/src/icu/icu4c/source/common/rbbiscan.cpp
Line | Count | Source |
1 | | // © 2016 and later: Unicode, Inc. and others. |
2 | | // License & terms of use: http://www.unicode.org/copyright.html |
3 | | // |
4 | | // file: rbbiscan.cpp |
5 | | // |
6 | | // Copyright (C) 2002-2016, International Business Machines Corporation and others. |
7 | | // All Rights Reserved. |
8 | | // |
9 | | // This file contains the Rule Based Break Iterator Rule Builder functions for |
10 | | // scanning the rules and assembling a parse tree. This is the first phase |
11 | | // of compiling the rules. |
12 | | // |
13 | | // The overall of the rules is managed by class RBBIRuleBuilder, which will |
14 | | // create and use an instance of this class as part of the process. |
15 | | // |
16 | | |
17 | | #include "unicode/utypes.h" |
18 | | |
19 | | #if !UCONFIG_NO_BREAK_ITERATION |
20 | | |
21 | | #include "unicode/unistr.h" |
22 | | #include "unicode/uniset.h" |
23 | | #include "unicode/uchar.h" |
24 | | #include "unicode/uchriter.h" |
25 | | #include "unicode/parsepos.h" |
26 | | #include "unicode/parseerr.h" |
27 | | #include "cmemory.h" |
28 | | #include "cstring.h" |
29 | | |
30 | | #include "rbbirpt.h" // Contains state table for the rbbi rules parser. |
31 | | // generated by a Perl script. |
32 | | #include "rbbirb.h" |
33 | | #include "rbbinode.h" |
34 | | #include "rbbiscan.h" |
35 | | #include "rbbitblb.h" |
36 | | |
37 | | #include "uassert.h" |
38 | | |
39 | | //------------------------------------------------------------------------------ |
40 | | // |
41 | | // Unicode Set init strings for each of the character classes needed for parsing a rule file. |
42 | | // (Initialized with hex values for portability to EBCDIC based machines. |
43 | | // Really ugly, but there's no good way to avoid it.) |
44 | | // |
45 | | // The sets are referred to by name in the rbbirpt.txt, which is the |
46 | | // source form of the state transition table for the RBBI rule parser. |
47 | | // |
48 | | //------------------------------------------------------------------------------ |
49 | | static const char16_t gRuleSet_rule_char_pattern[] = { |
50 | | // Characters that may appear as literals in patterns without escaping or quoting. |
51 | | // [ ^ [ \ p { Z } \ u 0 0 2 0 |
52 | | 0x5b, 0x5e, 0x5b, 0x5c, 0x70, 0x7b, 0x5a, 0x7d, 0x5c, 0x75, 0x30, 0x30, 0x32, 0x30, |
53 | | // - \ u 0 0 7 f ] - [ \ p |
54 | | 0x2d, 0x5c, 0x75, 0x30, 0x30, 0x37, 0x66, 0x5d, 0x2d, 0x5b, 0x5c, 0x70, |
55 | | // { L } ] - [ \ p { N } ] ] |
56 | | 0x7b, 0x4c, 0x7d, 0x5d, 0x2d, 0x5b, 0x5c, 0x70, 0x7b, 0x4e, 0x7d, 0x5d, 0x5d, 0}; |
57 | | |
58 | | static const char16_t gRuleSet_name_char_pattern[] = { |
59 | | // [ _ \ p { L } \ p { N } ] |
60 | | 0x5b, 0x5f, 0x5c, 0x70, 0x7b, 0x4c, 0x7d, 0x5c, 0x70, 0x7b, 0x4e, 0x7d, 0x5d, 0}; |
61 | | |
62 | | static const char16_t gRuleSet_digit_char_pattern[] = { |
63 | | // [ 0 - 9 ] |
64 | | 0x5b, 0x30, 0x2d, 0x39, 0x5d, 0}; |
65 | | |
66 | | static const char16_t gRuleSet_name_start_char_pattern[] = { |
67 | | // [ _ \ p { L } ] |
68 | | 0x5b, 0x5f, 0x5c, 0x70, 0x7b, 0x4c, 0x7d, 0x5d, 0 }; |
69 | | |
70 | | static const char16_t kAny[] = {0x61, 0x6e, 0x79, 0x00}; // "any" |
71 | | |
72 | | |
73 | | U_CDECL_BEGIN |
74 | 172k | static void U_CALLCONV RBBISetTable_deleter(void *p) { |
75 | 172k | icu::RBBISetTableEl *px = (icu::RBBISetTableEl *)p; |
76 | 172k | delete px->key; |
77 | | // Note: px->val is owned by the linked list "fSetsListHead" in scanner. |
78 | | // Don't delete the value nodes here. |
79 | 172k | uprv_free(px); |
80 | 172k | } |
81 | | U_CDECL_END |
82 | | |
83 | | U_NAMESPACE_BEGIN |
84 | | |
85 | | //------------------------------------------------------------------------------ |
86 | | // |
87 | | // Constructor. |
88 | | // |
89 | | //------------------------------------------------------------------------------ |
90 | | RBBIRuleScanner::RBBIRuleScanner(RBBIRuleBuilder *rb) |
91 | 8.25k | { |
92 | 8.25k | fRB = rb; |
93 | 8.25k | fScanIndex = 0; |
94 | 8.25k | fNextIndex = 0; |
95 | 8.25k | fQuoteMode = false; |
96 | 8.25k | fLineNum = 1; |
97 | 8.25k | fCharNum = 0; |
98 | 8.25k | fLastChar = 0; |
99 | | |
100 | 8.25k | fStateTable = nullptr; |
101 | 8.25k | fStack[0] = 0; |
102 | 8.25k | fStackPtr = 0; |
103 | 8.25k | fNodeStack[0] = nullptr; |
104 | 8.25k | fNodeStackPtr = 0; |
105 | | |
106 | 8.25k | fReverseRule = false; |
107 | 8.25k | fLookAheadRule = false; |
108 | 8.25k | fNoChainInRule = false; |
109 | | |
110 | 8.25k | fSymbolTable = nullptr; |
111 | 8.25k | fSetTable = nullptr; |
112 | 8.25k | fRuleNum = 0; |
113 | 8.25k | fOptionStart = 0; |
114 | | |
115 | | // Do not check status until after all critical fields are sufficiently initialized |
116 | | // that the destructor can run cleanly. |
117 | 8.25k | if (U_FAILURE(*rb->fStatus)) { |
118 | 0 | return; |
119 | 0 | } |
120 | | |
121 | | // |
122 | | // Set up the constant Unicode Sets. |
123 | | // Note: These could be made static, lazily initialized, and shared among |
124 | | // all instances of RBBIRuleScanners. BUT this is quite a bit simpler, |
125 | | // and the time to build these few sets should be small compared to a |
126 | | // full break iterator build. |
127 | 8.25k | fRuleSets[kRuleSet_rule_char-128] |
128 | 8.25k | = UnicodeSet(UnicodeString(gRuleSet_rule_char_pattern), *rb->fStatus); |
129 | | // fRuleSets[kRuleSet_white_space-128] = [:Pattern_White_Space:] |
130 | 8.25k | fRuleSets[kRuleSet_white_space-128]. |
131 | 8.25k | add(9, 0xd).add(0x20).add(0x85).add(0x200e, 0x200f).add(0x2028, 0x2029); |
132 | 8.25k | fRuleSets[kRuleSet_name_char-128] |
133 | 8.25k | = UnicodeSet(UnicodeString(gRuleSet_name_char_pattern), *rb->fStatus); |
134 | 8.25k | fRuleSets[kRuleSet_name_start_char-128] |
135 | 8.25k | = UnicodeSet(UnicodeString(gRuleSet_name_start_char_pattern), *rb->fStatus); |
136 | 8.25k | fRuleSets[kRuleSet_digit_char-128] |
137 | 8.25k | = UnicodeSet(UnicodeString(gRuleSet_digit_char_pattern), *rb->fStatus); |
138 | 8.25k | if (*rb->fStatus == U_ILLEGAL_ARGUMENT_ERROR) { |
139 | | // This case happens if ICU's data is missing. UnicodeSet tries to look up property |
140 | | // names from the init string, can't find them, and claims an illegal argument. |
141 | | // Change the error so that the actual problem will be clearer to users. |
142 | 0 | *rb->fStatus = U_BRK_INIT_ERROR; |
143 | 0 | } |
144 | 8.25k | if (U_FAILURE(*rb->fStatus)) { |
145 | 0 | return; |
146 | 0 | } |
147 | | |
148 | 8.25k | fSymbolTable = new RBBISymbolTable(this, rb->fRules, *rb->fStatus); |
149 | 8.25k | if (fSymbolTable == nullptr) { |
150 | 0 | *rb->fStatus = U_MEMORY_ALLOCATION_ERROR; |
151 | 0 | return; |
152 | 0 | } |
153 | 8.25k | fSetTable = uhash_open(uhash_hashUnicodeString, uhash_compareUnicodeString, nullptr, rb->fStatus); |
154 | 8.25k | if (U_FAILURE(*rb->fStatus)) { |
155 | 0 | return; |
156 | 0 | } |
157 | 8.25k | uhash_setValueDeleter(fSetTable, RBBISetTable_deleter); |
158 | 8.25k | } |
159 | | |
160 | | |
161 | | |
162 | | //------------------------------------------------------------------------------ |
163 | | // |
164 | | // Destructor |
165 | | // |
166 | | //------------------------------------------------------------------------------ |
167 | 8.25k | RBBIRuleScanner::~RBBIRuleScanner() { |
168 | 8.25k | delete fSymbolTable; |
169 | 8.25k | if (fSetTable != nullptr) { |
170 | 8.25k | uhash_close(fSetTable); |
171 | 8.25k | fSetTable = nullptr; |
172 | | |
173 | 8.25k | } |
174 | | |
175 | | |
176 | | // Node Stack. |
177 | | // Normally has one entry, which is the entire parse tree for the rules. |
178 | | // If errors occurred, there may be additional subtrees left on the stack. |
179 | 18.5k | while (fNodeStackPtr > 0) { |
180 | 10.3k | delete fNodeStack[fNodeStackPtr]; |
181 | 10.3k | fNodeStackPtr--; |
182 | 10.3k | } |
183 | | |
184 | 8.25k | } |
185 | | |
186 | | //------------------------------------------------------------------------------ |
187 | | // |
188 | | // doParseAction Do some action during rule parsing. |
189 | | // Called by the parse state machine. |
190 | | // Actions build the parse tree and Unicode Sets, |
191 | | // and maintain the parse stack for nested expressions. |
192 | | // |
193 | | // TODO: unify EParseAction and RBBI_RuleParseAction enum types. |
194 | | // They represent exactly the same thing. They're separate |
195 | | // only to work around enum forward declaration restrictions |
196 | | // in some compilers, while at the same time avoiding multiple |
197 | | // definitions problems. I'm sure that there's a better way. |
198 | | // |
199 | | //------------------------------------------------------------------------------ |
200 | | UBool RBBIRuleScanner::doParseActions(int32_t action) |
201 | 15.5M | { |
202 | 15.5M | RBBINode *n = nullptr; |
203 | | |
204 | 15.5M | UBool returnVal = true; |
205 | | |
206 | 15.5M | switch (action) { |
207 | | |
208 | 39.9k | case doExprStart: |
209 | 39.9k | pushNewNode(RBBINode::opStart); |
210 | 39.9k | fRuleNum++; |
211 | 39.9k | break; |
212 | | |
213 | | |
214 | 234 | case doNoChain: |
215 | | // Scanned a '^' while on the rule start state. |
216 | 234 | fNoChainInRule = true; |
217 | 234 | break; |
218 | | |
219 | | |
220 | 16.7k | case doExprOrOperator: |
221 | 16.7k | { |
222 | 16.7k | fixOpStack(RBBINode::precOpCat); |
223 | 16.7k | RBBINode *operandNode = fNodeStack[fNodeStackPtr--]; |
224 | 16.7k | RBBINode *orNode = pushNewNode(RBBINode::opOr); |
225 | 16.7k | if (U_FAILURE(*fRB->fStatus)) { |
226 | 0 | break; |
227 | 0 | } |
228 | 16.7k | orNode->fLeftChild = operandNode; |
229 | 16.7k | operandNode->fParent = orNode; |
230 | 16.7k | } |
231 | 0 | break; |
232 | | |
233 | 4.83M | case doExprCatOperator: |
234 | | // concatenation operator. |
235 | | // For the implicit concatenation of adjacent terms in an expression that are |
236 | | // not separated by any other operator. Action is invoked between the |
237 | | // actions for the two terms. |
238 | 4.83M | { |
239 | 4.83M | fixOpStack(RBBINode::precOpCat); |
240 | 4.83M | RBBINode *operandNode = fNodeStack[fNodeStackPtr--]; |
241 | 4.83M | RBBINode *catNode = pushNewNode(RBBINode::opCat); |
242 | 4.83M | if (U_FAILURE(*fRB->fStatus)) { |
243 | 0 | break; |
244 | 0 | } |
245 | 4.83M | catNode->fLeftChild = operandNode; |
246 | 4.83M | operandNode->fParent = catNode; |
247 | 4.83M | } |
248 | 0 | break; |
249 | | |
250 | 1.33k | case doLParen: |
251 | | // Open Paren. |
252 | | // The openParen node is a dummy operation type with a low precedence, |
253 | | // which has the affect of ensuring that any real binary op that |
254 | | // follows within the parens binds more tightly to the operands than |
255 | | // stuff outside of the parens. |
256 | 1.33k | pushNewNode(RBBINode::opLParen); |
257 | 1.33k | break; |
258 | | |
259 | 372 | case doExprRParen: |
260 | 372 | fixOpStack(RBBINode::precLParen); |
261 | 372 | break; |
262 | | |
263 | 5.69M | case doNOP: |
264 | 5.69M | break; |
265 | | |
266 | 1.51k | case doStartAssign: |
267 | | // We've just scanned "$variable = " |
268 | | // The top of the node stack has the $variable ref node. |
269 | | |
270 | | // Save the start position of the RHS text in the StartExpression node |
271 | | // that precedes the $variableReference node on the stack. |
272 | | // This will eventually be used when saving the full $variable replacement |
273 | | // text as a string. |
274 | 1.51k | n = fNodeStack[fNodeStackPtr-1]; |
275 | 1.51k | n->fFirstPos = fNextIndex; // move past the '=' |
276 | | |
277 | | // Push a new start-of-expression node; needed to keep parse of the |
278 | | // RHS expression happy. |
279 | 1.51k | pushNewNode(RBBINode::opStart); |
280 | 1.51k | break; |
281 | | |
282 | | |
283 | | |
284 | | |
285 | 1.45k | case doEndAssign: |
286 | 1.45k | { |
287 | | // We have reached the end of an assignment statement. |
288 | | // Current scan char is the ';' that terminates the assignment. |
289 | | |
290 | | // Terminate expression, leaves expression parse tree rooted in TOS node. |
291 | 1.45k | fixOpStack(RBBINode::precStart); |
292 | 1.45k | if (U_FAILURE(*fRB->fStatus)) { |
293 | 2 | break; |
294 | 2 | } |
295 | | |
296 | 1.45k | RBBINode *startExprNode = fNodeStack[fNodeStackPtr-2]; |
297 | 1.45k | RBBINode *varRefNode = fNodeStack[fNodeStackPtr-1]; |
298 | 1.45k | RBBINode *RHSExprNode = fNodeStack[fNodeStackPtr]; |
299 | | |
300 | | // Save original text of right side of assignment, excluding the terminating ';' |
301 | | // in the root of the node for the right-hand-side expression. |
302 | 1.45k | RHSExprNode->fFirstPos = startExprNode->fFirstPos; |
303 | 1.45k | RHSExprNode->fLastPos = fScanIndex; |
304 | 1.45k | fRB->fRules.extractBetween(RHSExprNode->fFirstPos, RHSExprNode->fLastPos, RHSExprNode->fText); |
305 | | |
306 | | // Expression parse tree becomes l. child of the $variable reference node. |
307 | 1.45k | varRefNode->fLeftChild = RHSExprNode; |
308 | 1.45k | RHSExprNode->fParent = varRefNode; |
309 | | |
310 | | // Make a symbol table entry for the $variableRef node. |
311 | 1.45k | fSymbolTable->addEntry(varRefNode->fText, varRefNode, *fRB->fStatus); |
312 | 1.45k | if (U_FAILURE(*fRB->fStatus)) { |
313 | | // This is a round-about way to get the parse position set |
314 | | // so that duplicate symbols error messages include a line number. |
315 | 5 | UErrorCode t = *fRB->fStatus; |
316 | 5 | *fRB->fStatus = U_ZERO_ERROR; |
317 | 5 | error(t); |
318 | | // When adding $variableRef to the symbol table fail, Delete |
319 | | // both nodes because deleting varRefNode will not delete |
320 | | // RHSExprNode internally. |
321 | 5 | delete RHSExprNode; |
322 | 5 | delete varRefNode; |
323 | 5 | } |
324 | | |
325 | | // Clean up the stack. |
326 | 1.45k | delete startExprNode; |
327 | 1.45k | fNodeStackPtr-=3; |
328 | 1.45k | break; |
329 | 1.45k | } |
330 | | |
331 | 33.1k | case doEndOfRule: |
332 | 33.1k | { |
333 | 33.1k | fixOpStack(RBBINode::precStart); // Terminate expression, leaves expression |
334 | 33.1k | if (U_FAILURE(*fRB->fStatus)) { // parse tree rooted in TOS node. |
335 | 1 | break; |
336 | 1 | } |
337 | | #ifdef RBBI_DEBUG |
338 | | if (fRB->fDebugEnv && uprv_strstr(fRB->fDebugEnv, "rtree")) {printNodeStack("end of rule");} |
339 | | #endif |
340 | 33.1k | U_ASSERT(fNodeStackPtr == 1); |
341 | 33.1k | RBBINode *thisRule = fNodeStack[fNodeStackPtr]; |
342 | | |
343 | | // If this rule includes a look-ahead '/', add a endMark node to the |
344 | | // expression tree. |
345 | 33.1k | if (fLookAheadRule) { |
346 | 6.82k | RBBINode *endNode = pushNewNode(RBBINode::endMark); |
347 | 6.82k | RBBINode *catNode = pushNewNode(RBBINode::opCat); |
348 | 6.82k | if (U_FAILURE(*fRB->fStatus)) { |
349 | 0 | break; |
350 | 0 | } |
351 | 6.82k | fNodeStackPtr -= 2; |
352 | 6.82k | catNode->fLeftChild = thisRule; |
353 | 6.82k | catNode->fRightChild = endNode; |
354 | 6.82k | fNodeStack[fNodeStackPtr] = catNode; |
355 | 6.82k | endNode->fVal = fRuleNum; |
356 | 6.82k | endNode->fLookAheadEnd = true; |
357 | 6.82k | thisRule = catNode; |
358 | | |
359 | | // TODO: Disable chaining out of look-ahead (hard break) rules. |
360 | | // The break on rule match is forced, so there is no point in building up |
361 | | // the state table to chain into another rule for a longer match. |
362 | 6.82k | } |
363 | | |
364 | | // Mark this node as being the root of a rule. |
365 | 33.1k | thisRule->fRuleRoot = true; |
366 | | |
367 | | // Flag if chaining into this rule is wanted. |
368 | | // |
369 | 33.1k | if (fRB->fChainRules && // If rule chaining is enabled globally via !!chain |
370 | 5.35k | !fNoChainInRule) { // and no '^' chain-in inhibit was on this rule |
371 | 5.14k | thisRule->fChainIn = true; |
372 | 5.14k | } |
373 | | |
374 | | |
375 | | // All rule expressions are ORed together. |
376 | | // The ';' that terminates an expression really just functions as a '|' with |
377 | | // a low operator prededence. |
378 | | // |
379 | | // Each of the four sets of rules are collected separately. |
380 | | // (forward, reverse, safe_forward, safe_reverse) |
381 | | // OR this rule into the appropriate group of them. |
382 | | // |
383 | 33.1k | RBBINode **destRules = (fReverseRule? &fRB->fSafeRevTree : fRB->fDefaultTree); |
384 | | |
385 | 33.1k | if (*destRules != nullptr) { |
386 | | // This is not the first rule encountered. |
387 | | // OR previous stuff (from *destRules) |
388 | | // with the current rule expression (on the Node Stack) |
389 | | // with the resulting OR expression going to *destRules |
390 | | // |
391 | 30.1k | thisRule = fNodeStack[fNodeStackPtr]; |
392 | 30.1k | RBBINode *prevRules = *destRules; |
393 | 30.1k | RBBINode *orNode = pushNewNode(RBBINode::opOr); |
394 | 30.1k | if (U_FAILURE(*fRB->fStatus)) { |
395 | 0 | break; |
396 | 0 | } |
397 | 30.1k | orNode->fLeftChild = prevRules; |
398 | 30.1k | prevRules->fParent = orNode; |
399 | 30.1k | orNode->fRightChild = thisRule; |
400 | 30.1k | thisRule->fParent = orNode; |
401 | 30.1k | *destRules = orNode; |
402 | 30.1k | } |
403 | 3.04k | else |
404 | 3.04k | { |
405 | | // This is the first rule encountered (for this direction). |
406 | | // Just move its parse tree from the stack to *destRules. |
407 | 3.04k | *destRules = fNodeStack[fNodeStackPtr]; |
408 | 3.04k | } |
409 | 33.1k | fReverseRule = false; // in preparation for the next rule. |
410 | 33.1k | fLookAheadRule = false; |
411 | 33.1k | fNoChainInRule = false; |
412 | 33.1k | fNodeStackPtr = 0; |
413 | 33.1k | } |
414 | 0 | break; |
415 | | |
416 | | |
417 | 1.07k | case doRuleError: |
418 | 1.07k | error(U_BRK_RULE_SYNTAX); |
419 | 1.07k | returnVal = false; |
420 | 1.07k | break; |
421 | | |
422 | | |
423 | 15 | case doVariableNameExpectedErr: |
424 | 15 | error(U_BRK_RULE_SYNTAX); |
425 | 15 | break; |
426 | | |
427 | | |
428 | | // |
429 | | // Unary operands + ? * |
430 | | // These all appear after the operand to which they apply. |
431 | | // When we hit one, the operand (may be a whole sub expression) |
432 | | // will be on the top of the stack. |
433 | | // Unary Operator becomes TOS, with the old TOS as its one child. |
434 | 977 | case doUnaryOpPlus: |
435 | 977 | { |
436 | 977 | RBBINode *operandNode = fNodeStack[fNodeStackPtr--]; |
437 | 977 | RBBINode *plusNode = pushNewNode(RBBINode::opPlus); |
438 | 977 | if (U_FAILURE(*fRB->fStatus)) { |
439 | 0 | break; |
440 | 0 | } |
441 | 977 | plusNode->fLeftChild = operandNode; |
442 | 977 | operandNode->fParent = plusNode; |
443 | 977 | } |
444 | 0 | break; |
445 | | |
446 | 307 | case doUnaryOpQuestion: |
447 | 307 | { |
448 | 307 | RBBINode *operandNode = fNodeStack[fNodeStackPtr--]; |
449 | 307 | RBBINode *qNode = pushNewNode(RBBINode::opQuestion); |
450 | 307 | if (U_FAILURE(*fRB->fStatus)) { |
451 | 0 | break; |
452 | 0 | } |
453 | 307 | qNode->fLeftChild = operandNode; |
454 | 307 | operandNode->fParent = qNode; |
455 | 307 | } |
456 | 0 | break; |
457 | | |
458 | 2.17k | case doUnaryOpStar: |
459 | 2.17k | { |
460 | 2.17k | RBBINode *operandNode = fNodeStack[fNodeStackPtr--]; |
461 | 2.17k | RBBINode *starNode = pushNewNode(RBBINode::opStar); |
462 | 2.17k | if (U_FAILURE(*fRB->fStatus)) { |
463 | 0 | break; |
464 | 0 | } |
465 | 2.17k | starNode->fLeftChild = operandNode; |
466 | 2.17k | operandNode->fParent = starNode; |
467 | 2.17k | } |
468 | 0 | break; |
469 | | |
470 | 4.84M | case doRuleChar: |
471 | | // A "Rule Character" is any single character that is a literal part |
472 | | // of the regular expression. Like a, b and c in the expression "(abc*) | [:L:]" |
473 | | // These are pretty uncommon in break rules; the terms are more commonly |
474 | | // sets. To keep things uniform, treat these characters like as |
475 | | // sets that just happen to contain only one character. |
476 | 4.84M | { |
477 | 4.84M | n = pushNewNode(RBBINode::setRef); |
478 | 4.84M | if (U_FAILURE(*fRB->fStatus)) { |
479 | 1 | break; |
480 | 1 | } |
481 | 4.84M | findSetFor(UnicodeString(fC.fChar), n); |
482 | 4.84M | n->fFirstPos = fScanIndex; |
483 | 4.84M | n->fLastPos = fNextIndex; |
484 | 4.84M | fRB->fRules.extractBetween(n->fFirstPos, n->fLastPos, n->fText); |
485 | 4.84M | break; |
486 | 4.84M | } |
487 | | |
488 | 7.93k | case doDotAny: |
489 | | // scanned a ".", meaning match any single character. |
490 | 7.93k | { |
491 | 7.93k | n = pushNewNode(RBBINode::setRef); |
492 | 7.93k | if (U_FAILURE(*fRB->fStatus)) { |
493 | 1 | break; |
494 | 1 | } |
495 | 7.93k | findSetFor(UnicodeString(true, kAny, 3), n); |
496 | 7.93k | n->fFirstPos = fScanIndex; |
497 | 7.93k | n->fLastPos = fNextIndex; |
498 | 7.93k | fRB->fRules.extractBetween(n->fFirstPos, n->fLastPos, n->fText); |
499 | 7.93k | break; |
500 | 7.93k | } |
501 | | |
502 | 10.8k | case doSlash: |
503 | | // Scanned a '/', which identifies a look-ahead break position in a rule. |
504 | 10.8k | n = pushNewNode(RBBINode::lookAhead); |
505 | 10.8k | if (U_FAILURE(*fRB->fStatus)) { |
506 | 1 | break; |
507 | 1 | } |
508 | 10.8k | n->fVal = fRuleNum; |
509 | 10.8k | n->fFirstPos = fScanIndex; |
510 | 10.8k | n->fLastPos = fNextIndex; |
511 | 10.8k | fRB->fRules.extractBetween(n->fFirstPos, n->fLastPos, n->fText); |
512 | 10.8k | fLookAheadRule = true; |
513 | 10.8k | break; |
514 | | |
515 | | |
516 | 929 | case doStartTagValue: |
517 | | // Scanned a '{', the opening delimiter for a tag value within a rule. |
518 | 929 | n = pushNewNode(RBBINode::tag); |
519 | 929 | if (U_FAILURE(*fRB->fStatus)) { |
520 | 1 | break; |
521 | 1 | } |
522 | 928 | n->fVal = 0; |
523 | 928 | n->fFirstPos = fScanIndex; |
524 | 928 | n->fLastPos = fNextIndex; |
525 | 928 | break; |
526 | | |
527 | 1.50k | case doTagDigit: |
528 | | // Just scanned a decimal digit that's part of a tag value |
529 | 1.50k | { |
530 | 1.50k | n = fNodeStack[fNodeStackPtr]; |
531 | 1.50k | uint32_t v = u_charDigitValue(fC.fChar); |
532 | 1.50k | U_ASSERT(v < 10); |
533 | 1.50k | int64_t updated = static_cast<int64_t>(n->fVal)*10 + v; |
534 | | // Avoid overflow n->fVal |
535 | 1.50k | if (updated > INT32_MAX) { |
536 | 2 | error(U_BRK_RULE_SYNTAX); |
537 | 2 | break; |
538 | 2 | } |
539 | 1.50k | n->fVal = static_cast<int32_t>(updated); |
540 | 1.50k | break; |
541 | 1.50k | } |
542 | | |
543 | 896 | case doTagValue: |
544 | 896 | n = fNodeStack[fNodeStackPtr]; |
545 | 896 | n->fLastPos = fNextIndex; |
546 | 896 | fRB->fRules.extractBetween(n->fFirstPos, n->fLastPos, n->fText); |
547 | 896 | break; |
548 | | |
549 | 38 | case doTagExpectedError: |
550 | 38 | error(U_BRK_MALFORMED_RULE_TAG); |
551 | 38 | returnVal = false; |
552 | 38 | break; |
553 | | |
554 | 2.73k | case doOptionStart: |
555 | | // Scanning a !!option. At the start of string. |
556 | 2.73k | fOptionStart = fScanIndex; |
557 | 2.73k | break; |
558 | | |
559 | 2.73k | case doOptionEnd: |
560 | 2.73k | { |
561 | 2.73k | UnicodeString opt(fRB->fRules, fOptionStart, fScanIndex-fOptionStart); |
562 | 2.73k | if (opt == UNICODE_STRING("chain", 5)) { |
563 | 480 | fRB->fChainRules = true; |
564 | 2.25k | } else if (opt == UNICODE_STRING("forward", 7)) { |
565 | 360 | fRB->fDefaultTree = &fRB->fForwardTree; |
566 | 1.89k | } else if (opt == UNICODE_STRING("reverse", 7)) { |
567 | 765 | fRB->fDefaultTree = &fRB->fReverseTree; |
568 | 1.13k | } else if (opt == UNICODE_STRING("safe_forward", 12)) { |
569 | 920 | fRB->fDefaultTree = &fRB->fSafeFwdTree; |
570 | 920 | } else if (opt == UNICODE_STRING("safe_reverse", 12)) { |
571 | 66 | fRB->fDefaultTree = &fRB->fSafeRevTree; |
572 | 146 | } else if (opt == UNICODE_STRING("lookAheadHardBreak", 18)) { |
573 | 72 | fRB->fLookAheadHardBreak = true; |
574 | 74 | } else if (opt == UNICODE_STRING("quoted_literals_only", 20)) { |
575 | 1 | fRuleSets[kRuleSet_rule_char-128].clear(); |
576 | 73 | } else if (opt == UNICODE_STRING("unquoted_literals", 17)) { |
577 | 1 | fRuleSets[kRuleSet_rule_char-128].applyPattern(UnicodeString(gRuleSet_rule_char_pattern), *fRB->fStatus); |
578 | 72 | } else { |
579 | 72 | error(U_BRK_UNRECOGNIZED_OPTION); |
580 | 72 | } |
581 | 2.73k | } |
582 | 2.73k | break; |
583 | | |
584 | 344 | case doReverseDir: |
585 | 344 | fReverseRule = true; |
586 | 344 | break; |
587 | | |
588 | 2.28k | case doStartVariableName: |
589 | 2.28k | n = pushNewNode(RBBINode::varRef); |
590 | 2.28k | if (U_FAILURE(*fRB->fStatus)) { |
591 | 1 | break; |
592 | 1 | } |
593 | 2.28k | n->fFirstPos = fScanIndex; |
594 | 2.28k | break; |
595 | | |
596 | 2.26k | case doEndVariableName: |
597 | 2.26k | n = fNodeStack[fNodeStackPtr]; |
598 | 2.26k | if (n==nullptr || n->fType != RBBINode::varRef) { |
599 | 0 | error(U_BRK_INTERNAL_ERROR); |
600 | 0 | break; |
601 | 0 | } |
602 | 2.26k | n->fLastPos = fScanIndex; |
603 | 2.26k | fRB->fRules.extractBetween(n->fFirstPos+1, n->fLastPos, n->fText); |
604 | | // Look the newly scanned name up in the symbol table |
605 | | // If there's an entry, set the l. child of the var ref to the replacement expression. |
606 | | // (We also pass through here when scanning assignments, but no harm is done, other |
607 | | // than a slight wasted effort that seems hard to avoid. Lookup will be null) |
608 | 2.26k | n->fLeftChild = fSymbolTable->lookupNode(n->fText); |
609 | 2.26k | break; |
610 | | |
611 | 752 | case doCheckVarDef: |
612 | 752 | n = fNodeStack[fNodeStackPtr]; |
613 | 752 | if (n->fLeftChild == nullptr) { |
614 | 21 | error(U_BRK_UNDEFINED_VARIABLE); |
615 | 21 | returnVal = false; |
616 | 21 | } |
617 | 752 | break; |
618 | | |
619 | 35.9k | case doExprFinished: |
620 | 35.9k | break; |
621 | | |
622 | 11 | case doRuleErrorAssignExpr: |
623 | 11 | error(U_BRK_ASSIGN_ERROR); |
624 | 11 | returnVal = false; |
625 | 11 | break; |
626 | | |
627 | 0 | case doExit: |
628 | 0 | returnVal = false; |
629 | 0 | break; |
630 | | |
631 | 19.8k | case doScanUnicodeSet: |
632 | 19.8k | scanSet(); |
633 | 19.8k | break; |
634 | | |
635 | 0 | default: |
636 | 0 | error(U_BRK_INTERNAL_ERROR); |
637 | 0 | returnVal = false; |
638 | 0 | break; |
639 | 15.5M | } |
640 | 15.5M | return returnVal && U_SUCCESS(*fRB->fStatus); |
641 | 15.5M | } |
642 | | |
643 | | |
644 | | |
645 | | |
646 | | //------------------------------------------------------------------------------ |
647 | | // |
648 | | // Error Report a rule parse error. |
649 | | // Only report it if no previous error has been recorded. |
650 | | // |
651 | | //------------------------------------------------------------------------------ |
652 | 5.59k | void RBBIRuleScanner::error(UErrorCode e) { |
653 | 5.59k | if (U_SUCCESS(*fRB->fStatus)) { |
654 | 5.59k | *fRB->fStatus = e; |
655 | 5.59k | if (fRB->fParseError) { |
656 | 5.59k | fRB->fParseError->line = fLineNum; |
657 | 5.59k | fRB->fParseError->offset = fCharNum; |
658 | 5.59k | fRB->fParseError->preContext[0] = 0; |
659 | 5.59k | fRB->fParseError->postContext[0] = 0; |
660 | 5.59k | } |
661 | 5.59k | } |
662 | 5.59k | } |
663 | | |
664 | | |
665 | | |
666 | | |
667 | | //------------------------------------------------------------------------------ |
668 | | // |
669 | | // fixOpStack The parse stack holds partially assembled chunks of the parse tree. |
670 | | // An entry on the stack may be as small as a single setRef node, |
671 | | // or as large as the parse tree |
672 | | // for an entire expression (this will be the one item left on the stack |
673 | | // when the parsing of an RBBI rule completes. |
674 | | // |
675 | | // This function is called when a binary operator is encountered. |
676 | | // It looks back up the stack for operators that are not yet associated |
677 | | // with a right operand, and if the precedence of the stacked operator >= |
678 | | // the precedence of the current operator, binds the operand left, |
679 | | // to the previously encountered operator. |
680 | | // |
681 | | //------------------------------------------------------------------------------ |
682 | 4.88M | void RBBIRuleScanner::fixOpStack(RBBINode::OpPrecedence p) { |
683 | 4.88M | RBBINode *n; |
684 | | // printNodeStack("entering fixOpStack()"); |
685 | 9.73M | for (;;) { |
686 | 9.73M | n = fNodeStack[fNodeStackPtr-1]; // an operator node |
687 | 9.73M | if (n->fPrecedence == 0) { |
688 | 0 | RBBIDebugPuts("RBBIRuleScanner::fixOpStack, bad operator node"); |
689 | 0 | error(U_BRK_INTERNAL_ERROR); |
690 | 0 | return; |
691 | 0 | } |
692 | | |
693 | 9.73M | if (n->fPrecedence < p || n->fPrecedence <= RBBINode::precLParen) { |
694 | | // The most recent operand goes with the current operator, |
695 | | // not with the previously stacked one. |
696 | 4.88M | break; |
697 | 4.88M | } |
698 | | // Stack operator is a binary op ( '|' or concatenation) |
699 | | // TOS operand becomes right child of this operator. |
700 | | // Resulting subexpression becomes the TOS operand. |
701 | 4.84M | n->fRightChild = fNodeStack[fNodeStackPtr]; |
702 | 4.84M | fNodeStack[fNodeStackPtr]->fParent = n; |
703 | 4.84M | fNodeStackPtr--; |
704 | | // printNodeStack("looping in fixOpStack() "); |
705 | 4.84M | } |
706 | | |
707 | 4.88M | if (p <= RBBINode::precLParen) { |
708 | | // Scan is at a right paren or end of expression. |
709 | | // The scanned item must match the stack, or else there was an error. |
710 | | // Discard the left paren (or start expr) node from the stack, |
711 | | // leaving the completed (sub)expression as TOS. |
712 | 34.9k | if (n->fPrecedence != p) { |
713 | | // Right paren encountered matched start of expression node, or |
714 | | // end of expression matched with a left paren node. |
715 | 6 | error(U_BRK_MISMATCHED_PAREN); |
716 | 6 | } |
717 | 34.9k | fNodeStack[fNodeStackPtr-1] = fNodeStack[fNodeStackPtr]; |
718 | 34.9k | fNodeStackPtr--; |
719 | | // Delete the now-discarded LParen or Start node. |
720 | 34.9k | delete n; |
721 | 34.9k | } |
722 | | // printNodeStack("leaving fixOpStack()"); |
723 | 4.88M | } |
724 | | |
725 | | |
726 | | |
727 | | |
728 | | //------------------------------------------------------------------------------ |
729 | | // |
730 | | // findSetFor given a UnicodeString, |
731 | | // - find the corresponding Unicode Set (uset node) |
732 | | // (create one if necessary) |
733 | | // - Set fLeftChild of the caller's node (should be a setRef node) |
734 | | // to the uset node |
735 | | // Maintain a hash table of uset nodes, so the same one is always used |
736 | | // for the same string. |
737 | | // If a "to adopt" set is provided and we haven't seen this key before, |
738 | | // add the provided set to the hash table. |
739 | | // If the string is one (32 bit) char in length, the set contains |
740 | | // just one element which is the char in question. |
741 | | // If the string is "any", return a set containing all chars. |
742 | | // |
743 | | //------------------------------------------------------------------------------ |
744 | 4.87M | void RBBIRuleScanner::findSetFor(const UnicodeString &s, RBBINode *node, UnicodeSet *setToAdopt) { |
745 | | |
746 | 4.87M | RBBISetTableEl *el; |
747 | | |
748 | | // First check whether we've already cached a set for this string. |
749 | | // If so, just use the cached set in the new node. |
750 | | // delete any set provided by the caller, since we own it. |
751 | 4.87M | el = static_cast<RBBISetTableEl*>(uhash_get(fSetTable, &s)); |
752 | 4.87M | if (el != nullptr) { |
753 | 4.69M | delete setToAdopt; |
754 | 4.69M | node->fLeftChild = el->val; |
755 | 4.69M | U_ASSERT(node->fLeftChild->fType == RBBINode::uset); |
756 | 4.69M | return; |
757 | 4.69M | } |
758 | | |
759 | | // Haven't seen this set before. |
760 | | // If the caller didn't provide us with a prebuilt set, |
761 | | // create a new UnicodeSet now. |
762 | 172k | if (setToAdopt == nullptr) { |
763 | 167k | if (s.compare(kAny, -1) == 0) { |
764 | 981 | setToAdopt = new UnicodeSet(0x000000, 0x10ffff); |
765 | 166k | } else { |
766 | 166k | UChar32 c; |
767 | 166k | c = s.char32At(0); |
768 | 166k | setToAdopt = new UnicodeSet(c, c); |
769 | 166k | } |
770 | 167k | if (setToAdopt == nullptr) { |
771 | 0 | error(U_MEMORY_ALLOCATION_ERROR); |
772 | 0 | return; |
773 | 0 | } |
774 | 167k | } |
775 | | |
776 | | // |
777 | | // Make a new uset node to refer to this UnicodeSet |
778 | | // This new uset node becomes the child of the caller's setReference node. |
779 | | // |
780 | 172k | UErrorCode localStatus = U_ZERO_ERROR; |
781 | 172k | RBBINode *usetNode = new RBBINode(RBBINode::uset, localStatus); |
782 | 172k | if (usetNode == nullptr) { |
783 | 0 | localStatus = U_MEMORY_ALLOCATION_ERROR; |
784 | 0 | } |
785 | 172k | if (U_FAILURE(localStatus)) { |
786 | 0 | delete usetNode; |
787 | 0 | error(localStatus); |
788 | 0 | delete setToAdopt; |
789 | 0 | return; |
790 | 0 | } |
791 | 172k | usetNode->fInputSet = setToAdopt; |
792 | 172k | usetNode->fParent = node; |
793 | 172k | node->fLeftChild = usetNode; |
794 | 172k | usetNode->fText = s; |
795 | | |
796 | | |
797 | | // |
798 | | // Add the new uset node to the list of all uset nodes. |
799 | | // |
800 | 172k | fRB->fUSetNodes->addElement(usetNode, *fRB->fStatus); |
801 | | |
802 | | |
803 | | // |
804 | | // Add the new set to the set hash table. |
805 | | // |
806 | 172k | el = static_cast<RBBISetTableEl*>(uprv_malloc(sizeof(RBBISetTableEl))); |
807 | 172k | UnicodeString *tkey = new UnicodeString(s); |
808 | 172k | if (tkey == nullptr || el == nullptr || setToAdopt == nullptr) { |
809 | | // Delete to avoid memory leak |
810 | 0 | delete tkey; |
811 | 0 | tkey = nullptr; |
812 | 0 | uprv_free(el); |
813 | 0 | el = nullptr; |
814 | 0 | delete setToAdopt; |
815 | 0 | setToAdopt = nullptr; |
816 | |
|
817 | 0 | error(U_MEMORY_ALLOCATION_ERROR); |
818 | 0 | return; |
819 | 0 | } |
820 | 172k | el->key = tkey; |
821 | 172k | el->val = usetNode; |
822 | 172k | uhash_put(fSetTable, el->key, el, fRB->fStatus); |
823 | 172k | } |
824 | | |
825 | | |
826 | | |
827 | | // |
828 | | // Assorted Unicode character constants. |
829 | | // Numeric because there is no portable way to enter them as literals. |
830 | | // (Think EBCDIC). |
831 | | // |
832 | | static const char16_t chCR = 0x0d; // New lines, for terminating comments. |
833 | | static const char16_t chLF = 0x0a; |
834 | | static const char16_t chNEL = 0x85; // NEL newline variant |
835 | | static const char16_t chLS = 0x2028; // Unicode Line Separator |
836 | | static const char16_t chApos = 0x27; // single quote, for quoted chars. |
837 | | static const char16_t chPound = 0x23; // '#', introduces a comment. |
838 | | static const char16_t chBackSlash = 0x5c; // '\' introduces a char escape |
839 | | static const char16_t chLParen = 0x28; |
840 | | static const char16_t chRParen = 0x29; |
841 | | |
842 | | |
843 | | //------------------------------------------------------------------------------ |
844 | | // |
845 | | // stripRules Return a rules string without extra spaces. |
846 | | // (Comments are removed separately, during rule parsing.) |
847 | | // |
848 | | //------------------------------------------------------------------------------ |
849 | 2.61k | UnicodeString RBBIRuleScanner::stripRules(const UnicodeString &rules) { |
850 | 2.61k | UnicodeString strippedRules; |
851 | 2.61k | int32_t rulesLength = rules.length(); |
852 | | |
853 | 7.88M | for (int32_t idx=0; idx<rulesLength; idx = rules.moveIndex32(idx, 1)) { |
854 | 7.88M | UChar32 cp = rules.char32At(idx); |
855 | 7.88M | bool whiteSpace = u_hasBinaryProperty(cp, UCHAR_PATTERN_WHITE_SPACE); |
856 | 7.88M | if (whiteSpace) { |
857 | 30.5k | continue; |
858 | 30.5k | } |
859 | 7.85M | strippedRules.append(cp); |
860 | 7.85M | } |
861 | 2.61k | return strippedRules; |
862 | 2.61k | } |
863 | | |
864 | | |
865 | | //------------------------------------------------------------------------------ |
866 | | // |
867 | | // nextCharLL Low Level Next Char from rule input source. |
868 | | // Get a char from the input character iterator, |
869 | | // keep track of input position for error reporting. |
870 | | // |
871 | | //------------------------------------------------------------------------------ |
872 | 18.0M | UChar32 RBBIRuleScanner::nextCharLL() { |
873 | 18.0M | UChar32 ch; |
874 | | |
875 | 18.0M | if (fNextIndex >= fRB->fRules.length()) { |
876 | 3.89k | return static_cast<UChar32>(-1); |
877 | 3.89k | } |
878 | 18.0M | ch = fRB->fRules.char32At(fNextIndex); |
879 | 18.0M | if (U_IS_SURROGATE(ch)) { |
880 | 190 | error(U_ILLEGAL_CHAR_FOUND); |
881 | 190 | return U_SENTINEL; |
882 | 190 | } |
883 | 18.0M | fNextIndex = fRB->fRules.moveIndex32(fNextIndex, 1); |
884 | | |
885 | 18.0M | if (ch == chCR || |
886 | 18.0M | ch == chNEL || |
887 | 18.0M | ch == chLS || |
888 | 18.0M | (ch == chLF && fLastChar != chCR)) { |
889 | | // Character is starting a new line. Bump up the line number, and |
890 | | // reset the column to 0. |
891 | 68.7k | fLineNum++; |
892 | 68.7k | fCharNum=0; |
893 | 68.7k | if (fQuoteMode) { |
894 | 1 | error(U_BRK_NEW_LINE_IN_QUOTED_STRING); |
895 | 1 | fQuoteMode = false; |
896 | 1 | } |
897 | 68.7k | } |
898 | 18.0M | else { |
899 | | // Character is not starting a new line. Except in the case of a |
900 | | // LF following a CR, increment the column position. |
901 | 18.0M | if (ch != chLF) { |
902 | 18.0M | fCharNum++; |
903 | 18.0M | } |
904 | 18.0M | } |
905 | 18.0M | fLastChar = ch; |
906 | 18.0M | return ch; |
907 | 18.0M | } |
908 | | |
909 | | |
910 | | //------------------------------------------------------------------------------ |
911 | | // |
912 | | // nextChar for rules scanning. At this level, we handle stripping |
913 | | // out comments and processing backslash character escapes. |
914 | | // The rest of the rules grammar is handled at the next level up. |
915 | | // |
916 | | //------------------------------------------------------------------------------ |
917 | 5.75M | void RBBIRuleScanner::nextChar(RBBIRuleChar &c) { |
918 | | |
919 | | // Unicode Character constants needed for the processing done by nextChar(), |
920 | | // in hex because literals wont work on EBCDIC machines. |
921 | | |
922 | 5.75M | fScanIndex = fNextIndex; |
923 | 5.75M | c.fChar = nextCharLL(); |
924 | 5.75M | c.fEscaped = false; |
925 | | |
926 | | // |
927 | | // check for '' sequence. |
928 | | // These are recognized in all contexts, whether in quoted text or not. |
929 | | // |
930 | 5.75M | if (c.fChar == chApos) { |
931 | 967 | if (fRB->fRules.char32At(fNextIndex) == chApos) { |
932 | 194 | c.fChar = nextCharLL(); // get nextChar officially so character counts |
933 | 194 | c.fEscaped = true; // stay correct. |
934 | 194 | } |
935 | 773 | else |
936 | 773 | { |
937 | | // Single quote, by itself. |
938 | | // Toggle quoting mode. |
939 | | // Return either '(' or ')', because quotes cause a grouping of the quoted text. |
940 | 773 | fQuoteMode = !fQuoteMode; |
941 | 773 | if (fQuoteMode) { |
942 | 405 | c.fChar = chLParen; |
943 | 405 | } else { |
944 | 368 | c.fChar = chRParen; |
945 | 368 | } |
946 | 773 | c.fEscaped = false; // The paren that we return is not escaped. |
947 | 773 | return; |
948 | 773 | } |
949 | 967 | } |
950 | | |
951 | 5.75M | if (c.fChar == static_cast<UChar32>(-1)) { |
952 | 3.85k | return; |
953 | 3.85k | } |
954 | 5.75M | if (fQuoteMode) { |
955 | 1.60k | c.fEscaped = true; |
956 | 1.60k | } |
957 | 5.75M | else |
958 | 5.75M | { |
959 | | // We are not in a 'quoted region' of the source. |
960 | | // |
961 | 5.75M | if (c.fChar == chPound) { |
962 | | // Start of a comment. Consume the rest of it. |
963 | | // The new-line char that terminates the comment is always returned. |
964 | | // It will be treated as white-space, and serves to break up anything |
965 | | // that might otherwise incorrectly clump together with a comment in |
966 | | // the middle (a variable name, for example.) |
967 | 476 | int32_t commentStart = fScanIndex; |
968 | 549k | for (;;) { |
969 | 549k | c.fChar = nextCharLL(); |
970 | 549k | if (c.fChar == static_cast<UChar32>(-1) || // EOF |
971 | 549k | c.fChar == chCR || |
972 | 548k | c.fChar == chLF || |
973 | 548k | c.fChar == chNEL || |
974 | 548k | c.fChar == chLS) {break;} |
975 | 549k | } |
976 | 549k | for (int32_t i=commentStart; i<fNextIndex-1; ++i) { |
977 | 549k | fRB->fStrippedRules.setCharAt(i, u' '); |
978 | 549k | } |
979 | 476 | } |
980 | 5.75M | if (c.fChar == static_cast<UChar32>(-1)) { |
981 | 70 | return; |
982 | 70 | } |
983 | | |
984 | | // |
985 | | // check for backslash escaped characters. |
986 | | // Use UnicodeString::unescapeAt() to handle them. |
987 | | // |
988 | 5.75M | if (c.fChar == chBackSlash) { |
989 | 66.4k | c.fEscaped = true; |
990 | 66.4k | int32_t startX = fNextIndex; |
991 | 66.4k | c.fChar = fRB->fRules.unescapeAt(fNextIndex); |
992 | 66.4k | if (fNextIndex == startX) { |
993 | 115 | error(U_BRK_HEX_DIGITS_EXPECTED); |
994 | 115 | } |
995 | 66.4k | fCharNum += fNextIndex-startX; |
996 | 66.4k | } |
997 | 5.75M | } |
998 | | // putc(c.fChar, stdout); |
999 | 5.75M | } |
1000 | | |
1001 | | //------------------------------------------------------------------------------ |
1002 | | // |
1003 | | // Parse RBBI rules. The state machine for rules parsing is here. |
1004 | | // The state tables are hand-written in the file rbbirpt.txt, |
1005 | | // and converted to the form used here by a perl |
1006 | | // script rbbicst.pl |
1007 | | // |
1008 | | //------------------------------------------------------------------------------ |
1009 | 8.25k | void RBBIRuleScanner::parse() { |
1010 | 8.25k | uint16_t state; |
1011 | 8.25k | const RBBIRuleTableEl *tableEl; |
1012 | | |
1013 | 8.25k | if (U_FAILURE(*fRB->fStatus)) { |
1014 | 0 | return; |
1015 | 0 | } |
1016 | | |
1017 | 8.25k | state = 1; |
1018 | 8.25k | nextChar(fC); |
1019 | | // |
1020 | | // Main loop for the rule parsing state machine. |
1021 | | // Runs once per state transition. |
1022 | | // Each time through optionally performs, depending on the state table, |
1023 | | // - an advance to the next input char |
1024 | | // - an action to be performed. |
1025 | | // - pushing or popping a state to/from the local state return stack. |
1026 | | // |
1027 | 15.5M | for (;;) { |
1028 | | // Bail out if anything has gone wrong. |
1029 | | // RBBI rule file parsing stops on the first error encountered. |
1030 | 15.5M | if (U_FAILURE(*fRB->fStatus)) { |
1031 | 149 | break; |
1032 | 149 | } |
1033 | | |
1034 | | // Quit if state == 0. This is the normal way to exit the state machine. |
1035 | | // |
1036 | 15.5M | if (state == 0) { |
1037 | 2.76k | break; |
1038 | 2.76k | } |
1039 | | |
1040 | | // Find the state table element that matches the input char from the rule, or the |
1041 | | // class of the input character. Start with the first table row for this |
1042 | | // state, then linearly scan forward until we find a row that matches the |
1043 | | // character. The last row for each state always matches all characters, so |
1044 | | // the search will stop there, if not before. |
1045 | | // |
1046 | 15.5M | tableEl = &gRuleParseStateTable[state]; |
1047 | | #ifdef RBBI_DEBUG |
1048 | | if (fRB->fDebugEnv && uprv_strstr(fRB->fDebugEnv, "scan")) { |
1049 | | RBBIDebugPrintf("char, line, col = (\'%c\', %d, %d) state=%s ", |
1050 | | fC.fChar, fLineNum, fCharNum, RBBIRuleStateNames[state]); |
1051 | | } |
1052 | | #endif |
1053 | | |
1054 | 55.2M | for (;;) { |
1055 | | #ifdef RBBI_DEBUG |
1056 | | if (fRB->fDebugEnv && uprv_strstr(fRB->fDebugEnv, "scan")) { RBBIDebugPrintf("."); fflush(stdout);} |
1057 | | #endif |
1058 | 55.2M | if (tableEl->fCharClass < 127 && fC.fEscaped == false && tableEl->fCharClass == fC.fChar) { |
1059 | | // Table row specified an individual character, not a set, and |
1060 | | // the input character is not escaped, and |
1061 | | // the input character matched it. |
1062 | 170k | break; |
1063 | 170k | } |
1064 | 55.0M | if (tableEl->fCharClass == 255) { |
1065 | | // Table row specified default, match anything character class. |
1066 | 4.95M | break; |
1067 | 4.95M | } |
1068 | 50.1M | if (tableEl->fCharClass == 254 && fC.fEscaped) { |
1069 | | // Table row specified "escaped" and the char was escaped. |
1070 | 121k | break; |
1071 | 121k | } |
1072 | 50.0M | if (tableEl->fCharClass == 253 && fC.fEscaped && |
1073 | 0 | (fC.fChar == 0x50 || fC.fChar == 0x70 )) { |
1074 | | // Table row specified "escaped P" and the char is either 'p' or 'P'. |
1075 | 0 | break; |
1076 | 0 | } |
1077 | 50.0M | if (tableEl->fCharClass == 252 && fC.fChar == static_cast<UChar32>(-1)) { |
1078 | | // Table row specified eof and we hit eof on the input. |
1079 | 2.77k | break; |
1080 | 2.77k | } |
1081 | | |
1082 | 50.0M | if (tableEl->fCharClass >= 128 && tableEl->fCharClass < 240 && // Table specs a char class && |
1083 | 25.0M | fC.fEscaped == false && // char is not escaped && |
1084 | 24.9M | fC.fChar != static_cast<UChar32>(-1)) { // char is not EOF |
1085 | 24.9M | U_ASSERT((tableEl->fCharClass-128) < UPRV_LENGTHOF(fRuleSets)); |
1086 | 24.9M | if (fRuleSets[tableEl->fCharClass-128].contains(fC.fChar)) { |
1087 | | // Table row specified a character class, or set of characters, |
1088 | | // and the current char matches it. |
1089 | 10.3M | break; |
1090 | 10.3M | } |
1091 | 24.9M | } |
1092 | | |
1093 | | // No match on this row, advance to the next row for this state, |
1094 | 39.6M | tableEl++; |
1095 | 39.6M | } |
1096 | 15.5M | if (fRB->fDebugEnv && uprv_strstr(fRB->fDebugEnv, "scan")) { RBBIDebugPuts("");} |
1097 | | |
1098 | | // |
1099 | | // We've found the row of the state table that matches the current input |
1100 | | // character from the rules string. |
1101 | | // Perform any action specified by this row in the state table. |
1102 | 15.5M | if (doParseActions(static_cast<int32_t>(tableEl->fAction)) == false) { |
1103 | | // Break out of the state machine loop if the |
1104 | | // the action signalled some kind of error, or |
1105 | | // the action was to exit, occurs on normal end-of-rules-input. |
1106 | 5.33k | break; |
1107 | 5.33k | } |
1108 | | |
1109 | 15.5M | if (tableEl->fPushState != 0) { |
1110 | 63.7k | fStackPtr++; |
1111 | 63.7k | if (fStackPtr >= kStackSize) { |
1112 | 1 | error(U_BRK_INTERNAL_ERROR); |
1113 | 1 | RBBIDebugPuts("RBBIRuleScanner::parse() - state stack overflow."); |
1114 | 1 | fStackPtr--; |
1115 | 1 | } |
1116 | 63.7k | fStack[fStackPtr] = tableEl->fPushState; |
1117 | 63.7k | } |
1118 | | |
1119 | 15.5M | if (tableEl->fNextChar) { |
1120 | 5.75M | nextChar(fC); |
1121 | 5.75M | } |
1122 | | |
1123 | | // Get the next state from the table entry, or from the |
1124 | | // state stack if the next state was specified as "pop". |
1125 | 15.5M | if (tableEl->fNextState != 255) { |
1126 | 15.5M | state = tableEl->fNextState; |
1127 | 15.5M | } else { |
1128 | 54.3k | state = fStack[fStackPtr]; |
1129 | 54.3k | fStackPtr--; |
1130 | 54.3k | if (fStackPtr < 0) { |
1131 | 0 | error(U_BRK_INTERNAL_ERROR); |
1132 | 0 | RBBIDebugPuts("RBBIRuleScanner::parse() - state stack underflow."); |
1133 | 0 | fStackPtr++; |
1134 | 0 | } |
1135 | 54.3k | } |
1136 | | |
1137 | 15.5M | } |
1138 | | |
1139 | 8.25k | if (U_FAILURE(*fRB->fStatus)) { |
1140 | 5.48k | return; |
1141 | 5.48k | } |
1142 | | |
1143 | | // If there are no forward rules set an error. |
1144 | | // |
1145 | 2.76k | if (fRB->fForwardTree == nullptr) { |
1146 | 107 | error(U_BRK_RULE_SYNTAX); |
1147 | 107 | return; |
1148 | 107 | } |
1149 | | |
1150 | | // |
1151 | | // Parsing of the input RBBI rules is complete. |
1152 | | // We now have a parse tree for the rule expressions |
1153 | | // and a list of all UnicodeSets that are referenced. |
1154 | | // |
1155 | | #ifdef RBBI_DEBUG |
1156 | | if (fRB->fDebugEnv && uprv_strstr(fRB->fDebugEnv, "symbols")) {fSymbolTable->rbbiSymtablePrint();} |
1157 | | if (fRB->fDebugEnv && uprv_strstr(fRB->fDebugEnv, "ptree")) { |
1158 | | RBBIDebugPrintf("Completed Forward Rules Parse Tree...\n"); |
1159 | | RBBINode::printTree(fRB->fForwardTree, true); |
1160 | | RBBIDebugPrintf("\nCompleted Reverse Rules Parse Tree...\n"); |
1161 | | RBBINode::printTree(fRB->fReverseTree, true); |
1162 | | RBBIDebugPrintf("\nCompleted Safe Point Forward Rules Parse Tree...\n"); |
1163 | | RBBINode::printTree(fRB->fSafeFwdTree, true); |
1164 | | RBBIDebugPrintf("\nCompleted Safe Point Reverse Rules Parse Tree...\n"); |
1165 | | RBBINode::printTree(fRB->fSafeRevTree, true); |
1166 | | } |
1167 | | #endif |
1168 | 2.76k | } |
1169 | | |
1170 | | |
1171 | | //------------------------------------------------------------------------------ |
1172 | | // |
1173 | | // printNodeStack for debugging... |
1174 | | // |
1175 | | //------------------------------------------------------------------------------ |
1176 | | #ifdef RBBI_DEBUG |
1177 | | void RBBIRuleScanner::printNodeStack(const char *title) { |
1178 | | int i; |
1179 | | RBBIDebugPrintf("%s. Dumping node stack...\n", title); |
1180 | | for (i=fNodeStackPtr; i>0; i--) {RBBINode::printTree(fNodeStack[i], true);} |
1181 | | } |
1182 | | #endif |
1183 | | |
1184 | | |
1185 | | |
1186 | | |
1187 | | //------------------------------------------------------------------------------ |
1188 | | // |
1189 | | // pushNewNode create a new RBBINode of the specified type and push it |
1190 | | // onto the stack of nodes. |
1191 | | // |
1192 | | //------------------------------------------------------------------------------ |
1193 | 9.82M | RBBINode *RBBIRuleScanner::pushNewNode(RBBINode::NodeType t) { |
1194 | 9.82M | if (U_FAILURE(*fRB->fStatus)) { |
1195 | 0 | return nullptr; |
1196 | 0 | } |
1197 | 9.82M | if (fNodeStackPtr >= kStackSize - 1) { |
1198 | 6 | error(U_BRK_RULE_SYNTAX); |
1199 | 6 | RBBIDebugPuts("RBBIRuleScanner::pushNewNode - stack overflow."); |
1200 | 6 | return nullptr; |
1201 | 6 | } |
1202 | 9.82M | fNodeStackPtr++; |
1203 | 9.82M | fNodeStack[fNodeStackPtr] = new RBBINode(t, *fRB->fStatus); |
1204 | 9.82M | if (fNodeStack[fNodeStackPtr] == nullptr) { |
1205 | 0 | *fRB->fStatus = U_MEMORY_ALLOCATION_ERROR; |
1206 | 0 | } |
1207 | 9.82M | return fNodeStack[fNodeStackPtr]; |
1208 | 9.82M | } |
1209 | | |
1210 | | |
1211 | | |
1212 | | //------------------------------------------------------------------------------ |
1213 | | // |
1214 | | // scanSet Construct a UnicodeSet from the text at the current scan |
1215 | | // position. Advance the scan position to the first character |
1216 | | // after the set. |
1217 | | // |
1218 | | // A new RBBI setref node referring to the set is pushed onto the node |
1219 | | // stack. |
1220 | | // |
1221 | | // The scan position is normally under the control of the state machine |
1222 | | // that controls rule parsing. UnicodeSets, however, are parsed by |
1223 | | // the UnicodeSet constructor, not by the RBBI rule parser. |
1224 | | // |
1225 | | //------------------------------------------------------------------------------ |
1226 | 19.8k | void RBBIRuleScanner::scanSet() { |
1227 | 19.8k | ParsePosition pos; |
1228 | 19.8k | int startPos; |
1229 | 19.8k | int i; |
1230 | | |
1231 | 19.8k | if (U_FAILURE(*fRB->fStatus)) { |
1232 | 0 | return; |
1233 | 0 | } |
1234 | | |
1235 | 19.8k | pos.setIndex(fScanIndex); |
1236 | 19.8k | startPos = fScanIndex; |
1237 | 19.8k | UErrorCode localStatus = U_ZERO_ERROR; |
1238 | 19.8k | LocalPointer<UnicodeSet> uset(new UnicodeSet(), localStatus); |
1239 | 19.8k | if (U_FAILURE(localStatus)) { |
1240 | 0 | error(localStatus); |
1241 | 0 | return; |
1242 | 0 | } |
1243 | 19.8k | uset->applyPatternIgnoreSpace(fRB->fRules, pos, fSymbolTable, localStatus); |
1244 | 19.8k | if (U_FAILURE(localStatus)) { |
1245 | | // TODO: Get more accurate position of the error from UnicodeSet's return info. |
1246 | | // UnicodeSet appears to not be reporting correctly at this time. |
1247 | | #ifdef RBBI_DEBUG |
1248 | | RBBIDebugPrintf("UnicodeSet parse position.ErrorIndex = %d\n", pos.getIndex()); |
1249 | | #endif |
1250 | 3.88k | error(localStatus); |
1251 | 3.88k | return; |
1252 | 3.88k | } |
1253 | | |
1254 | | // Verify that the set contains at least one code point. |
1255 | | // |
1256 | 15.9k | U_ASSERT(uset.isValid()); |
1257 | 15.9k | UnicodeSet tempSet(*uset); |
1258 | | // Use tempSet to handle the case that the UnicodeSet contains |
1259 | | // only string element, such as [{ab}] and treat it as empty set. |
1260 | 15.9k | tempSet.removeAllStrings(); |
1261 | 15.9k | if (tempSet.isEmpty()) { |
1262 | | // This set is empty. |
1263 | | // Make it an error, because it almost certainly is not what the user wanted. |
1264 | | // Also, avoids having to think about corner cases in the tree manipulation code |
1265 | | // that occurs later on. |
1266 | 40 | error(U_BRK_RULE_EMPTY_SET); |
1267 | 40 | return; |
1268 | 40 | } |
1269 | | |
1270 | | |
1271 | | // Advance the RBBI parse position over the UnicodeSet pattern. |
1272 | | // Don't just set fScanIndex because the line/char positions maintained |
1273 | | // for error reporting would be thrown off. |
1274 | 15.9k | i = pos.getIndex(); |
1275 | 11.7M | for (;U_SUCCESS(*fRB->fStatus);) { |
1276 | 11.7M | if (fNextIndex >= i) { |
1277 | 15.7k | break; |
1278 | 15.7k | } |
1279 | 11.7M | nextCharLL(); |
1280 | 11.7M | } |
1281 | | |
1282 | 15.9k | if (U_SUCCESS(*fRB->fStatus)) { |
1283 | 15.7k | RBBINode *n; |
1284 | | |
1285 | 15.7k | n = pushNewNode(RBBINode::setRef); |
1286 | 15.7k | if (U_FAILURE(*fRB->fStatus)) { |
1287 | 1 | return; |
1288 | 1 | } |
1289 | 15.7k | n->fFirstPos = startPos; |
1290 | 15.7k | n->fLastPos = fNextIndex; |
1291 | 15.7k | fRB->fRules.extractBetween(n->fFirstPos, n->fLastPos, n->fText); |
1292 | | // findSetFor() serves several purposes here: |
1293 | | // - Adopts storage for the UnicodeSet, will be responsible for deleting. |
1294 | | // - Maintains collection of all sets in use, needed later for establishing |
1295 | | // character categories for run time engine. |
1296 | | // - Eliminates mulitiple instances of the same set. |
1297 | | // - Creates a new uset node if necessary (if this isn't a duplicate.) |
1298 | 15.7k | findSetFor(n->fText, n, uset.orphan()); |
1299 | 15.7k | } |
1300 | | |
1301 | 15.9k | } |
1302 | | |
1303 | 5.22k | int32_t RBBIRuleScanner::numRules() { |
1304 | 5.22k | return fRuleNum; |
1305 | 5.22k | } |
1306 | | |
1307 | | U_NAMESPACE_END |
1308 | | |
1309 | | #endif /* #if !UCONFIG_NO_BREAK_ITERATION */ |