
     *             The value to adjust the exponent by.
185
     */
186
    void adjustExponent(int32_t delta);
187
188
    /**
189
     * Resets the DecimalQuantity to the value before adjustMagnitude and adjustExponent.
190
     */
191
    void resetExponent();
192
193
    /**
194
     * @return Whether the value represented by this {@link DecimalQuantity} is
195
     * zero, infinity, or NaN.
196
     */
197
    bool isZeroish() const;
198
199
    /** @return Whether the value represented by this {@link DecimalQuantity} is less than zero. */
200
    bool isNegative() const;
201
202
    /** @return The appropriate value from the Signum enum. */
203
    Signum signum() const;
204
205
    /** @return Whether the value represented by this {@link DecimalQuantity} is infinite. */
206
    bool isInfinite() const override;
207
208
    /** @return Whether the value represented by this {@link DecimalQuantity} is not a number. */
209
    bool isNaN() const override;
210
211
    /**  
212
     * Note: this method incorporates the value of {@code exponent}
213
     * (for cases such as compact notation) to return the proper long value
214
     * represented by the result.
215
     * @param truncateIfOverflow if false and the number does NOT fit, fails with an assertion error. 
216
     */
217
    int64_t toLong(bool truncateIfOverflow = false) const;
218
219
    /**
220
     * Note: this method incorporates the value of {@code exponent}
221
     * (for cases such as compact notation) to return the proper long value
222
     * represented by the result.
223
     */
224
    uint64_t toFractionLong(bool includeTrailingZeros) const;
225
226
    /**
227
     * Returns whether or not a Long can fully represent the value stored in this DecimalQuantity.
228
     * @param ignoreFraction if true, silently ignore digits after the decimal place.
229
     */
230
    bool fitsInLong(bool ignoreFraction = false) const;
231
232
    /** @return The value contained in this {@link DecimalQuantity} approximated as a double. */
233
    double toDouble() const;
234
235
    /** Computes a DecNum representation of this DecimalQuantity, saving it to the output parameter. */
236
    DecNum& toDecNum(DecNum& output, UErrorCode& status) const;
237
238
    DecimalQuantity &setToInt(int32_t n);
239
240
    DecimalQuantity &setToLong(int64_t n);
241
242
    DecimalQuantity &setToDouble(double n);
243
244
    /**
245
     * Produces a DecimalQuantity that was parsed from a string by the decNumber
246
     * C Library.
247
     *
248
     * decNumber is similar to BigDecimal in Java, and supports parsing strings
249
     * such as "123.456621E+40".
250
     */
251
    DecimalQuantity &setToDecNumber(StringPiece n, UErrorCode& status);
252
253
    /** Internal method if the caller already has a DecNum. */
254
    DecimalQuantity &setToDecNum(const DecNum& n, UErrorCode& status);
255
256
    /** Returns a DecimalQuantity after parsing the input string. */
257
    static DecimalQuantity fromExponentString(UnicodeString n, UErrorCode& status);
258
259
    /**
260
     * Appends a digit, optionally with one or more leading zeros, to the end of the value represented
261
     * by this DecimalQuantity.
262
     *
263
     * <p>The primary use of this method is to construct numbers during a parsing loop. It allows
264
     * parsing to take advantage of the digit list infrastructure primarily designed for formatting.
265
     *
266
     * @param value The digit to append.
267
     * @param leadingZeros The number of zeros to append before the digit. For example, if the value
268
     *     in this instance starts as 12.3, and you append a 4 with 1 leading zero, the value becomes
269
     *     12.304.
270
     * @param appendAsInteger If true, increase the magnitude of existing digits to make room for the
271
     *     new digit. If false, append to the end like a fraction digit. If true, there must not be
272
     *     any fraction digits already in the number.
273
     * @internal
274
     * @deprecated This API is ICU internal only.
275
     */
276
    void appendDigit(int8_t value, int32_t leadingZeros, bool appendAsInteger);
277
278
    double getPluralOperand(PluralOperand operand) const override;
279
280
    bool hasIntegerValue() const override;
281
282
    /**
283
     * Gets the digit at the specified magnitude. For example, if the represented number is 12.3,
284
     * getDigit(-1) returns 3, since 3 is the digit corresponding to 10^-1.
285
     *
286
     * @param magnitude The magnitude of the digit.
287
     * @return The digit at the specified magnitude.
288
     */
289
    int8_t getDigit(int32_t magnitude) const;
290
291
    /**
292
     * Gets the largest power of ten that needs to be displayed. The value returned by this function
293
     * will be bounded between minInt and maxInt.
294
     *
295
     * @return The highest-magnitude digit to be displayed.
296
     */
297
    int32_t getUpperDisplayMagnitude() const;
298
299
    /**
300
     * Gets the smallest power of ten that needs to be displayed. The value returned by this function
301
     * will be bounded between -minFrac and -maxFrac.
302
     *
303
     * @return The lowest-magnitude digit to be displayed.
304
     */
305
    int32_t getLowerDisplayMagnitude() const;
306
307
    int32_t fractionCount() const;
308
309
    int32_t fractionCountWithoutTrailingZeros() const;
310
311
    void clear();
312
313
    /** This method is for internal testing only. */
314
    uint64_t getPositionFingerprint() const;
315
316
//    /**
317
//     * If the given {@link FieldPosition} is a {@link UFieldPosition}, populates it with the fraction
318
//     * length and fraction long value. If the argument is not a {@link UFieldPosition}, nothing
319
//     * happens.
320
//     *
321
//     * @param fp The {@link UFieldPosition} to populate.
322
//     */
323
//    void populateUFieldPosition(FieldPosition fp);
324
325
    /**
326
     * Checks whether the bytes stored in this instance are all valid. For internal unit testing only.
327
     *
328
     * @return An error message if this instance is invalid, or null if this instance is healthy.
329
     */
330
    const char16_t* checkHealth() const;
331
332
    UnicodeString toString() const;
333
334
    /** Returns the string in standard exponential notation. */
335
    UnicodeString toScientificString() const;
336
337
    /** Returns the string without exponential notation. Slightly slower than toScientificString(). */
338
    UnicodeString toPlainString() const;
339
340
    /** Returns the string using ASCII digits and using exponential notation for non-zero
341
    exponents, following the UTS 35 specification for plural rule samples. */
342
    UnicodeString toExponentString() const;
343
344
    /** Visible for testing */
345
0
    inline bool isUsingBytes() { return usingBytes; }
346
347
    /** Visible for testing */
348
0
    inline bool isExplicitExactDouble() { return explicitExactDouble; }
349
350
    bool operator==(const DecimalQuantity& other) const;
351
352
0
    inline bool operator!=(const DecimalQuantity& other) const {
353
0
        return !(*this == other);
354
0
    }
355
356
    /**
357
     * Bogus flag for when a DecimalQuantity is stored on the stack.
358
     */
359
    bool bogus = false;
360
361
  private:
362
    /**
363
     * The power of ten corresponding to the least significant digit in the BCD. For example, if this
364
     * object represents the number "3.14", the BCD will be "0x314" and the scale will be -2.
365
     *
366
     * <p>Note that in {@link java.math.BigDecimal}, the scale is defined differently: the number of
367
     * digits after the decimal place, which is the negative of our definition of scale.
368
     */
369
    int32_t scale;
370
371
    /**
372
     * The number of digits in the BCD. For example, "1007" has BCD "0x1007" and precision 4. The
373
     * maximum precision is 16 since a long can hold only 16 digits.
374
     *
375
     * <p>This value must be re-calculated whenever the value in bcd changes by using {@link
376
     * #computePrecisionAndCompact()}.
377
     */
378
    int32_t precision;
379
380
    /**
381
     * A bitmask of properties relating to the number represented by this object.
382
     *
383
     * @see #NEGATIVE_FLAG
384
     * @see #INFINITY_FLAG
385
     * @see #NAN_FLAG
386
     */
387
    int8_t flags;
388
389
    // The following three fields relate to the double-to-ascii fast path algorithm.
390
    // When a double is given to DecimalQuantityBCD, it is converted to using a fast algorithm. The
391
    // fast algorithm guarantees correctness to only the first ~12 digits of the double. The process
392
    // of rounding the number ensures that the converted digits are correct, falling back to a slow-
393
    // path algorithm if required.  Therefore, if a DecimalQuantity is constructed from a double, it
394
    // is *required* that roundToMagnitude(), roundToIncrement(), or roundToInfinity() is called. If
395
    // you don't round, assertions will fail in certain other methods if you try calling them.
396
397
    /**
398
     * Whether the value in the BCD comes from the double fast path without having been rounded to
399
     * ensure correctness
400
     */
401
    UBool isApproximate;
402
403
    /**
404
     * The original number provided by the user and which is represented in BCD. Used when we need to
405
     * re-compute the BCD for an exact double representation.
406
     */
407
    double origDouble;
408
409
    /**
410
     * The change in magnitude relative to the original double. Used when we need to re-compute the
411
     * BCD for an exact double representation.
412
     */
413
    int32_t origDelta;
414
415
    // Positions to keep track of leading and trailing zeros.
416
    // lReqPos is the magnitude of the first required leading zero.
417
    // rReqPos is the magnitude of the last required trailing zero.
418
    int32_t lReqPos = 0;
419
    int32_t rReqPos = 0;
420
421
    // The value of the (suppressed) exponent after the number has been put into
422
    // a notation with exponents (ex: compact, scientific).
423
    int32_t exponent = 0;
424
425
    /**
426
     * The BCD of the 16 digits of the number represented by this object. Every 4 bits of the long map
427
     * to one digit. For example, the number "12345" in BCD is "0x12345".
428
     *
429
     * <p>Whenever bcd changes internally, {@link #compact()} must be called, except in special cases
430
     * like setting the digit to zero.
431
     */
432
    union {
433
        struct {
434
            int8_t *ptr;
435
            int32_t len;
436
        } bcdBytes;
437
        uint64_t bcdLong;
438
    } fBCD;
439
440
    bool usingBytes = false;
441
442
    /**
443
     * Whether this {@link DecimalQuantity} has been explicitly converted to an exact double. true if
444
     * backed by a double that was explicitly converted via convertToAccurateDouble; false otherwise.
445
     * Used for testing.
446
     */
447
    bool explicitExactDouble = false;
448
449
    void roundToMagnitude(int32_t magnitude, RoundingMode roundingMode, bool nickel, UErrorCode& status);
450
451
    /**
452
     * Returns a single digit from the BCD list. No internal state is changed by calling this method.
453
     *
454
     * @param position The position of the digit to pop, counted in BCD units from the least
455
     *     significant digit. If outside the range supported by the implementation, zero is returned.
456
     * @return The digit at the specified location.
457
     */
458
    int8_t getDigitPos(int32_t position) const;
459
460
    /**
461
     * Sets the digit in the BCD list. This method only sets the digit; it is the caller's
462
     * responsibility to call {@link #compact} after setting the digit, and to ensure
463
     * that the precision field is updated to reflect the correct number of digits if a
464
     * nonzero digit is added to the decimal.
465
     *
466
     * @param position The position of the digit to pop, counted in BCD units from the least
467
     *     significant digit. If outside the range supported by the implementation, an AssertionError
468
     *     is thrown.
469
     * @param value The digit to set at the specified location.
470
     */
471
    void setDigitPos(int32_t position, int8_t value);
472
473
    /**
474
     * Adds zeros to the end of the BCD list. This will result in an invalid BCD representation; it is
475
     * the caller's responsibility to do further manipulation and then call {@link #compact}.
476
     *
477
     * @param numDigits The number of zeros to add.
478
     */
479
    void shiftLeft(int32_t numDigits);
480
481
    /**
482
     * Directly removes digits from the end of the BCD list.
483
     * Updates the scale and precision.
484
     *
485
     * CAUTION: it is the caller's responsibility to call {@link #compact} after this method.
486
     */
487
    void shiftRight(int32_t numDigits);
488
489
    /**
490
     * Directly removes digits from the front of the BCD list.
491
     * Updates precision.
492
     *
493
     * CAUTION: it is the caller's responsibility to call {@link #compact} after this method.
494
     */
495
    void popFromLeft(int32_t numDigits);
496
497
    /**
498
     * Sets the internal representation to zero. Clears any values stored in scale, precision,
499
     * hasDouble, origDouble, origDelta, exponent, and BCD data.
500
     */
501
    void setBcdToZero();
502
503
    /**
504
     * Sets the internal BCD state to represent the value in the given int. The int is guaranteed to
505
     * be either positive. The internal state is guaranteed to be empty when this method is called.
506
     *
507
     * @param n The value to consume.
508
     */
509
    void readIntToBcd(int32_t n);
510
511
    /**
512
     * Sets the internal BCD state to represent the value in the given long. The long is guaranteed to
513
     * be either positive. The internal state is guaranteed to be empty when this method is called.
514
     *
515
     * @param n The value to consume.
516
     */
517
    void readLongToBcd(int64_t n);
518
519
    void readDecNumberToBcd(const DecNum& dn);
520
521
    void readDoubleConversionToBcd(const char* buffer, int32_t length, int32_t point);
522
523
    void copyFieldsFrom(const DecimalQuantity& other);
524
525
    void copyBcdFrom(const DecimalQuantity &other);
526
527
    void moveBcdFrom(DecimalQuantity& src);
528
529
    /**
530
     * Removes trailing zeros from the BCD (adjusting the scale as required) and then computes the
531
     * precision. The precision is the number of digits in the number up through the greatest nonzero
532
     * digit.
533
     *
534
     * <p>This method must always be called when bcd changes in order for assumptions to be correct in
535
     * methods like {@link #fractionCount()}.
536
     */
537
    void compact();
538
539
    void _setToInt(int32_t n);
540
541
    void _setToLong(int64_t n);
542
543
    void _setToDoubleFast(double n);
544
545
    void _setToDecNum(const DecNum& dn, UErrorCode& status);
546
547
    static int32_t getVisibleFractionCount(UnicodeString value);
548
549
    void convertToAccurateDouble();
550
551
    /** Ensure that a byte array of at least 40 digits is allocated. */
552
    void ensureCapacity();
553
554
    void ensureCapacity(int32_t capacity);
555
556
    /** Switches the internal storage mechanism between the 64-bit long and the byte array. */
557
    void switchStorage();
558
};
559
560
} // namespace number::impl
561
U_NAMESPACE_END
562
563
564
#endif //__NUMBER_DECIMALQUANTITY_H__
565
566
#endif /* #if !UCONFIG_NO_FORMATTING */