/src/icu/icu4c/source/i18n/hebrwcal.cpp
Line | Count | Source |
1 | | // © 2016 and later: Unicode, Inc. and others. |
2 | | // License & terms of use: http://www.unicode.org/copyright.html |
3 | | /* |
4 | | ****************************************************************************** |
5 | | * Copyright (C) 2003-2016, International Business Machines Corporation |
6 | | * and others. All Rights Reserved. |
7 | | ****************************************************************************** |
8 | | * |
9 | | * File HEBRWCAL.CPP |
10 | | * |
11 | | * Modification History: |
12 | | * |
13 | | * Date Name Description |
14 | | * 12/03/2003 srl ported from java HebrewCalendar |
15 | | ***************************************************************************** |
16 | | */ |
17 | | |
18 | | #include "hebrwcal.h" |
19 | | |
20 | | #if !UCONFIG_NO_FORMATTING |
21 | | |
22 | | #include "cmemory.h" |
23 | | #include "cstring.h" |
24 | | #include "umutex.h" |
25 | | #include <float.h> |
26 | | #include "gregoimp.h" // ClockMath |
27 | | #include "astro.h" // CalendarCache |
28 | | #include "uhash.h" |
29 | | #include "ucln_in.h" |
30 | | |
31 | | // Hebrew Calendar implementation |
32 | | |
33 | | /** |
34 | | * The absolute date, in milliseconds since 1/1/1970 AD, Gregorian, |
35 | | * of the start of the Hebrew calendar. In order to keep this calendar's |
36 | | * time of day in sync with that of the Gregorian calendar, we use |
37 | | * midnight, rather than sunset the day before. |
38 | | */ |
39 | | //static const double EPOCH_MILLIS = -180799862400000.; // 1/1/1 HY |
40 | | |
41 | | static const int32_t LIMITS[UCAL_FIELD_COUNT][4] = { |
42 | | // Minimum Greatest Least Maximum |
43 | | // Minimum Maximum |
44 | | { 0, 0, 0, 0}, // ERA |
45 | | { -5000000, -5000000, 5000000, 5000000}, // YEAR |
46 | | { 0, 0, 12, 12}, // MONTH |
47 | | { 1, 1, 51, 56}, // WEEK_OF_YEAR |
48 | | {/*N/A*/-1,/*N/A*/-1,/*N/A*/-1,/*N/A*/-1}, // WEEK_OF_MONTH |
49 | | { 1, 1, 29, 30}, // DAY_OF_MONTH |
50 | | { 1, 1, 353, 385}, // DAY_OF_YEAR |
51 | | {/*N/A*/-1,/*N/A*/-1,/*N/A*/-1,/*N/A*/-1}, // DAY_OF_WEEK |
52 | | { -1, -1, 5, 5}, // DAY_OF_WEEK_IN_MONTH |
53 | | {/*N/A*/-1,/*N/A*/-1,/*N/A*/-1,/*N/A*/-1}, // AM_PM |
54 | | {/*N/A*/-1,/*N/A*/-1,/*N/A*/-1,/*N/A*/-1}, // HOUR |
55 | | {/*N/A*/-1,/*N/A*/-1,/*N/A*/-1,/*N/A*/-1}, // HOUR_OF_DAY |
56 | | {/*N/A*/-1,/*N/A*/-1,/*N/A*/-1,/*N/A*/-1}, // MINUTE |
57 | | {/*N/A*/-1,/*N/A*/-1,/*N/A*/-1,/*N/A*/-1}, // SECOND |
58 | | {/*N/A*/-1,/*N/A*/-1,/*N/A*/-1,/*N/A*/-1}, // MILLISECOND |
59 | | {/*N/A*/-1,/*N/A*/-1,/*N/A*/-1,/*N/A*/-1}, // ZONE_OFFSET |
60 | | {/*N/A*/-1,/*N/A*/-1,/*N/A*/-1,/*N/A*/-1}, // DST_OFFSET |
61 | | { -5000000, -5000000, 5000000, 5000000}, // YEAR_WOY |
62 | | {/*N/A*/-1,/*N/A*/-1,/*N/A*/-1,/*N/A*/-1}, // DOW_LOCAL |
63 | | { -5000000, -5000000, 5000000, 5000000}, // EXTENDED_YEAR |
64 | | {/*N/A*/-1,/*N/A*/-1,/*N/A*/-1,/*N/A*/-1}, // JULIAN_DAY |
65 | | {/*N/A*/-1,/*N/A*/-1,/*N/A*/-1,/*N/A*/-1}, // MILLISECONDS_IN_DAY |
66 | | {/*N/A*/-1,/*N/A*/-1,/*N/A*/-1,/*N/A*/-1}, // IS_LEAP_MONTH |
67 | | { 0, 0, 11, 12}, // ORDINAL_MONTH |
68 | | }; |
69 | | |
70 | | /** |
71 | | * The lengths of the Hebrew months. This is complicated, because there |
72 | | * are three different types of years, or six if you count leap years. |
73 | | * Due to the rules for postponing the start of the year to avoid having |
74 | | * certain holidays fall on the sabbath, the year can end up being three |
75 | | * different lengths, called "deficient", "normal", and "complete". |
76 | | */ |
77 | | static const int8_t MONTH_LENGTH[][3] = { |
78 | | // Deficient Normal Complete |
79 | | { 30, 30, 30 }, //Tishri |
80 | | { 29, 29, 30 }, //Heshvan |
81 | | { 29, 30, 30 }, //Kislev |
82 | | { 29, 29, 29 }, //Tevet |
83 | | { 30, 30, 30 }, //Shevat |
84 | | { 30, 30, 30 }, //Adar I (leap years only) |
85 | | { 29, 29, 29 }, //Adar |
86 | | { 30, 30, 30 }, //Nisan |
87 | | { 29, 29, 29 }, //Iyar |
88 | | { 30, 30, 30 }, //Sivan |
89 | | { 29, 29, 29 }, //Tammuz |
90 | | { 30, 30, 30 }, //Av |
91 | | { 29, 29, 29 }, //Elul |
92 | | }; |
93 | | |
94 | | /** |
95 | | * The cumulative # of days to the end of each month in a non-leap year |
96 | | * Although this can be calculated from the MONTH_LENGTH table, |
97 | | * keeping it around separately makes some calculations a lot faster |
98 | | */ |
99 | | |
100 | | static const int16_t MONTH_START[][3] = { |
101 | | // Deficient Normal Complete |
102 | | { 0, 0, 0 }, // (placeholder) |
103 | | { 30, 30, 30 }, // Tishri |
104 | | { 59, 59, 60 }, // Heshvan |
105 | | { 88, 89, 90 }, // Kislev |
106 | | { 117, 118, 119 }, // Tevet |
107 | | { 147, 148, 149 }, // Shevat |
108 | | { 147, 148, 149 }, // (Adar I placeholder) |
109 | | { 176, 177, 178 }, // Adar |
110 | | { 206, 207, 208 }, // Nisan |
111 | | { 235, 236, 237 }, // Iyar |
112 | | { 265, 266, 267 }, // Sivan |
113 | | { 294, 295, 296 }, // Tammuz |
114 | | { 324, 325, 326 }, // Av |
115 | | { 353, 354, 355 }, // Elul |
116 | | }; |
117 | | |
118 | | /** |
119 | | * The cumulative # of days to the end of each month in a leap year |
120 | | */ |
121 | | static const int16_t LEAP_MONTH_START[][3] = { |
122 | | // Deficient Normal Complete |
123 | | { 0, 0, 0 }, // (placeholder) |
124 | | { 30, 30, 30 }, // Tishri |
125 | | { 59, 59, 60 }, // Heshvan |
126 | | { 88, 89, 90 }, // Kislev |
127 | | { 117, 118, 119 }, // Tevet |
128 | | { 147, 148, 149 }, // Shevat |
129 | | { 177, 178, 179 }, // Adar I |
130 | | { 206, 207, 208 }, // Adar II |
131 | | { 236, 237, 238 }, // Nisan |
132 | | { 265, 266, 267 }, // Iyar |
133 | | { 295, 296, 297 }, // Sivan |
134 | | { 324, 325, 326 }, // Tammuz |
135 | | { 354, 355, 356 }, // Av |
136 | | { 383, 384, 385 }, // Elul |
137 | | }; |
138 | | |
139 | | // There are 235 months in 19 years cycle. |
140 | | static const int32_t MONTHS_IN_CYCLE = 235; |
141 | | static const int32_t YEARS_IN_CYCLE = 19; |
142 | | |
143 | | static icu::CalendarCache *gCache = nullptr; |
144 | | |
145 | | U_CDECL_BEGIN |
146 | 0 | static UBool calendar_hebrew_cleanup() { |
147 | 0 | delete gCache; |
148 | 0 | gCache = nullptr; |
149 | 0 | return true; |
150 | 0 | } |
151 | | U_CDECL_END |
152 | | |
153 | | U_NAMESPACE_BEGIN |
154 | | //------------------------------------------------------------------------- |
155 | | // Constructors... |
156 | | //------------------------------------------------------------------------- |
157 | | |
158 | | /** |
159 | | * Constructs a default <code>HebrewCalendar</code> using the current time |
160 | | * in the default time zone with the default locale. |
161 | | * @internal |
162 | | */ |
163 | | HebrewCalendar::HebrewCalendar(const Locale& aLocale, UErrorCode& success) |
164 | 281 | : Calendar(TimeZone::forLocaleOrDefault(aLocale), aLocale, success) |
165 | | |
166 | 281 | { |
167 | 281 | } |
168 | | |
169 | | |
170 | 6.56k | HebrewCalendar::~HebrewCalendar() { |
171 | 6.56k | } |
172 | | |
173 | 34 | const char *HebrewCalendar::getType() const { |
174 | 34 | return "hebrew"; |
175 | 34 | } |
176 | | |
177 | 6.38k | HebrewCalendar* HebrewCalendar::clone() const { |
178 | 6.38k | return new HebrewCalendar(*this); |
179 | 6.38k | } |
180 | | |
181 | 6.38k | HebrewCalendar::HebrewCalendar(const HebrewCalendar& other) : Calendar(other) { |
182 | 6.38k | } |
183 | | |
184 | | |
185 | | //------------------------------------------------------------------------- |
186 | | // Rolling and adding functions overridden from Calendar |
187 | | // |
188 | | // These methods call through to the default implementation in IBMCalendar |
189 | | // for most of the fields and only handle the unusual ones themselves. |
190 | | //------------------------------------------------------------------------- |
191 | | |
192 | | /** |
193 | | * Add a signed amount to a specified field, using this calendar's rules. |
194 | | * For example, to add three days to the current date, you can call |
195 | | * <code>add(Calendar.DATE, 3)</code>. |
196 | | * <p> |
197 | | * When adding to certain fields, the values of other fields may conflict and |
198 | | * need to be changed. For example, when adding one to the {@link #MONTH MONTH} field |
199 | | * for the date "30 Av 5758", the {@link #DAY_OF_MONTH DAY_OF_MONTH} field |
200 | | * must be adjusted so that the result is "29 Elul 5758" rather than the invalid |
201 | | * "30 Elul 5758". |
202 | | * <p> |
203 | | * This method is able to add to |
204 | | * all fields except for {@link #ERA ERA}, {@link #DST_OFFSET DST_OFFSET}, |
205 | | * and {@link #ZONE_OFFSET ZONE_OFFSET}. |
206 | | * <p> |
207 | | * <b>Note:</b> You should always use {@link #roll roll} and add rather |
208 | | * than attempting to perform arithmetic operations directly on the fields |
209 | | * of a <tt>HebrewCalendar</tt>. Since the {@link #MONTH MONTH} field behaves |
210 | | * discontinuously in non-leap years, simple arithmetic can give invalid results. |
211 | | * <p> |
212 | | * @param field the time field. |
213 | | * @param amount the amount to add to the field. |
214 | | * |
215 | | * @exception IllegalArgumentException if the field is invalid or refers |
216 | | * to a field that cannot be handled by this method. |
217 | | * @internal |
218 | | */ |
219 | | void HebrewCalendar::add(UCalendarDateFields field, int32_t amount, UErrorCode& status) |
220 | 10.3k | { |
221 | 10.3k | if(U_FAILURE(status)) { |
222 | 114 | return; |
223 | 114 | } |
224 | 10.2k | switch (field) { |
225 | 2.94k | case UCAL_MONTH: |
226 | 4.06k | case UCAL_ORDINAL_MONTH: |
227 | 4.06k | { |
228 | | // We can't just do a set(MONTH, get(MONTH) + amount). The |
229 | | // reason is ADAR_1. Suppose amount is +2 and we land in |
230 | | // ADAR_1 -- then we have to bump to ADAR_2 aka ADAR. But |
231 | | // if amount is -2 and we land in ADAR_1, then we have to |
232 | | // bump the other way -- down to SHEVAT. - Alan 11/00 |
233 | 4.06k | int64_t month = get(UCAL_MONTH, status); |
234 | 4.06k | int32_t year = get(UCAL_YEAR, status); |
235 | 4.06k | UBool acrossAdar1; |
236 | 4.06k | if (amount > 0) { |
237 | 2.35k | acrossAdar1 = (month < ADAR_1); // started before ADAR_1? |
238 | 2.35k | month += amount; |
239 | | // We know there are total 235 months in every 19 years. To speed |
240 | | // up the iteration, we first fast forward in the multiple of 235 |
241 | | // months for 19 years before the iteration which check the leap year. |
242 | 2.35k | if (month >= MONTHS_IN_CYCLE) { |
243 | 1.80k | if (uprv_add32_overflow(year, (month / MONTHS_IN_CYCLE) * YEARS_IN_CYCLE, &year)) { |
244 | 0 | status = U_ILLEGAL_ARGUMENT_ERROR; |
245 | 0 | return; |
246 | 0 | } |
247 | 1.80k | month %= MONTHS_IN_CYCLE; |
248 | 1.80k | } |
249 | | |
250 | 19.1k | for (;;) { |
251 | 19.1k | if (acrossAdar1 && month>=ADAR_1 && !isLeapYear(year)) { |
252 | 11.4k | ++month; |
253 | 11.4k | } |
254 | 19.1k | if (month <= ELUL) { |
255 | 2.35k | break; |
256 | 2.35k | } |
257 | 16.7k | month -= ELUL+1; |
258 | 16.7k | ++year; |
259 | 16.7k | acrossAdar1 = true; |
260 | 16.7k | } |
261 | 2.35k | } else { |
262 | 1.70k | acrossAdar1 = (month > ADAR_1); // started after ADAR_1? |
263 | 1.70k | month += amount; |
264 | | // We know there are total 235 months in every 19 years. To speed |
265 | | // up the iteration, we first fast forward in the multiple of 235 |
266 | | // months for 19 years before the iteration which check the leap year. |
267 | 1.70k | if (month <= -MONTHS_IN_CYCLE) { |
268 | 1.28k | if (uprv_add32_overflow(year, (month / MONTHS_IN_CYCLE) * YEARS_IN_CYCLE, &year)) { |
269 | 0 | status = U_ILLEGAL_ARGUMENT_ERROR; |
270 | 0 | return; |
271 | 0 | } |
272 | 1.28k | month %= MONTHS_IN_CYCLE; |
273 | 1.28k | } |
274 | 15.4k | for (;;) { |
275 | 15.4k | if (acrossAdar1 && month<=ADAR_1 && !isLeapYear(year)) { |
276 | 8.09k | --month; |
277 | 8.09k | } |
278 | 15.4k | if (month >= 0) { |
279 | 1.70k | break; |
280 | 1.70k | } |
281 | 13.7k | month += ELUL+1; |
282 | 13.7k | --year; |
283 | 13.7k | acrossAdar1 = true; |
284 | 13.7k | } |
285 | 1.70k | } |
286 | 4.06k | set(UCAL_MONTH, month); |
287 | 4.06k | set(UCAL_YEAR, year); |
288 | 4.06k | pinField(UCAL_DAY_OF_MONTH, status); |
289 | 4.06k | break; |
290 | 4.06k | } |
291 | | |
292 | 6.22k | default: |
293 | 6.22k | Calendar::add(field, amount, status); |
294 | 6.22k | break; |
295 | 10.2k | } |
296 | 10.2k | } |
297 | | |
298 | | /** |
299 | | * @deprecated ICU 2.6 use UCalendarDateFields instead of EDateFields |
300 | | */ |
301 | | void HebrewCalendar::add(EDateFields field, int32_t amount, UErrorCode& status) |
302 | 0 | { |
303 | 0 | add(static_cast<UCalendarDateFields>(field), amount, status); |
304 | 0 | } |
305 | | |
306 | | namespace { |
307 | | |
308 | | int32_t monthsInYear(int32_t year); |
309 | | |
310 | | } // namespace |
311 | | |
312 | | /** |
313 | | * Rolls (up/down) a specified amount time on the given field. For |
314 | | * example, to roll the current date up by three days, you can call |
315 | | * <code>roll(Calendar.DATE, 3)</code>. If the |
316 | | * field is rolled past its maximum allowable value, it will "wrap" back |
317 | | * to its minimum and continue rolling. |
318 | | * For example, calling <code>roll(Calendar.DATE, 10)</code> |
319 | | * on a Hebrew calendar set to "25 Av 5758" will result in the date "5 Av 5758". |
320 | | * <p> |
321 | | * When rolling certain fields, the values of other fields may conflict and |
322 | | * need to be changed. For example, when rolling the {@link #MONTH MONTH} field |
323 | | * upward by one for the date "30 Av 5758", the {@link #DAY_OF_MONTH DAY_OF_MONTH} field |
324 | | * must be adjusted so that the result is "29 Elul 5758" rather than the invalid |
325 | | * "30 Elul". |
326 | | * <p> |
327 | | * This method is able to roll |
328 | | * all fields except for {@link #ERA ERA}, {@link #DST_OFFSET DST_OFFSET}, |
329 | | * and {@link #ZONE_OFFSET ZONE_OFFSET}. Subclasses may, of course, add support for |
330 | | * additional fields in their overrides of <code>roll</code>. |
331 | | * <p> |
332 | | * <b>Note:</b> You should always use roll and {@link #add add} rather |
333 | | * than attempting to perform arithmetic operations directly on the fields |
334 | | * of a <tt>HebrewCalendar</tt>. Since the {@link #MONTH MONTH} field behaves |
335 | | * discontinuously in non-leap years, simple arithmetic can give invalid results. |
336 | | * <p> |
337 | | * @param field the time field. |
338 | | * @param amount the amount by which the field should be rolled. |
339 | | * |
340 | | * @exception IllegalArgumentException if the field is invalid or refers |
341 | | * to a field that cannot be handled by this method. |
342 | | * @internal |
343 | | */ |
344 | | void HebrewCalendar::roll(UCalendarDateFields field, int32_t amount, UErrorCode& status) |
345 | 349 | { |
346 | 349 | if(U_FAILURE(status)) { |
347 | 0 | return; |
348 | 0 | } |
349 | 349 | switch (field) { |
350 | 74 | case UCAL_MONTH: |
351 | 187 | case UCAL_ORDINAL_MONTH: |
352 | 187 | { |
353 | 187 | int32_t month = get(UCAL_MONTH, status); |
354 | 187 | int32_t year = get(UCAL_YEAR, status); |
355 | | |
356 | 187 | UBool leapYear = isLeapYear(year); |
357 | 187 | int32_t yearLength = monthsInYear(year); |
358 | 187 | int32_t newMonth = month + (amount % yearLength); |
359 | | // |
360 | | // If it's not a leap year and we're rolling past the missing month |
361 | | // of ADAR_1, we need to roll an extra month to make up for it. |
362 | | // |
363 | 187 | if (!leapYear) { |
364 | 151 | if (amount > 0 && month < ADAR_1 && newMonth >= ADAR_1) { |
365 | 19 | newMonth++; |
366 | 132 | } else if (amount < 0 && month > ADAR_1 && newMonth <= ADAR_1) { |
367 | 10 | newMonth--; |
368 | 10 | } |
369 | 151 | } |
370 | 187 | set(UCAL_MONTH, (newMonth + 13) % 13); |
371 | 187 | pinField(UCAL_DAY_OF_MONTH, status); |
372 | 187 | return; |
373 | 74 | } |
374 | 162 | default: |
375 | 162 | Calendar::roll(field, amount, status); |
376 | 349 | } |
377 | 349 | } |
378 | | |
379 | 0 | void HebrewCalendar::roll(EDateFields field, int32_t amount, UErrorCode& status) { |
380 | 0 | roll(static_cast<UCalendarDateFields>(field), amount, status); |
381 | 0 | } |
382 | | |
383 | | //------------------------------------------------------------------------- |
384 | | // Support methods |
385 | | //------------------------------------------------------------------------- |
386 | | |
387 | | // Hebrew date calculations are performed in terms of days, hours, and |
388 | | // "parts" (or halakim), which are 1/1080 of an hour, or 3 1/3 seconds. |
389 | | static const int32_t HOUR_PARTS = 1080; |
390 | | static const int32_t DAY_PARTS = 24*HOUR_PARTS; |
391 | | |
392 | | // An approximate value for the length of a lunar month. |
393 | | // It is used to calculate the approximate year and month of a given |
394 | | // absolute date. |
395 | | static const int32_t MONTH_DAYS = 29; |
396 | | static const int32_t MONTH_FRACT = 12*HOUR_PARTS + 793; |
397 | | static const int32_t MONTH_PARTS = MONTH_DAYS*DAY_PARTS + MONTH_FRACT; |
398 | | |
399 | | // The time of the new moon (in parts) on 1 Tishri, year 1 (the epoch) |
400 | | // counting from noon on the day before. BAHARAD is an abbreviation of |
401 | | // Bet (Monday), Hey (5 hours from sunset), Resh-Daled (204). |
402 | | static const int32_t BAHARAD = 11*HOUR_PARTS + 204; |
403 | | |
404 | | namespace { |
405 | | |
406 | | /** |
407 | | * Finds the day # of the first day in the given Hebrew year. |
408 | | * To do this, we want to calculate the time of the Tishri 1 new moon |
409 | | * in that year. |
410 | | * <p> |
411 | | * The algorithm here is similar to ones described in a number of |
412 | | * references, including: |
413 | | * <ul> |
414 | | * <li>"Calendrical Calculations", by Nachum Dershowitz & Edward Reingold, |
415 | | * Cambridge University Press, 1997, pages 85-91. |
416 | | * |
417 | | * <li>Hebrew Calendar Science and Myths, |
418 | | * <a href="http://www.geocities.com/Athens/1584/"> |
419 | | * http://www.geocities.com/Athens/1584/</a> |
420 | | * |
421 | | * <li>The Calendar FAQ, |
422 | | * <a href="http://www.faqs.org/faqs/calendars/faq/"> |
423 | | * http://www.faqs.org/faqs/calendars/faq/</a> |
424 | | * </ul> |
425 | | */ |
426 | | int32_t startOfYear(int32_t year, UErrorCode &status) |
427 | 187k | { |
428 | 187k | ucln_i18n_registerCleanup(UCLN_I18N_HEBREW_CALENDAR, calendar_hebrew_cleanup); |
429 | 187k | int64_t day = CalendarCache::get(&gCache, year, status); |
430 | 187k | if(U_FAILURE(status)) { |
431 | 19 | return 0; |
432 | 19 | } |
433 | | |
434 | 187k | if (day == 0) { |
435 | | // # of months before year |
436 | 36.5k | int64_t months = ClockMath::floorDivideInt64( |
437 | 36.5k | (235LL * static_cast<int64_t>(year) - 234LL), 19LL); |
438 | | |
439 | 36.5k | int64_t frac = months * MONTH_FRACT + BAHARAD; // Fractional part of day # |
440 | 36.5k | day = months * 29LL + frac / DAY_PARTS; // Whole # part of calculation |
441 | 36.5k | frac = frac % DAY_PARTS; // Time of day |
442 | | |
443 | 36.5k | int32_t wd = (day % 7); // Day of week (0 == Monday) |
444 | | |
445 | 36.5k | if (wd == 2 || wd == 4 || wd == 6) { |
446 | | // If the 1st is on Sun, Wed, or Fri, postpone to the next day |
447 | 2.33k | day += 1; |
448 | 2.33k | wd = (day % 7); |
449 | 34.2k | } else if (wd == 1 && frac > 15*HOUR_PARTS+204 && !HebrewCalendar::isLeapYear(year) ) { |
450 | | // If the new moon falls after 3:11:20am (15h204p from the previous noon) |
451 | | // on a Tuesday and it is not a leap year, postpone by 2 days. |
452 | | // This prevents 356-day years. |
453 | 193 | day += 2; |
454 | 193 | } |
455 | 34.0k | else if (wd == 0 && frac > 21*HOUR_PARTS+589 && HebrewCalendar::isLeapYear(year-1) ) { |
456 | | // If the new moon falls after 9:32:43 1/3am (21h589p from yesterday noon) |
457 | | // on a Monday and *last* year was a leap year, postpone by 1 day. |
458 | | // Prevents 382-day years. |
459 | 48 | day += 1; |
460 | 48 | } |
461 | 36.5k | if (day > INT32_MAX || day < INT32_MIN) { |
462 | 225 | status = U_ILLEGAL_ARGUMENT_ERROR; |
463 | 225 | return 0; |
464 | 225 | } |
465 | 36.3k | CalendarCache::put(&gCache, year, static_cast<int32_t>(day), status); |
466 | 36.3k | } |
467 | | // Out of range value is alread rejected before putting into cache. |
468 | 187k | U_ASSERT(INT32_MIN <= day && day <= INT32_MAX); |
469 | 187k | return day; |
470 | 187k | } |
471 | | |
472 | 65.0k | int32_t daysInYear(int32_t eyear, UErrorCode& status) { |
473 | 65.0k | if (U_FAILURE(status)) { |
474 | 0 | return 0; |
475 | 0 | } |
476 | 65.0k | return startOfYear(eyear+1, status) - startOfYear(eyear, status); |
477 | 65.0k | } |
478 | | |
479 | | /** |
480 | | * Returns the type of a given year. |
481 | | * 0 "Deficient" year with 353 or 383 days |
482 | | * 1 "Normal" year with 354 or 384 days |
483 | | * 2 "Complete" year with 355 or 385 days |
484 | | */ |
485 | | int32_t yearType(int32_t year, UErrorCode& status) |
486 | 37.5k | { |
487 | 37.5k | if (U_FAILURE(status)) { |
488 | 0 | return 0; |
489 | 0 | } |
490 | 37.5k | int32_t yearLength = daysInYear(year, status); |
491 | 37.5k | if (U_FAILURE(status)) { |
492 | 19 | return 0; |
493 | 19 | } |
494 | | |
495 | 37.5k | if (yearLength > 380) { |
496 | 11.1k | yearLength -= 30; // Subtract length of leap month. |
497 | 11.1k | } |
498 | | |
499 | 37.5k | int type = 0; |
500 | | |
501 | 37.5k | switch (yearLength) { |
502 | 6.86k | case 353: |
503 | 6.86k | type = 0; break; |
504 | 12.0k | case 354: |
505 | 12.0k | type = 1; break; |
506 | 18.5k | case 355: |
507 | 18.5k | type = 2; break; |
508 | 33 | default: |
509 | | //throw new RuntimeException("Illegal year length " + yearLength + " in year " + year); |
510 | 33 | type = 1; |
511 | 37.5k | } |
512 | 37.5k | return type; |
513 | 37.5k | } |
514 | | |
515 | | } // namespace |
516 | | // |
517 | | /** |
518 | | * Determine whether a given Hebrew year is a leap year |
519 | | * |
520 | | * The rule here is that if (year % 19) == 0, 3, 6, 8, 11, 14, or 17. |
521 | | * The formula below performs the same test, believe it or not. |
522 | | */ |
523 | 43.3M | UBool HebrewCalendar::isLeapYear(int32_t year) { |
524 | | //return (year * 12 + 17) % 19 >= 12; |
525 | 43.3M | int64_t x = (year*12LL + 17) % YEARS_IN_CYCLE; |
526 | 43.3M | return x >= ((x < 0) ? -7 : 12); |
527 | 43.3M | } |
528 | | |
529 | | namespace{ |
530 | | |
531 | 43.2M | int32_t monthsInYear(int32_t year) { |
532 | 43.2M | return HebrewCalendar::isLeapYear(year) ? 13 : 12; |
533 | 43.2M | } |
534 | | |
535 | | } // namespace |
536 | | |
537 | | //------------------------------------------------------------------------- |
538 | | // Calendar framework |
539 | | //------------------------------------------------------------------------- |
540 | | |
541 | | /** |
542 | | * @internal |
543 | | */ |
544 | 72.3k | int32_t HebrewCalendar::handleGetLimit(UCalendarDateFields field, ELimitType limitType) const { |
545 | 72.3k | return LIMITS[field][limitType]; |
546 | 72.3k | } |
547 | | |
548 | | /** |
549 | | * Returns the length of the given month in the given year |
550 | | * @internal |
551 | | */ |
552 | 5.88k | int32_t HebrewCalendar::handleGetMonthLength(int32_t extendedYear, int32_t month, UErrorCode& status) const { |
553 | 5.88k | if(U_FAILURE(status)) { |
554 | 102 | return 0; |
555 | 102 | } |
556 | | // Resolve out-of-range months. This is necessary in order to |
557 | | // obtain the correct year. We correct to |
558 | | // a 12- or 13-month year (add/subtract 12 or 13, depending |
559 | | // on the year) but since we _always_ number from 0..12, and |
560 | | // the leap year determines whether or not month 5 (Adar 1) |
561 | | // is present, we allow 0..12 in any given year. |
562 | 25.2M | while (month < 0) { |
563 | 25.2M | month += monthsInYear(--extendedYear); |
564 | 25.2M | } |
565 | | // Careful: allow 0..12 in all years |
566 | 17.9M | while (month > 12) { |
567 | 17.9M | month -= monthsInYear(extendedYear++); |
568 | 17.9M | } |
569 | | |
570 | 5.78k | switch (month) { |
571 | 298 | case HESHVAN: |
572 | 1.11k | case KISLEV: |
573 | 1.11k | { |
574 | | // These two month lengths can vary |
575 | 1.11k | int32_t type = yearType(extendedYear, status); |
576 | 1.11k | if(U_FAILURE(status)) { |
577 | 0 | return 0; |
578 | 0 | } |
579 | 1.11k | return MONTH_LENGTH[month][type]; |
580 | 1.11k | } |
581 | | |
582 | 4.67k | default: |
583 | | // The rest are a fixed length |
584 | 4.67k | return MONTH_LENGTH[month][0]; |
585 | 5.78k | } |
586 | 5.78k | } |
587 | | |
588 | | /** |
589 | | * Returns the number of days in the given Hebrew year |
590 | | * @internal |
591 | | */ |
592 | 27.4k | int32_t HebrewCalendar::handleGetYearLength(int32_t eyear, UErrorCode& status) const { |
593 | 27.4k | return daysInYear(eyear, status); |
594 | 27.4k | } |
595 | | |
596 | 0 | void HebrewCalendar::validateField(UCalendarDateFields field, UErrorCode &status) { |
597 | 0 | if ((field == UCAL_MONTH || field == UCAL_ORDINAL_MONTH) |
598 | 0 | && !isLeapYear(handleGetExtendedYear(status)) && internalGetMonth(status) == ADAR_1) { |
599 | 0 | if (U_FAILURE(status)) { |
600 | 0 | return; |
601 | 0 | } |
602 | 0 | status = U_ILLEGAL_ARGUMENT_ERROR; |
603 | 0 | return; |
604 | 0 | } |
605 | 0 | Calendar::validateField(field, status); |
606 | 0 | } |
607 | | //------------------------------------------------------------------------- |
608 | | // Functions for converting from milliseconds to field values |
609 | | //------------------------------------------------------------------------- |
610 | | |
611 | | /** |
612 | | * Subclasses may override this method to compute several fields |
613 | | * specific to each calendar system. These are: |
614 | | * |
615 | | * <ul><li>ERA |
616 | | * <li>YEAR |
617 | | * <li>MONTH |
618 | | * <li>DAY_OF_MONTH |
619 | | * <li>DAY_OF_YEAR |
620 | | * <li>EXTENDED_YEAR</ul> |
621 | | * |
622 | | * Subclasses can refer to the DAY_OF_WEEK and DOW_LOCAL fields, |
623 | | * which will be set when this method is called. Subclasses can |
624 | | * also call the getGregorianXxx() methods to obtain Gregorian |
625 | | * calendar equivalents for the given Julian day. |
626 | | * |
627 | | * <p>In addition, subclasses should compute any subclass-specific |
628 | | * fields, that is, fields from BASE_FIELD_COUNT to |
629 | | * getFieldCount() - 1. |
630 | | * @internal |
631 | | */ |
632 | 27.4k | void HebrewCalendar::handleComputeFields(int32_t julianDay, UErrorCode &status) { |
633 | 27.4k | if (U_FAILURE(status)) { |
634 | 29 | return; |
635 | 29 | } |
636 | 27.4k | int32_t d = julianDay - 347997; |
637 | 27.4k | double m = ClockMath::floorDivide((d * static_cast<double>(DAY_PARTS)), static_cast<double>(MONTH_PARTS)); // Months (approx) |
638 | 27.4k | int32_t year = static_cast<int32_t>(ClockMath::floorDivide((19. * m + 234.), 235.) + 1.); // Years (approx) |
639 | 27.4k | int32_t ys = startOfYear(year, status); // 1st day of year |
640 | 27.4k | if (U_FAILURE(status)) { |
641 | 0 | return; |
642 | 0 | } |
643 | 27.4k | int32_t dayOfYear = (d - ys); |
644 | | |
645 | | // Because of the postponement rules, it's possible to guess wrong. Fix it. |
646 | 45.4k | while (dayOfYear < 1) { |
647 | 18.0k | year--; |
648 | 18.0k | ys = startOfYear(year, status); |
649 | 18.0k | if (U_FAILURE(status)) { |
650 | 0 | return; |
651 | 0 | } |
652 | 18.0k | dayOfYear = (d - ys); |
653 | 18.0k | } |
654 | | |
655 | | // Now figure out which month we're in, and the date within that month |
656 | 27.4k | int32_t type = yearType(year, status); |
657 | 27.4k | if (U_FAILURE(status)) { |
658 | 0 | return; |
659 | 0 | } |
660 | 27.4k | UBool isLeap = isLeapYear(year); |
661 | | |
662 | 27.4k | int32_t month = 0; |
663 | 27.4k | int32_t momax = UPRV_LENGTHOF(MONTH_START); |
664 | 157k | while (month < momax && |
665 | 157k | dayOfYear > ( isLeap ? LEAP_MONTH_START[month][type] : MONTH_START[month][type] ) ) { |
666 | 129k | month++; |
667 | 129k | } |
668 | 27.4k | if (month >= momax || month<=0) { |
669 | | // TODO: I found dayOfYear could be out of range when |
670 | | // a large value is set to julianDay. I patched startOfYear |
671 | | // to reduce the chace, but it could be still reproduced either |
672 | | // by startOfYear or other places. For now, we check |
673 | | // the month is in valid range to avoid out of array index |
674 | | // access problem here. However, we need to carefully review |
675 | | // the calendar implementation to check the extreme limit of |
676 | | // each calendar field and the code works well for any values |
677 | | // in the valid value range. -yoshito |
678 | 20 | status = U_ILLEGAL_ARGUMENT_ERROR; |
679 | 20 | return; |
680 | 20 | } |
681 | 27.4k | month--; |
682 | 27.4k | int dayOfMonth = dayOfYear - (isLeap ? LEAP_MONTH_START[month][type] : MONTH_START[month][type]); |
683 | | |
684 | 27.4k | internalSet(UCAL_ERA, 0); |
685 | | // Check out of bound year |
686 | 27.4k | int32_t min_year = handleGetLimit(UCAL_EXTENDED_YEAR, UCAL_LIMIT_MINIMUM); |
687 | 27.4k | if (year < min_year) { |
688 | 2.17k | if (!isLenient()) { |
689 | 0 | status = U_ILLEGAL_ARGUMENT_ERROR; |
690 | 0 | return; |
691 | 0 | } |
692 | 2.17k | year = min_year; |
693 | 2.17k | } |
694 | 27.4k | int32_t max_year = handleGetLimit(UCAL_EXTENDED_YEAR, UCAL_LIMIT_MAXIMUM); |
695 | 27.4k | if (max_year < year) { |
696 | 1.48k | if (!isLenient()) { |
697 | 0 | status = U_ILLEGAL_ARGUMENT_ERROR; |
698 | 0 | return; |
699 | 0 | } |
700 | 1.48k | year = max_year; |
701 | 1.48k | } |
702 | 27.4k | internalSet(UCAL_YEAR, year); |
703 | 27.4k | internalSet(UCAL_EXTENDED_YEAR, year); |
704 | 27.4k | int32_t ordinal_month = month; |
705 | 27.4k | if (!isLeap && ordinal_month > ADAR_1) { |
706 | 5.34k | ordinal_month--; |
707 | 5.34k | } |
708 | 27.4k | internalSet(UCAL_ORDINAL_MONTH, ordinal_month); |
709 | 27.4k | internalSet(UCAL_MONTH, month); |
710 | 27.4k | internalSet(UCAL_DAY_OF_MONTH, dayOfMonth); |
711 | 27.4k | internalSet(UCAL_DAY_OF_YEAR, dayOfYear); |
712 | 27.4k | } |
713 | | |
714 | | //------------------------------------------------------------------------- |
715 | | // Functions for converting from field values to milliseconds |
716 | | //------------------------------------------------------------------------- |
717 | | |
718 | | /** |
719 | | * @internal |
720 | | */ |
721 | 11.6k | int32_t HebrewCalendar::handleGetExtendedYear(UErrorCode& status ) { |
722 | 11.6k | if (U_FAILURE(status)) { |
723 | 0 | return 0; |
724 | 0 | } |
725 | 11.6k | if (newerField(UCAL_EXTENDED_YEAR, UCAL_YEAR) == UCAL_EXTENDED_YEAR) { |
726 | 3.00k | return internalGet(UCAL_EXTENDED_YEAR, 1); // Default to year 1 |
727 | 3.00k | } |
728 | 8.61k | return internalGet(UCAL_YEAR, 1); // Default to year 1 |
729 | 11.6k | } |
730 | | |
731 | | /** |
732 | | * Return JD of start of given month/year. |
733 | | * @internal |
734 | | */ |
735 | | int64_t HebrewCalendar::handleComputeMonthStart( |
736 | 12.1k | int32_t eyear, int32_t month, UBool /*useMonth*/, UErrorCode& status) const { |
737 | 12.1k | if (U_FAILURE(status)) { |
738 | 0 | return 0; |
739 | 0 | } |
740 | | // Resolve out-of-range months. This is necessary in order to |
741 | | // obtain the correct year. We correct to |
742 | | // a 12- or 13-month year (add/subtract 12 or 13, depending |
743 | | // on the year) but since we _always_ number from 0..12, and |
744 | | // the leap year determines whether or not month 5 (Adar 1) |
745 | | // is present, we allow 0..12 in any given year. |
746 | | |
747 | | // The month could be in large value, we first roll 235 months to 19 years |
748 | | // before the while loop. |
749 | 12.1k | if (month <= -MONTHS_IN_CYCLE || month >= MONTHS_IN_CYCLE) { |
750 | 193 | if (uprv_add32_overflow(eyear, (month / MONTHS_IN_CYCLE) * YEARS_IN_CYCLE, &eyear)) { |
751 | 10 | status = U_ILLEGAL_ARGUMENT_ERROR; |
752 | 10 | return 0; |
753 | 10 | } |
754 | 183 | month %= MONTHS_IN_CYCLE; |
755 | 183 | } |
756 | 13.0k | while (month < 0) { |
757 | 939 | if (uprv_add32_overflow(eyear, -1, &eyear) || |
758 | 929 | uprv_add32_overflow(month, monthsInYear(eyear), &month)) { |
759 | 10 | status = U_ILLEGAL_ARGUMENT_ERROR; |
760 | 10 | return 0; |
761 | 10 | } |
762 | 939 | } |
763 | | // Careful: allow 0..12 in all years |
764 | 13.3k | while (month > 12) { |
765 | 1.22k | if (uprv_add32_overflow(month, -monthsInYear(eyear), &month) || |
766 | 1.22k | uprv_add32_overflow(eyear, 1, &eyear)) { |
767 | 0 | status = U_ILLEGAL_ARGUMENT_ERROR; |
768 | 0 | return 0; |
769 | 0 | } |
770 | 1.22k | } |
771 | | |
772 | 12.0k | int64_t day = startOfYear(eyear, status); |
773 | | |
774 | 12.0k | if(U_FAILURE(status)) { |
775 | 206 | return 0; |
776 | 206 | } |
777 | | |
778 | 11.8k | if (month != 0) { |
779 | 9.01k | int32_t type = yearType(eyear, status); |
780 | 9.01k | if (U_FAILURE(status)) { |
781 | 19 | return 0; |
782 | 19 | } |
783 | 8.99k | if (isLeapYear(eyear)) { |
784 | 3.73k | day += LEAP_MONTH_START[month][type]; |
785 | 5.26k | } else { |
786 | 5.26k | day += MONTH_START[month][type]; |
787 | 5.26k | } |
788 | 8.99k | } |
789 | | |
790 | 11.8k | return day + 347997LL; |
791 | 11.8k | } |
792 | | |
793 | | IMPL_SYSTEM_DEFAULT_CENTURY(HebrewCalendar, "@calendar=hebrew") |
794 | | |
795 | 0 | bool HebrewCalendar::inTemporalLeapYear(UErrorCode& status) const { |
796 | 0 | if (U_FAILURE(status)) { |
797 | 0 | return false; |
798 | 0 | } |
799 | 0 | int32_t eyear = get(UCAL_EXTENDED_YEAR, status); |
800 | 0 | if (U_FAILURE(status)) { |
801 | 0 | return false; |
802 | 0 | } |
803 | 0 | return isLeapYear(eyear); |
804 | 0 | } |
805 | | |
806 | | static const char * const gTemporalMonthCodesForHebrew[] = { |
807 | | "M01", "M02", "M03", "M04", "M05", "M05L", "M06", |
808 | | "M07", "M08", "M09", "M10", "M11", "M12", nullptr |
809 | | }; |
810 | | |
811 | 0 | const char* HebrewCalendar::getTemporalMonthCode(UErrorCode& status) const { |
812 | 0 | int32_t month = get(UCAL_MONTH, status); |
813 | 0 | if (U_FAILURE(status)) { |
814 | 0 | return nullptr; |
815 | 0 | } |
816 | 0 | return gTemporalMonthCodesForHebrew[month]; |
817 | 0 | } |
818 | | |
819 | | void HebrewCalendar::setTemporalMonthCode(const char* code, UErrorCode& status ) |
820 | 0 | { |
821 | 0 | if (U_FAILURE(status)) { |
822 | 0 | return; |
823 | 0 | } |
824 | 0 | int32_t len = static_cast<int32_t>(uprv_strlen(code)); |
825 | 0 | if (len == 3 || len == 4) { |
826 | 0 | for (int m = 0; gTemporalMonthCodesForHebrew[m] != nullptr; m++) { |
827 | 0 | if (uprv_strcmp(code, gTemporalMonthCodesForHebrew[m]) == 0) { |
828 | 0 | set(UCAL_MONTH, m); |
829 | 0 | return; |
830 | 0 | } |
831 | 0 | } |
832 | 0 | } |
833 | 0 | status = U_ILLEGAL_ARGUMENT_ERROR; |
834 | 0 | } |
835 | | |
836 | 11.7k | int32_t HebrewCalendar::internalGetMonth(UErrorCode& status) const { |
837 | 11.7k | if (U_FAILURE(status)) { |
838 | 0 | return 0; |
839 | 0 | } |
840 | 11.7k | if (resolveFields(kMonthPrecedence) == UCAL_ORDINAL_MONTH) { |
841 | 189 | int32_t ordinalMonth = internalGet(UCAL_ORDINAL_MONTH); |
842 | 189 | HebrewCalendar* nonConstThis = const_cast<HebrewCalendar*>(this); // cast away const |
843 | | |
844 | 189 | int32_t year = nonConstThis->handleGetExtendedYear(status); |
845 | 189 | if (U_FAILURE(status)) { |
846 | 0 | return 0; |
847 | 0 | } |
848 | 189 | if (isLeapYear(year) || ordinalMonth <= ADAR_1) { |
849 | 84 | return ordinalMonth; |
850 | 84 | } |
851 | 105 | if (!uprv_add32_overflow(ordinalMonth, 1, &ordinalMonth)) { |
852 | 87 | return ordinalMonth; |
853 | 87 | } |
854 | 105 | } |
855 | 11.5k | return Calendar::internalGetMonth(status); |
856 | 11.7k | } |
857 | | |
858 | 0 | int32_t HebrewCalendar::getRelatedYearDifference() const { |
859 | 0 | constexpr int32_t kHebrewCalendarRelatedYearDifference = -3760; |
860 | 0 | return kHebrewCalendarRelatedYearDifference; |
861 | 0 | } |
862 | | |
863 | | UOBJECT_DEFINE_RTTI_IMPLEMENTATION(HebrewCalendar) |
864 | | |
865 | | U_NAMESPACE_END |
866 | | |
867 | | #endif // UCONFIG_NO_FORMATTING |
868 | | |