/src/icu/icu4c/source/i18n/nfrule.cpp
Line | Count | Source |
1 | | // © 2016 and later: Unicode, Inc. and others. |
2 | | // License & terms of use: http://www.unicode.org/copyright.html |
3 | | /* |
4 | | ****************************************************************************** |
5 | | * Copyright (C) 1997-2015, International Business Machines |
6 | | * Corporation and others. All Rights Reserved. |
7 | | ****************************************************************************** |
8 | | * file name: nfrule.cpp |
9 | | * encoding: UTF-8 |
10 | | * tab size: 8 (not used) |
11 | | * indentation:4 |
12 | | * |
13 | | * Modification history |
14 | | * Date Name Comments |
15 | | * 10/11/2001 Doug Ported from ICU4J |
16 | | */ |
17 | | |
18 | | #include "nfrule.h" |
19 | | |
20 | | #if U_HAVE_RBNF |
21 | | |
22 | | #include "unicode/localpointer.h" |
23 | | #include "unicode/rbnf.h" |
24 | | #include "unicode/tblcoll.h" |
25 | | #include "unicode/plurfmt.h" |
26 | | #include "unicode/upluralrules.h" |
27 | | #include "unicode/coleitr.h" |
28 | | #include "unicode/uchar.h" |
29 | | #include "nfrs.h" |
30 | | #include "nfrlist.h" |
31 | | #include "nfsubs.h" |
32 | | #include "patternprops.h" |
33 | | #include "putilimp.h" |
34 | | |
35 | | U_NAMESPACE_BEGIN |
36 | | |
37 | | NFRule::NFRule(const RuleBasedNumberFormat* _rbnf, const UnicodeString &_ruleText, UErrorCode &status) |
38 | 2.01M | : ruleText(_ruleText) |
39 | 2.01M | , formatter(_rbnf) |
40 | 2.01M | { |
41 | 2.01M | if (!ruleText.isEmpty()) { |
42 | 1.60M | parseRuleDescriptor(ruleText, status); |
43 | 1.60M | } |
44 | 2.01M | } |
45 | | |
46 | | NFRule::~NFRule() |
47 | 2.01M | { |
48 | 2.01M | if (sub1 != sub2) { |
49 | 953k | delete sub2; |
50 | 953k | sub2 = nullptr; |
51 | 953k | } |
52 | 2.01M | delete sub1; |
53 | 2.01M | sub1 = nullptr; |
54 | 2.01M | delete rulePatternFormat; |
55 | 2.01M | rulePatternFormat = nullptr; |
56 | 2.01M | } |
57 | | |
58 | | static const char16_t gLeftBracket = 0x005b; |
59 | | static const char16_t gRightBracket = 0x005d; |
60 | | static const char16_t gVerticalLine = 0x007C; |
61 | | static const char16_t gColon = 0x003a; |
62 | | static const char16_t gZero = 0x0030; |
63 | | static const char16_t gNine = 0x0039; |
64 | | static const char16_t gSpace = 0x0020; |
65 | | static const char16_t gSlash = 0x002f; |
66 | | static const char16_t gGreaterThan = 0x003e; |
67 | | static const char16_t gLessThan = 0x003c; |
68 | | static const char16_t gComma = 0x002c; |
69 | | static const char16_t gDot = 0x002e; |
70 | | static const char16_t gTick = 0x0027; |
71 | | //static const char16_t gMinus = 0x002d; |
72 | | static const char16_t gSemicolon = 0x003b; |
73 | | static const char16_t gX = 0x0078; |
74 | | |
75 | | static const char16_t gMinusX[] = {0x2D, 0x78, 0}; /* "-x" */ |
76 | | static const char16_t gInf[] = {0x49, 0x6E, 0x66, 0}; /* "Inf" */ |
77 | | static const char16_t gNaN[] = {0x4E, 0x61, 0x4E, 0}; /* "NaN" */ |
78 | | |
79 | | static const char16_t gDollarOpenParenthesis[] = {0x24, 0x28, 0}; /* "$(" */ |
80 | | static const char16_t gClosedParenthesisDollar[] = {0x29, 0x24, 0}; /* ")$" */ |
81 | | |
82 | | static const char16_t gLessLess[] = {0x3C, 0x3C, 0}; /* "<<" */ |
83 | | static const char16_t gLessPercent[] = {0x3C, 0x25, 0}; /* "<%" */ |
84 | | static const char16_t gLessHash[] = {0x3C, 0x23, 0}; /* "<#" */ |
85 | | static const char16_t gLessZero[] = {0x3C, 0x30, 0}; /* "<0" */ |
86 | | static const char16_t gGreaterGreater[] = {0x3E, 0x3E, 0}; /* ">>" */ |
87 | | static const char16_t gGreaterPercent[] = {0x3E, 0x25, 0}; /* ">%" */ |
88 | | static const char16_t gGreaterHash[] = {0x3E, 0x23, 0}; /* ">#" */ |
89 | | static const char16_t gGreaterZero[] = {0x3E, 0x30, 0}; /* ">0" */ |
90 | | static const char16_t gEqualPercent[] = {0x3D, 0x25, 0}; /* "=%" */ |
91 | | static const char16_t gEqualHash[] = {0x3D, 0x23, 0}; /* "=#" */ |
92 | | static const char16_t gEqualZero[] = {0x3D, 0x30, 0}; /* "=0" */ |
93 | | static const char16_t gGreaterGreaterGreater[] = {0x3E, 0x3E, 0x3E, 0}; /* ">>>" */ |
94 | | |
95 | | static const char16_t * const RULE_PREFIXES[] = { |
96 | | gLessLess, gLessPercent, gLessHash, gLessZero, |
97 | | gGreaterGreater, gGreaterPercent,gGreaterHash, gGreaterZero, |
98 | | gEqualPercent, gEqualHash, gEqualZero, nullptr |
99 | | }; |
100 | | |
101 | | void |
102 | | NFRule::makeRules(UnicodeString& description, |
103 | | NFRuleSet *owner, |
104 | | const NFRule *predecessor, |
105 | | const RuleBasedNumberFormat *rbnf, |
106 | | NFRuleList& rules, |
107 | | UErrorCode& status) |
108 | 1.53M | { |
109 | 1.53M | if (U_FAILURE(status)) { |
110 | 0 | return; |
111 | 0 | } |
112 | | // we know we're making at least one rule, so go ahead and |
113 | | // new it up and initialize its basevalue and divisor |
114 | | // (this also strips the rule descriptor, if any, off the |
115 | | // description string) |
116 | 1.53M | LocalPointer<NFRule> rule1(new NFRule(rbnf, description, status)); |
117 | 1.53M | if (U_FAILURE(status)) { |
118 | 244 | return; |
119 | 244 | } |
120 | | /* test for nullptr */ |
121 | 1.53M | if (rule1.isNull()) { |
122 | 0 | status = U_MEMORY_ALLOCATION_ERROR; |
123 | 0 | return; |
124 | 0 | } |
125 | 1.53M | description = rule1->ruleText; |
126 | | |
127 | | // check the description to see whether there's text enclosed |
128 | | // in brackets |
129 | 1.53M | int32_t brack1 = description.indexOf(gLeftBracket); |
130 | 1.53M | int32_t brack2 = brack1 < 0 ? -1 : description.indexOf(gRightBracket); |
131 | | |
132 | | // if the description doesn't contain a matched pair of brackets, |
133 | | // or if it's of a type that doesn't recognize bracketed text, |
134 | | // then leave the description alone, initialize the rule's |
135 | | // rule text and substitutions, and return that rule |
136 | 1.53M | if (brack2 < 0 || brack1 > brack2 |
137 | 411k | || rule1->getType() == kProperFractionRule |
138 | 411k | || rule1->getType() == kNegativeNumberRule |
139 | 411k | || rule1->getType() == kInfinityRule |
140 | 411k | || rule1->getType() == kNaNRule) |
141 | 1.12M | { |
142 | 1.12M | rule1->extractSubstitutions(owner, description, predecessor, status); |
143 | 1.12M | if (U_FAILURE(status)) { |
144 | 854 | return; |
145 | 854 | } |
146 | 1.12M | } |
147 | 411k | else { |
148 | | // if the description does contain a matched pair of brackets, |
149 | | // then it's really shorthand for two rules (with one exception) |
150 | 411k | LocalPointer<NFRule> rule2; |
151 | 411k | UnicodeString sbuf; |
152 | 411k | int32_t orElseOp = description.indexOf(gVerticalLine); |
153 | | |
154 | 411k | uint64_t mod = util64_pow(rule1->radix, rule1->exponent); |
155 | | // we'll actually only split the rule into two rules if its |
156 | | // base value is an even multiple of its divisor (or it's one |
157 | | // of the special rules) |
158 | 411k | if (rule1->baseValue > 0 && rule1->radix != 0 && mod == 0) { |
159 | 3 | status = U_NUMBER_ARG_OUTOFBOUNDS_ERROR; |
160 | 3 | return; |
161 | 3 | } |
162 | 411k | if ((rule1->baseValue > 0 |
163 | 406k | && (rule1->radix != 0) // ICU-23109 Ensure next line won't "% 0" |
164 | 406k | && (rule1->baseValue % mod == 0)) |
165 | 10.7k | || rule1->getType() == kImproperFractionRule |
166 | 402k | || rule1->getType() == kDefaultRule) { |
167 | | |
168 | | // if it passes that test, new up the second rule. If the |
169 | | // rule set both rules will belong to is a fraction rule |
170 | | // set, they both have the same base value; otherwise, |
171 | | // increment the original rule's base value ("rule1" actually |
172 | | // goes SECOND in the rule set's rule list) |
173 | 402k | rule2.adoptInstead(new NFRule(rbnf, UnicodeString(), status)); |
174 | 402k | if (U_FAILURE(status)) { |
175 | 0 | return; |
176 | 0 | } |
177 | | /* test for nullptr */ |
178 | 402k | if (rule2.isNull()) { |
179 | 0 | status = U_MEMORY_ALLOCATION_ERROR; |
180 | 0 | return; |
181 | 0 | } |
182 | 402k | if (rule1->baseValue >= 0) { |
183 | 400k | rule2->baseValue = rule1->baseValue; |
184 | 400k | if (!owner->isFractionRuleSet()) { |
185 | 400k | ++rule1->baseValue; |
186 | 400k | } |
187 | 400k | } |
188 | | |
189 | 1.70k | else if (rule1->getType() == kImproperFractionRule) { |
190 | | // if the description began with "x.x" and contains bracketed |
191 | | // text, it describes both the improper fraction rule and |
192 | | // the proper fraction rule |
193 | 572 | rule2->setType(kProperFractionRule); |
194 | 572 | } |
195 | | |
196 | 1.13k | else if (rule1->getType() == kDefaultRule) { |
197 | | // if the description began with "x.0" and contains bracketed |
198 | | // text, it describes both the default rule and the |
199 | | // improper fraction rule |
200 | 1.13k | rule2->baseValue = rule1->baseValue; |
201 | 1.13k | rule1->setType(kImproperFractionRule); |
202 | 1.13k | } |
203 | | |
204 | | // both rules have the same radix and exponent (i.e., the |
205 | | // same divisor) |
206 | 402k | rule2->radix = rule1->radix; |
207 | 402k | rule2->exponent = rule1->exponent; |
208 | | |
209 | | // By default, rule2's rule text omits the stuff in brackets, |
210 | | // unless it contains a | between the brackets. |
211 | | // Initialize its rule text and substitutions accordingly. |
212 | 402k | sbuf.append(description, 0, brack1); |
213 | 402k | if (orElseOp >= 0) { |
214 | 1.75k | sbuf.append(description, orElseOp + 1, brack2 - orElseOp - 1); |
215 | 1.75k | } |
216 | 402k | if (brack2 + 1 < description.length()) { |
217 | 1.91k | sbuf.append(description, brack2 + 1, description.length() - brack2 - 1); |
218 | 1.91k | } |
219 | 402k | rule2->extractSubstitutions(owner, sbuf, predecessor, status); |
220 | 402k | if (U_FAILURE(status)) { |
221 | 27 | return; |
222 | 27 | } |
223 | 402k | } |
224 | | |
225 | | // rule1's text includes the text in the brackets but omits |
226 | | // the brackets themselves: initialize _its_ rule text and |
227 | | // substitutions accordingly |
228 | 411k | sbuf.setTo(description, 0, brack1); |
229 | 411k | if (orElseOp >= 0) { |
230 | 3.12k | sbuf.append(description, brack1 + 1, orElseOp - brack1 - 1); |
231 | 3.12k | } |
232 | 408k | else { |
233 | 408k | sbuf.append(description, brack1 + 1, brack2 - brack1 - 1); |
234 | 408k | } |
235 | 411k | if (brack2 + 1 < description.length()) { |
236 | 3.63k | sbuf.append(description, brack2 + 1, description.length() - brack2 - 1); |
237 | 3.63k | } |
238 | 411k | rule1->extractSubstitutions(owner, sbuf, predecessor, status); |
239 | 411k | if (U_FAILURE(status)) { |
240 | 62 | return; |
241 | 62 | } |
242 | | |
243 | | // if we only have one rule, return it; if we have two, return |
244 | | // a two-element array containing them (notice that rule2 goes |
245 | | // BEFORE rule1 in the list: in all cases, rule2 OMITS the |
246 | | // material in the brackets and rule1 INCLUDES the material |
247 | | // in the brackets) |
248 | 411k | if (!rule2.isNull()) { |
249 | 402k | if (rule2->baseValue >= kNoBase) { |
250 | 400k | rules.add(rule2.orphan()); |
251 | 400k | } |
252 | 1.69k | else { |
253 | 1.69k | owner->setNonNumericalRule(rule2.orphan()); |
254 | 1.69k | } |
255 | 402k | } |
256 | 411k | } |
257 | 1.53M | if (rule1->baseValue >= kNoBase) { |
258 | 1.45M | rules.add(rule1.orphan()); |
259 | 1.45M | } |
260 | 82.5k | else { |
261 | 82.5k | owner->setNonNumericalRule(rule1.orphan()); |
262 | 82.5k | } |
263 | 1.53M | } |
264 | | |
265 | | /** |
266 | | * This function parses the rule's rule descriptor (i.e., the base |
267 | | * value and/or other tokens that precede the rule's rule text |
268 | | * in the description) and sets the rule's base value, radix, and |
269 | | * exponent according to the descriptor. (If the description doesn't |
270 | | * include a rule descriptor, then this function sets everything to |
271 | | * default values and the rule set sets the rule's real base value). |
272 | | * @param description The rule's description |
273 | | * @return If "description" included a rule descriptor, this is |
274 | | * "description" with the descriptor and any trailing whitespace |
275 | | * stripped off. Otherwise; it's "descriptor" unchangd. |
276 | | */ |
277 | | void |
278 | | NFRule::parseRuleDescriptor(UnicodeString& description, UErrorCode& status) |
279 | 1.60M | { |
280 | | // the description consists of a rule descriptor and a rule body, |
281 | | // separated by a colon. The rule descriptor is optional. If |
282 | | // it's omitted, just set the base value to 0. |
283 | 1.60M | int32_t p = description.indexOf(gColon); |
284 | 1.60M | if (p != -1) { |
285 | | // copy the descriptor out into its own string and strip it, |
286 | | // along with any trailing whitespace, out of the original |
287 | | // description |
288 | 1.22M | UnicodeString descriptor; |
289 | 1.22M | descriptor.setTo(description, 0, p); |
290 | | |
291 | 1.22M | ++p; |
292 | 2.36M | while (p < description.length() && PatternProps::isWhiteSpace(description.charAt(p))) { |
293 | 1.14M | ++p; |
294 | 1.14M | } |
295 | 1.22M | description.removeBetween(0, p); |
296 | | |
297 | | // check first to see if the rule descriptor matches the token |
298 | | // for one of the special rules. If it does, set the base |
299 | | // value to the correct identifier value |
300 | 1.22M | int descriptorLength = descriptor.length(); |
301 | 1.22M | char16_t firstChar = descriptor.charAt(0); |
302 | 1.22M | char16_t lastChar = descriptor.charAt(descriptorLength - 1); |
303 | 1.22M | if (firstChar >= gZero && firstChar <= gNine && lastChar != gX) { |
304 | | // if the rule descriptor begins with a digit, it's a descriptor |
305 | | // for a normal rule |
306 | | // since we don't have Long.parseLong, and this isn't much work anyway, |
307 | | // just build up the value as we encounter the digits. |
308 | 1.00M | int64_t val = 0; |
309 | 1.00M | char16_t c = 0; |
310 | 1.00M | p = 0; |
311 | | |
312 | | // begin parsing the descriptor: copy digits |
313 | | // into "val", skip periods, commas, and spaces, |
314 | | // stop on a slash or > sign (or at the end of the string), |
315 | | // and throw an exception on any other character |
316 | 3.88M | while (p < descriptorLength) { |
317 | 2.90M | c = descriptor.charAt(p); |
318 | 2.90M | if (c >= gZero && c <= gNine) { |
319 | 2.87M | int64_t digit = static_cast<int64_t>(c - gZero); |
320 | 2.87M | if ((val > 0 && val > (INT64_MAX - digit) / 10) || |
321 | 2.87M | (val < 0 && val < (INT64_MIN - digit) / 10)) { |
322 | | // out of int64_t range |
323 | 22 | status = U_PARSE_ERROR; |
324 | 22 | return; |
325 | 22 | } |
326 | 2.87M | val = val * 10 + digit; |
327 | 2.87M | } |
328 | 23.7k | else if (c == gSlash || c == gGreaterThan) { |
329 | 22.7k | break; |
330 | 22.7k | } |
331 | 1.03k | else if (PatternProps::isWhiteSpace(c) || c == gComma || c == gDot) { |
332 | 931 | } |
333 | 108 | else { |
334 | | // throw new IllegalArgumentException("Illegal character in rule descriptor"); |
335 | 108 | status = U_PARSE_ERROR; |
336 | 108 | return; |
337 | 108 | } |
338 | 2.87M | ++p; |
339 | 2.87M | } |
340 | | |
341 | | // Set the rule's base value according to what we parsed |
342 | 1.00M | setBaseValue(val, status); |
343 | | |
344 | | // if we stopped the previous loop on a slash, we're |
345 | | // now parsing the rule's radix. Again, accumulate digits |
346 | | // in val, skip punctuation, stop on a > mark, and |
347 | | // throw an exception on anything else |
348 | 1.00M | if (c == gSlash) { |
349 | 22.3k | val = 0; |
350 | 22.3k | ++p; |
351 | 98.2k | while (p < descriptorLength) { |
352 | 76.0k | c = descriptor.charAt(p); |
353 | 76.0k | if (c >= gZero && c <= gNine) { |
354 | 75.2k | int64_t digit = static_cast<int64_t>(c - gZero); |
355 | 75.2k | if ((val > 0 && val > (INT64_MAX - digit) / 10) || |
356 | 75.2k | (val < 0 && val < (INT64_MIN - digit) / 10)) { |
357 | | // out of int64_t range |
358 | 19 | status = U_PARSE_ERROR; |
359 | 19 | return; |
360 | 19 | } |
361 | 75.2k | val = val * 10 + digit; |
362 | 75.2k | } |
363 | 801 | else if (c == gGreaterThan) { |
364 | 73 | break; |
365 | 73 | } |
366 | 728 | else if (PatternProps::isWhiteSpace(c) || c == gComma || c == gDot) { |
367 | 669 | } |
368 | 59 | else { |
369 | | // throw new IllegalArgumentException("Illegal character is rule descriptor"); |
370 | 59 | status = U_PARSE_ERROR; |
371 | 59 | return; |
372 | 59 | } |
373 | 75.9k | ++p; |
374 | 75.9k | } |
375 | | |
376 | | // val now contains the rule's radix. Set it |
377 | | // accordingly, and recalculate the rule's exponent |
378 | 22.3k | radix = static_cast<int32_t>(val); |
379 | 22.3k | if (radix == 0) { |
380 | | // throw new IllegalArgumentException("Rule can't have radix of 0"); |
381 | 7 | status = U_PARSE_ERROR; |
382 | 7 | } |
383 | | |
384 | 22.3k | exponent = expectedExponent(); |
385 | 22.3k | } |
386 | | |
387 | | // if we stopped the previous loop on a > sign, then continue |
388 | | // for as long as we still see > signs. For each one, |
389 | | // decrement the exponent (unless the exponent is already 0). |
390 | | // If we see another character before reaching the end of |
391 | | // the descriptor, that's also a syntax error. |
392 | 1.00M | if (c == gGreaterThan) { |
393 | 778 | while (p < descriptor.length()) { |
394 | 419 | c = descriptor.charAt(p); |
395 | 419 | if (c == gGreaterThan && exponent > 0) { |
396 | 390 | --exponent; |
397 | 390 | } else { |
398 | | // throw new IllegalArgumentException("Illegal character in rule descriptor"); |
399 | 29 | status = U_PARSE_ERROR; |
400 | 29 | return; |
401 | 29 | } |
402 | 390 | ++p; |
403 | 390 | } |
404 | 388 | } |
405 | 1.00M | } |
406 | 214k | else if (0 == descriptor.compare(gMinusX, 2)) { |
407 | 46.1k | setType(kNegativeNumberRule); |
408 | 46.1k | } |
409 | 168k | else if (descriptorLength == 3) { |
410 | 113k | if (firstChar == gZero && lastChar == gX) { |
411 | 1.69k | setBaseValue(kProperFractionRule, status); |
412 | 1.69k | decimalPoint = descriptor.charAt(1); |
413 | 1.69k | } |
414 | 112k | else if (firstChar == gX && lastChar == gX) { |
415 | 28.9k | setBaseValue(kImproperFractionRule, status); |
416 | 28.9k | decimalPoint = descriptor.charAt(1); |
417 | 28.9k | } |
418 | 83.2k | else if (firstChar == gX && lastChar == gZero) { |
419 | 5.76k | setBaseValue(kDefaultRule, status); |
420 | 5.76k | decimalPoint = descriptor.charAt(1); |
421 | 5.76k | } |
422 | 77.5k | else if (descriptor.compare(gNaN, 3) == 0) { |
423 | 36.1k | setBaseValue(kNaNRule, status); |
424 | 36.1k | } |
425 | 41.3k | else if (descriptor.compare(gInf, 3) == 0) { |
426 | 36.1k | setBaseValue(kInfinityRule, status); |
427 | 36.1k | } |
428 | 113k | } |
429 | 1.22M | } |
430 | | // else use the default base value for now. |
431 | | |
432 | | // finally, if the rule body begins with an apostrophe, strip it off |
433 | | // (this is generally used to put whitespace at the beginning of |
434 | | // a rule's rule text) |
435 | 1.60M | if (!description.isEmpty() && description.charAt(0) == gTick) { |
436 | 799 | description.removeBetween(0, 1); |
437 | 799 | } |
438 | | |
439 | | // return the description with all the stuff we've just waded through |
440 | | // stripped off the front. It now contains just the rule body. |
441 | | // return description; |
442 | 1.60M | } |
443 | | |
444 | | /** |
445 | | * Searches the rule's rule text for the substitution tokens, |
446 | | * creates the substitutions, and removes the substitution tokens |
447 | | * from the rule's rule text. |
448 | | * @param owner The rule set containing this rule |
449 | | * @param sourceRuleText The rule text |
450 | | * @param predecessor The rule preceding this one in "owners" rule list |
451 | | */ |
452 | | void |
453 | | NFRule::extractSubstitutions(const NFRuleSet* owner, |
454 | | const UnicodeString &sourceRuleText, |
455 | | const NFRule* predecessor, |
456 | | UErrorCode& status) |
457 | 1.94M | { |
458 | 1.94M | if (U_FAILURE(status)) { |
459 | 0 | return; |
460 | 0 | } |
461 | 1.94M | ruleText = sourceRuleText; |
462 | 1.94M | sub1 = extractSubstitution(owner, predecessor, status); |
463 | 1.94M | if (sub1 == nullptr) { |
464 | | // Small optimization. There is no need to create a redundant NullSubstitution. |
465 | 986k | sub2 = nullptr; |
466 | 986k | } |
467 | 954k | else { |
468 | 954k | sub2 = extractSubstitution(owner, predecessor, status); |
469 | 954k | } |
470 | | |
471 | 1.94M | if (sub1 != nullptr && sub2 != nullptr && sub1->getDynamicClassID() == sub2->getDynamicClassID()) { |
472 | | // Something like << << or >> >> or == == was encountered. |
473 | 25.1k | status = U_STATE_OLD_WARNING; |
474 | 25.1k | owner->owner->unparseable = true; |
475 | 25.1k | } |
476 | | |
477 | 1.94M | int32_t pluralRuleStart = ruleText.indexOf(gDollarOpenParenthesis, -1, 0); |
478 | 1.94M | int32_t pluralRuleEnd = (pluralRuleStart >= 0 ? ruleText.indexOf(gClosedParenthesisDollar, -1, pluralRuleStart) : -1); |
479 | 1.94M | if (pluralRuleEnd >= 0) { |
480 | 21.8k | int32_t endType = ruleText.indexOf(gComma, pluralRuleStart); |
481 | 21.8k | if (endType < 0) { |
482 | 3 | status = U_PARSE_ERROR; |
483 | 3 | return; |
484 | 3 | } |
485 | 21.8k | UnicodeString type(ruleText.tempSubString(pluralRuleStart + 2, endType - pluralRuleStart - 2)); |
486 | 21.8k | UPluralType pluralType; |
487 | 21.8k | if (type.startsWith(UNICODE_STRING_SIMPLE("cardinal"))) { |
488 | 0 | pluralType = UPLURAL_TYPE_CARDINAL; |
489 | 0 | } |
490 | 21.8k | else if (type.startsWith(UNICODE_STRING_SIMPLE("ordinal"))) { |
491 | 21.8k | pluralType = UPLURAL_TYPE_ORDINAL; |
492 | 21.8k | } |
493 | 30 | else { |
494 | 30 | status = U_ILLEGAL_ARGUMENT_ERROR; |
495 | 30 | return; |
496 | 30 | } |
497 | 21.8k | rulePatternFormat = formatter->createPluralFormat(pluralType, |
498 | 21.8k | ruleText.tempSubString(endType + 1, pluralRuleEnd - endType - 1), status); |
499 | 21.8k | } |
500 | 1.94M | } |
501 | | |
502 | | /** |
503 | | * Searches the rule's rule text for the first substitution token, |
504 | | * creates a substitution based on it, and removes the token from |
505 | | * the rule's rule text. |
506 | | * @param owner The rule set containing this rule |
507 | | * @param predecessor The rule preceding this one in the rule set's |
508 | | * rule list |
509 | | * @return The newly-created substitution. This is never null; if |
510 | | * the rule text doesn't contain any substitution tokens, this will |
511 | | * be a NullSubstitution. |
512 | | */ |
513 | | NFSubstitution * |
514 | | NFRule::extractSubstitution(const NFRuleSet* owner, |
515 | | const NFRule* predecessor, |
516 | | UErrorCode& status) |
517 | 2.89M | { |
518 | 2.89M | NFSubstitution* result = nullptr; |
519 | | |
520 | | // search the rule's rule text for the first two characters of |
521 | | // a substitution token |
522 | 2.89M | int32_t subStart = indexOfAnyRulePrefix(); |
523 | 2.89M | int32_t subEnd = subStart; |
524 | | |
525 | | // if we didn't find one, create a null substitution positioned |
526 | | // at the end of the rule text |
527 | 2.89M | if (subStart == -1) { |
528 | 1.78M | return nullptr; |
529 | 1.78M | } |
530 | | |
531 | | // special-case the ">>>" token, since searching for the > at the |
532 | | // end will actually find the > in the middle |
533 | 1.11M | if (ruleText.indexOf(gGreaterGreaterGreater, 3, 0) == subStart) { |
534 | 57.3k | subEnd = subStart + 2; |
535 | | |
536 | | // otherwise the substitution token ends with the same character |
537 | | // it began with |
538 | 1.05M | } else { |
539 | 1.05M | char16_t c = ruleText.charAt(subStart); |
540 | 1.05M | subEnd = ruleText.indexOf(c, subStart + 1); |
541 | | // special case for '<%foo<<' |
542 | 1.05M | if (c == gLessThan && subEnd != -1 && subEnd < ruleText.length() - 1 && ruleText.charAt(subEnd+1) == c) { |
543 | | // ordinals use "=#,##0==%abbrev=" as their rule. Notice that the '==' in the middle |
544 | | // occurs because of the juxtaposition of two different rules. The check for '<' is a hack |
545 | | // to get around this. Having the duplicate at the front would cause problems with |
546 | | // rules like "<<%" to format, say, percents... |
547 | 3.61k | ++subEnd; |
548 | 3.61k | } |
549 | 1.05M | } |
550 | | |
551 | | // if we don't find the end of the token (i.e., if we're on a single, |
552 | | // unmatched token character), create a null substitution positioned |
553 | | // at the end of the rule |
554 | 1.11M | if (subEnd == -1) { |
555 | 52.3k | return nullptr; |
556 | 52.3k | } |
557 | | |
558 | | // if we get here, we have a real substitution token (or at least |
559 | | // some text bounded by substitution token characters). Use |
560 | | // makeSubstitution() to create the right kind of substitution |
561 | 1.05M | UnicodeString subToken; |
562 | 1.05M | subToken.setTo(ruleText, subStart, subEnd + 1 - subStart); |
563 | 1.05M | result = NFSubstitution::makeSubstitution(subStart, this, predecessor, owner, |
564 | 1.05M | this->formatter, subToken, status); |
565 | | |
566 | | // remove the substitution from the rule text |
567 | 1.05M | ruleText.removeBetween(subStart, subEnd+1); |
568 | | |
569 | 1.05M | return result; |
570 | 1.11M | } |
571 | | |
572 | | /** |
573 | | * Sets the rule's base value, and causes the radix and exponent |
574 | | * to be recalculated. This is used during construction when we |
575 | | * don't know the rule's base value until after it's been |
576 | | * constructed. It should be used at any other time. |
577 | | * @param The new base value for the rule. |
578 | | */ |
579 | | void |
580 | | NFRule::setBaseValue(int64_t newBaseValue, UErrorCode& status) |
581 | 1.58M | { |
582 | | // set the base value |
583 | 1.58M | baseValue = newBaseValue; |
584 | 1.58M | radix = 10; |
585 | | |
586 | | // if this isn't a special rule, recalculate the radix and exponent |
587 | | // (the radix always defaults to 10; if it's supposed to be something |
588 | | // else, it's cleaned up by the caller and the exponent is |
589 | | // recalculated again-- the only function that does this is |
590 | | // NFRule.parseRuleDescriptor() ) |
591 | 1.58M | if (baseValue >= 1) { |
592 | 1.32M | exponent = expectedExponent(); |
593 | | |
594 | | // this function gets called on a fully-constructed rule whose |
595 | | // description didn't specify a base value. This means it |
596 | | // has substitutions, and some substitutions hold on to copies |
597 | | // of the rule's divisor. Fix their copies of the divisor. |
598 | 1.32M | if (sub1 != nullptr) { |
599 | 130k | sub1->setDivisor(radix, exponent, status); |
600 | 130k | } |
601 | 1.32M | if (sub2 != nullptr) { |
602 | 14.7k | sub2->setDivisor(radix, exponent, status); |
603 | 14.7k | } |
604 | | |
605 | 1.32M | } else { |
606 | | // if this is a special rule, its radix and exponent are basically |
607 | | // ignored. Set them to "safe" default values |
608 | 259k | exponent = 0; |
609 | 259k | } |
610 | 1.58M | } |
611 | | |
612 | | /** |
613 | | * This calculates the rule's exponent based on its radix and base |
614 | | * value. This will be the highest power the radix can be raised to |
615 | | * and still produce a result less than or equal to the base value. |
616 | | */ |
617 | | int16_t |
618 | | NFRule::expectedExponent() const |
619 | 1.34M | { |
620 | | // since the log of 0, or the log base 0 of something, causes an |
621 | | // error, declare the exponent in these cases to be 0 (we also |
622 | | // deal with the special-rule identifiers here) |
623 | 1.34M | if (radix == 0 || baseValue < 1) { |
624 | 537 | return 0; |
625 | 537 | } |
626 | | |
627 | | // we get rounding error in some cases-- for example, log 1000 / log 10 |
628 | | // gives us 1.9999999996 instead of 2. The extra logic here is to take |
629 | | // that into account |
630 | 1.34M | int16_t tempResult = static_cast<int16_t>(uprv_log(static_cast<double>(baseValue)) / |
631 | 1.34M | uprv_log(static_cast<double>(radix))); |
632 | 1.34M | int64_t temp = util64_pow(radix, tempResult + 1); |
633 | 1.34M | if (temp <= baseValue) { |
634 | 50.3k | tempResult += 1; |
635 | 50.3k | } |
636 | 1.34M | return tempResult; |
637 | 1.34M | } |
638 | | |
639 | | /** |
640 | | * Searches the rule's rule text for any of the specified strings. |
641 | | * @return The index of the first match in the rule's rule text |
642 | | * (i.e., the first substring in the rule's rule text that matches |
643 | | * _any_ of the strings in "strings"). If none of the strings in |
644 | | * "strings" is found in the rule's rule text, returns -1. |
645 | | */ |
646 | | int32_t |
647 | | NFRule::indexOfAnyRulePrefix() const |
648 | 2.89M | { |
649 | 2.89M | int result = -1; |
650 | 34.7M | for (int i = 0; RULE_PREFIXES[i]; i++) { |
651 | 31.8M | int32_t pos = ruleText.indexOf(*RULE_PREFIXES[i]); |
652 | 31.8M | if (pos != -1 && (result == -1 || pos < result)) { |
653 | 1.11M | result = pos; |
654 | 1.11M | } |
655 | 31.8M | } |
656 | 2.89M | return result; |
657 | 2.89M | } |
658 | | |
659 | | //----------------------------------------------------------------------- |
660 | | // boilerplate |
661 | | //----------------------------------------------------------------------- |
662 | | |
663 | | static UBool |
664 | | util_equalSubstitutions(const NFSubstitution* sub1, const NFSubstitution* sub2) |
665 | 0 | { |
666 | 0 | if (sub1) { |
667 | 0 | if (sub2) { |
668 | 0 | return *sub1 == *sub2; |
669 | 0 | } |
670 | 0 | } else if (!sub2) { |
671 | 0 | return true; |
672 | 0 | } |
673 | 0 | return false; |
674 | 0 | } |
675 | | |
676 | | /** |
677 | | * Tests two rules for equality. |
678 | | * @param that The rule to compare this one against |
679 | | * @return True is the two rules are functionally equivalent |
680 | | */ |
681 | | bool |
682 | | NFRule::operator==(const NFRule& rhs) const |
683 | 0 | { |
684 | 0 | return baseValue == rhs.baseValue |
685 | 0 | && radix == rhs.radix |
686 | 0 | && exponent == rhs.exponent |
687 | 0 | && ruleText == rhs.ruleText |
688 | 0 | && util_equalSubstitutions(sub1, rhs.sub1) |
689 | 0 | && util_equalSubstitutions(sub2, rhs.sub2); |
690 | 0 | } |
691 | | |
692 | | /** |
693 | | * Returns a textual representation of the rule. This won't |
694 | | * necessarily be the same as the description that this rule |
695 | | * was created with, but it will produce the same result. |
696 | | * @return A textual description of the rule |
697 | | */ |
698 | | static void util_append64(UnicodeString& result, int64_t n) |
699 | 0 | { |
700 | 0 | char16_t buffer[256]; |
701 | 0 | int32_t len = util64_tou(n, buffer, sizeof(buffer)); |
702 | 0 | UnicodeString temp(buffer, len); |
703 | 0 | result.append(temp); |
704 | 0 | } |
705 | | |
706 | | void |
707 | | NFRule::_appendRuleText(UnicodeString& result) const |
708 | 0 | { |
709 | 0 | switch (getType()) { |
710 | 0 | case kNegativeNumberRule: result.append(gMinusX, 2); break; |
711 | 0 | case kImproperFractionRule: result.append(gX).append(decimalPoint == 0 ? gDot : decimalPoint).append(gX); break; |
712 | 0 | case kProperFractionRule: result.append(gZero).append(decimalPoint == 0 ? gDot : decimalPoint).append(gX); break; |
713 | 0 | case kDefaultRule: result.append(gX).append(decimalPoint == 0 ? gDot : decimalPoint).append(gZero); break; |
714 | 0 | case kInfinityRule: result.append(gInf, 3); break; |
715 | 0 | case kNaNRule: result.append(gNaN, 3); break; |
716 | 0 | default: |
717 | | // for a normal rule, write out its base value, and if the radix is |
718 | | // something other than 10, write out the radix (with the preceding |
719 | | // slash, of course). Then calculate the expected exponent and if |
720 | | // if isn't the same as the actual exponent, write an appropriate |
721 | | // number of > signs. Finally, terminate the whole thing with |
722 | | // a colon. |
723 | 0 | util_append64(result, baseValue); |
724 | 0 | if (radix != 10) { |
725 | 0 | result.append(gSlash); |
726 | 0 | util_append64(result, radix); |
727 | 0 | } |
728 | 0 | int numCarets = expectedExponent() - exponent; |
729 | 0 | for (int i = 0; i < numCarets; i++) { |
730 | 0 | result.append(gGreaterThan); |
731 | 0 | } |
732 | 0 | break; |
733 | 0 | } |
734 | 0 | result.append(gColon); |
735 | 0 | result.append(gSpace); |
736 | | |
737 | | // if the rule text begins with a space, write an apostrophe |
738 | | // (whitespace after the rule descriptor is ignored; the |
739 | | // apostrophe is used to make the whitespace significant) |
740 | 0 | if (ruleText.charAt(0) == gSpace && (sub1 == nullptr || sub1->getPos() != 0)) { |
741 | 0 | result.append(gTick); |
742 | 0 | } |
743 | | |
744 | | // now, write the rule's rule text, inserting appropriate |
745 | | // substitution tokens in the appropriate places |
746 | 0 | UnicodeString ruleTextCopy; |
747 | 0 | ruleTextCopy.setTo(ruleText); |
748 | |
|
749 | 0 | UnicodeString temp; |
750 | 0 | if (sub2 != nullptr) { |
751 | 0 | sub2->toString(temp); |
752 | 0 | ruleTextCopy.insert(sub2->getPos(), temp); |
753 | 0 | } |
754 | 0 | if (sub1 != nullptr) { |
755 | 0 | sub1->toString(temp); |
756 | 0 | ruleTextCopy.insert(sub1->getPos(), temp); |
757 | 0 | } |
758 | |
|
759 | 0 | result.append(ruleTextCopy); |
760 | | |
761 | | // and finally, top the whole thing off with a semicolon and |
762 | | // return the result |
763 | 0 | result.append(gSemicolon); |
764 | 0 | } |
765 | | |
766 | | int64_t NFRule::getDivisor() const |
767 | 845k | { |
768 | 845k | return util64_pow(radix, exponent); |
769 | 845k | } |
770 | | |
771 | | /** |
772 | | * Internal function to facilitate numerical rounding. See the explanation in MultiplierSubstitution::transformNumber(). |
773 | | */ |
774 | | bool NFRule::hasModulusSubstitution() const |
775 | 0 | { |
776 | 0 | return (sub1 != nullptr && sub1->isModulusSubstitution()) || (sub2 != nullptr && sub2->isModulusSubstitution()); |
777 | 0 | } |
778 | | |
779 | | |
780 | | //----------------------------------------------------------------------- |
781 | | // formatting |
782 | | //----------------------------------------------------------------------- |
783 | | |
784 | | /** |
785 | | * Formats the number, and inserts the resulting text into |
786 | | * toInsertInto. |
787 | | * @param number The number being formatted |
788 | | * @param toInsertInto The string where the resultant text should |
789 | | * be inserted |
790 | | * @param pos The position in toInsertInto where the resultant text |
791 | | * should be inserted |
792 | | */ |
793 | | void |
794 | | NFRule::doFormat(int64_t number, UnicodeString& toInsertInto, int32_t pos, int32_t recursionCount, UErrorCode& status) const |
795 | 1.09k | { |
796 | | // first, insert the rule's rule text into toInsertInto at the |
797 | | // specified position, then insert the results of the substitutions |
798 | | // into the right places in toInsertInto (notice we do the |
799 | | // substitutions in reverse order so that the offsets don't get |
800 | | // messed up) |
801 | 1.09k | int32_t pluralRuleStart = ruleText.length(); |
802 | 1.09k | int32_t lengthOffset = 0; |
803 | 1.09k | if (!rulePatternFormat) { |
804 | 1.09k | toInsertInto.insert(pos, ruleText); |
805 | 1.09k | } |
806 | 0 | else { |
807 | 0 | pluralRuleStart = ruleText.indexOf(gDollarOpenParenthesis, -1, 0); |
808 | 0 | int pluralRuleEnd = ruleText.indexOf(gClosedParenthesisDollar, -1, pluralRuleStart); |
809 | 0 | int initialLength = toInsertInto.length(); |
810 | 0 | if (pluralRuleEnd < ruleText.length() - 1) { |
811 | 0 | toInsertInto.insert(pos, ruleText.tempSubString(pluralRuleEnd + 2)); |
812 | 0 | } |
813 | 0 | toInsertInto.insert(pos, |
814 | 0 | rulePatternFormat->format(static_cast<int32_t>(number / util64_pow(radix, exponent)), status)); |
815 | 0 | if (pluralRuleStart > 0) { |
816 | 0 | toInsertInto.insert(pos, ruleText.tempSubString(0, pluralRuleStart)); |
817 | 0 | } |
818 | 0 | lengthOffset = ruleText.length() - (toInsertInto.length() - initialLength); |
819 | 0 | } |
820 | | |
821 | 1.09k | if (sub2 != nullptr) { |
822 | 0 | sub2->doSubstitution(number, toInsertInto, pos - (sub2->getPos() > pluralRuleStart ? lengthOffset : 0), recursionCount, status); |
823 | 0 | } |
824 | 1.09k | if (sub1 != nullptr) { |
825 | 393 | sub1->doSubstitution(number, toInsertInto, pos - (sub1->getPos() > pluralRuleStart ? lengthOffset : 0), recursionCount, status); |
826 | 393 | } |
827 | 1.09k | } |
828 | | |
829 | | /** |
830 | | * Formats the number, and inserts the resulting text into |
831 | | * toInsertInto. |
832 | | * @param number The number being formatted |
833 | | * @param toInsertInto The string where the resultant text should |
834 | | * be inserted |
835 | | * @param pos The position in toInsertInto where the resultant text |
836 | | * should be inserted |
837 | | */ |
838 | | void |
839 | | NFRule::doFormat(double number, UnicodeString& toInsertInto, int32_t pos, int32_t recursionCount, UErrorCode& status) const |
840 | 0 | { |
841 | | // first, insert the rule's rule text into toInsertInto at the |
842 | | // specified position, then insert the results of the substitutions |
843 | | // into the right places in toInsertInto |
844 | | // [again, we have two copies of this routine that do the same thing |
845 | | // so that we don't sacrifice precision in a long by casting it |
846 | | // to a double] |
847 | 0 | int32_t pluralRuleStart = ruleText.length(); |
848 | 0 | int32_t lengthOffset = 0; |
849 | 0 | if (!rulePatternFormat) { |
850 | 0 | toInsertInto.insert(pos, ruleText); |
851 | 0 | } |
852 | 0 | else { |
853 | 0 | pluralRuleStart = ruleText.indexOf(gDollarOpenParenthesis, -1, 0); |
854 | 0 | int pluralRuleEnd = ruleText.indexOf(gClosedParenthesisDollar, -1, pluralRuleStart); |
855 | 0 | int initialLength = toInsertInto.length(); |
856 | 0 | if (pluralRuleEnd < ruleText.length() - 1) { |
857 | 0 | toInsertInto.insert(pos, ruleText.tempSubString(pluralRuleEnd + 2)); |
858 | 0 | } |
859 | 0 | double pluralVal = number; |
860 | 0 | if (0 <= pluralVal && pluralVal < 1) { |
861 | | // We're in a fractional rule, and we have to match the NumeratorSubstitution behavior. |
862 | | // 2.3 can become 0.2999999999999998 for the fraction due to rounding errors. |
863 | 0 | pluralVal = uprv_round(pluralVal * util64_pow(radix, exponent)); |
864 | 0 | } |
865 | 0 | else { |
866 | 0 | pluralVal = pluralVal / util64_pow(radix, exponent); |
867 | 0 | } |
868 | 0 | toInsertInto.insert(pos, rulePatternFormat->format(static_cast<int32_t>(pluralVal), status)); |
869 | 0 | if (pluralRuleStart > 0) { |
870 | 0 | toInsertInto.insert(pos, ruleText.tempSubString(0, pluralRuleStart)); |
871 | 0 | } |
872 | 0 | lengthOffset = ruleText.length() - (toInsertInto.length() - initialLength); |
873 | 0 | } |
874 | |
|
875 | 0 | if (sub2 != nullptr) { |
876 | 0 | sub2->doSubstitution(number, toInsertInto, pos - (sub2->getPos() > pluralRuleStart ? lengthOffset : 0), recursionCount, status); |
877 | 0 | } |
878 | 0 | if (sub1 != nullptr) { |
879 | 0 | sub1->doSubstitution(number, toInsertInto, pos - (sub1->getPos() > pluralRuleStart ? lengthOffset : 0), recursionCount, status); |
880 | 0 | } |
881 | 0 | } |
882 | | |
883 | | /** |
884 | | * Used by the owning rule set to determine whether to invoke the |
885 | | * rollback rule (i.e., whether this rule or the one that precedes |
886 | | * it in the rule set's list should be used to format the number) |
887 | | * @param The number being formatted |
888 | | * @return True if the rule set should use the rule that precedes |
889 | | * this one in its list; false if it should use this rule |
890 | | */ |
891 | | UBool |
892 | | NFRule::shouldRollBack(int64_t number) const |
893 | 387 | { |
894 | | // we roll back if the rule contains a modulus substitution, |
895 | | // the number being formatted is an even multiple of the rule's |
896 | | // divisor, and the rule's base value is NOT an even multiple |
897 | | // of its divisor |
898 | | // In other words, if the original description had |
899 | | // 100: << hundred[ >>]; |
900 | | // that expands into |
901 | | // 100: << hundred; |
902 | | // 101: << hundred >>; |
903 | | // internally. But when we're formatting 200, if we use the rule |
904 | | // at 101, which would normally apply, we get "two hundred zero". |
905 | | // To prevent this, we roll back and use the rule at 100 instead. |
906 | | // This is the logic that makes this happen: the rule at 101 has |
907 | | // a modulus substitution, its base value isn't an even multiple |
908 | | // of 100, and the value we're trying to format _is_ an even |
909 | | // multiple of 100. This is called the "rollback rule." |
910 | 387 | if (radix != 0 && ((sub1 != nullptr && sub1->isModulusSubstitution()) || |
911 | 387 | (sub2 != nullptr && sub2->isModulusSubstitution()))) { |
912 | 387 | int64_t re = util64_pow(radix, exponent); |
913 | 387 | return (number % re) == 0 && (baseValue % re) != 0; |
914 | 387 | } |
915 | 0 | return false; |
916 | 387 | } |
917 | | |
918 | | //----------------------------------------------------------------------- |
919 | | // parsing |
920 | | //----------------------------------------------------------------------- |
921 | | |
922 | | /** |
923 | | * Attempts to parse the string with this rule. |
924 | | * @param text The string being parsed |
925 | | * @param parsePosition On entry, the value is ignored and assumed to |
926 | | * be 0. On exit, this has been updated with the position of the first |
927 | | * character not consumed by matching the text against this rule |
928 | | * (if this rule doesn't match the text at all, the parse position |
929 | | * if left unchanged (presumably at 0) and the function returns |
930 | | * new Long(0)). |
931 | | * @param isFractionRule True if this rule is contained within a |
932 | | * fraction rule set. This is only used if the rule has no |
933 | | * substitutions. |
934 | | * @return If this rule matched the text, this is the rule's base value |
935 | | * combined appropriately with the results of parsing the substitutions. |
936 | | * If nothing matched, this is new Long(0) and the parse position is |
937 | | * left unchanged. The result will be an instance of Long if the |
938 | | * result is an integer and Double otherwise. The result is never null. |
939 | | */ |
940 | | #ifdef RBNF_DEBUG |
941 | | #include <stdio.h> |
942 | | |
943 | | static void dumpUS(FILE* f, const UnicodeString& us) { |
944 | | int len = us.length(); |
945 | | char* buf = (char *)uprv_malloc((len+1)*sizeof(char)); //new char[len+1]; |
946 | | if (buf != nullptr) { |
947 | | us.extract(0, len, buf); |
948 | | buf[len] = 0; |
949 | | fprintf(f, "%s", buf); |
950 | | uprv_free(buf); //delete[] buf; |
951 | | } |
952 | | } |
953 | | #endif |
954 | | UBool |
955 | | NFRule::doParse(const UnicodeString& text, |
956 | | ParsePosition& parsePosition, |
957 | | UBool isFractionRule, |
958 | | double upperBound, |
959 | | uint32_t nonNumericalExecutedRuleMask, |
960 | | int32_t recursionCount, |
961 | | Formattable& resVal) const |
962 | 38.0M | { |
963 | | // internally we operate on a copy of the string being parsed |
964 | | // (because we're going to change it) and use our own ParsePosition |
965 | 38.0M | ParsePosition pp; |
966 | 38.0M | UnicodeString workText(text); |
967 | | |
968 | 38.0M | int32_t sub1Pos = sub1 != nullptr ? sub1->getPos() : ruleText.length(); |
969 | 38.0M | int32_t sub2Pos = sub2 != nullptr ? sub2->getPos() : ruleText.length(); |
970 | | |
971 | | // check to see whether the text before the first substitution |
972 | | // matches the text at the beginning of the string being |
973 | | // parsed. If it does, strip that off the front of workText; |
974 | | // otherwise, dump out with a mismatch |
975 | 38.0M | UnicodeString prefix; |
976 | 38.0M | prefix.setTo(ruleText, 0, sub1Pos); |
977 | | |
978 | | #ifdef RBNF_DEBUG |
979 | | fprintf(stderr, "doParse %p ", this); |
980 | | { |
981 | | UnicodeString rt; |
982 | | _appendRuleText(rt); |
983 | | dumpUS(stderr, rt); |
984 | | } |
985 | | |
986 | | fprintf(stderr, " text: '"); |
987 | | dumpUS(stderr, text); |
988 | | fprintf(stderr, "' prefix: '"); |
989 | | dumpUS(stderr, prefix); |
990 | | #endif |
991 | 38.0M | stripPrefix(workText, prefix, pp); |
992 | 38.0M | int32_t prefixLength = text.length() - workText.length(); |
993 | | |
994 | | #ifdef RBNF_DEBUG |
995 | | fprintf(stderr, "' pl: %d ppi: %d s1p: %d\n", prefixLength, pp.getIndex(), sub1Pos); |
996 | | #endif |
997 | | |
998 | 38.0M | if (pp.getIndex() == 0 && sub1Pos != 0) { |
999 | | // commented out because ParsePosition doesn't have error index in 1.1.x |
1000 | | // restored for ICU4C port |
1001 | 7.90M | parsePosition.setErrorIndex(pp.getErrorIndex()); |
1002 | 7.90M | resVal.setLong(0); |
1003 | 7.90M | return true; |
1004 | 7.90M | } |
1005 | 30.1M | if (baseValue == kInfinityRule) { |
1006 | | // If you match this, don't try to perform any calculations on it. |
1007 | 0 | parsePosition.setIndex(pp.getIndex()); |
1008 | 0 | resVal.setDouble(uprv_getInfinity()); |
1009 | 0 | return true; |
1010 | 0 | } |
1011 | 30.1M | if (baseValue == kNaNRule) { |
1012 | | // If you match this, don't try to perform any calculations on it. |
1013 | 0 | parsePosition.setIndex(pp.getIndex()); |
1014 | 0 | resVal.setDouble(uprv_getNaN()); |
1015 | 0 | return true; |
1016 | 0 | } |
1017 | | |
1018 | | // this is the fun part. The basic guts of the rule-matching |
1019 | | // logic is matchToDelimiter(), which is called twice. The first |
1020 | | // time it searches the input string for the rule text BETWEEN |
1021 | | // the substitutions and tries to match the intervening text |
1022 | | // in the input string with the first substitution. If that |
1023 | | // succeeds, it then calls it again, this time to look for the |
1024 | | // rule text after the second substitution and to match the |
1025 | | // intervening input text against the second substitution. |
1026 | | // |
1027 | | // For example, say we have a rule that looks like this: |
1028 | | // first << middle >> last; |
1029 | | // and input text that looks like this: |
1030 | | // first one middle two last |
1031 | | // First we use stripPrefix() to match "first " in both places and |
1032 | | // strip it off the front, leaving |
1033 | | // one middle two last |
1034 | | // Then we use matchToDelimiter() to match " middle " and try to |
1035 | | // match "one" against a substitution. If it's successful, we now |
1036 | | // have |
1037 | | // two last |
1038 | | // We use matchToDelimiter() a second time to match " last" and |
1039 | | // try to match "two" against a substitution. If "two" matches |
1040 | | // the substitution, we have a successful parse. |
1041 | | // |
1042 | | // Since it's possible in many cases to find multiple instances |
1043 | | // of each of these pieces of rule text in the input string, |
1044 | | // we need to try all the possible combinations of these |
1045 | | // locations. This prevents us from prematurely declaring a mismatch, |
1046 | | // and makes sure we match as much input text as we can. |
1047 | 30.1M | int highWaterMark = 0; |
1048 | 30.1M | double result = 0; |
1049 | 30.1M | int start = 0; |
1050 | 30.1M | double tempBaseValue = static_cast<double>(baseValue <= 0 ? 0 : baseValue); |
1051 | | |
1052 | 30.1M | UnicodeString temp; |
1053 | 30.1M | do { |
1054 | | // our partial parse result starts out as this rule's base |
1055 | | // value. If it finds a successful match, matchToDelimiter() |
1056 | | // will compose this in some way with what it gets back from |
1057 | | // the substitution, giving us a new partial parse result |
1058 | 30.1M | pp.setIndex(0); |
1059 | | |
1060 | 30.1M | temp.setTo(ruleText, sub1Pos, sub2Pos - sub1Pos); |
1061 | 30.1M | double partialResult = matchToDelimiter(workText, start, tempBaseValue, |
1062 | 30.1M | temp, pp, sub1, |
1063 | 30.1M | nonNumericalExecutedRuleMask, |
1064 | 30.1M | recursionCount, |
1065 | 30.1M | upperBound); |
1066 | | |
1067 | | // if we got a successful match (or were trying to match a |
1068 | | // null substitution), pp is now pointing at the first unmatched |
1069 | | // character. Take note of that, and try matchToDelimiter() |
1070 | | // on the input text again |
1071 | 30.1M | if (pp.getIndex() != 0 || sub1 == nullptr) { |
1072 | 1.95M | start = pp.getIndex(); |
1073 | | |
1074 | 1.95M | UnicodeString workText2; |
1075 | 1.95M | workText2.setTo(workText, pp.getIndex(), workText.length() - pp.getIndex()); |
1076 | 1.95M | ParsePosition pp2; |
1077 | | |
1078 | | // the second matchToDelimiter() will compose our previous |
1079 | | // partial result with whatever it gets back from its |
1080 | | // substitution if there's a successful match, giving us |
1081 | | // a real result |
1082 | 1.95M | temp.setTo(ruleText, sub2Pos, ruleText.length() - sub2Pos); |
1083 | 1.95M | partialResult = matchToDelimiter(workText2, 0, partialResult, |
1084 | 1.95M | temp, pp2, sub2, |
1085 | 1.95M | nonNumericalExecutedRuleMask, |
1086 | 1.95M | recursionCount, |
1087 | 1.95M | upperBound); |
1088 | | |
1089 | | // if we got a successful match on this second |
1090 | | // matchToDelimiter() call, update the high-water mark |
1091 | | // and result (if necessary) |
1092 | 1.95M | if (pp2.getIndex() != 0 || sub2 == nullptr) { |
1093 | 1.77M | if (prefixLength + pp.getIndex() + pp2.getIndex() > highWaterMark) { |
1094 | 1.76M | highWaterMark = prefixLength + pp.getIndex() + pp2.getIndex(); |
1095 | 1.76M | result = partialResult; |
1096 | 1.76M | } |
1097 | 1.77M | } |
1098 | 182k | else { |
1099 | | // commented out because ParsePosition doesn't have error index in 1.1.x |
1100 | | // restored for ICU4C port |
1101 | 182k | int32_t i_temp = pp2.getErrorIndex() + sub1Pos + pp.getIndex(); |
1102 | 182k | if (i_temp> parsePosition.getErrorIndex()) { |
1103 | 182k | parsePosition.setErrorIndex(i_temp); |
1104 | 182k | } |
1105 | 182k | } |
1106 | 1.95M | } |
1107 | 28.1M | else { |
1108 | | // commented out because ParsePosition doesn't have error index in 1.1.x |
1109 | | // restored for ICU4C port |
1110 | 28.1M | int32_t i_temp = sub1Pos + pp.getErrorIndex(); |
1111 | 28.1M | if (i_temp > parsePosition.getErrorIndex()) { |
1112 | 3.82M | parsePosition.setErrorIndex(i_temp); |
1113 | 3.82M | } |
1114 | 28.1M | } |
1115 | | // keep trying to match things until the outer matchToDelimiter() |
1116 | | // call fails to make a match (each time, it picks up where it |
1117 | | // left off the previous time) |
1118 | 30.1M | } while (sub1Pos != sub2Pos |
1119 | 9.68M | && pp.getIndex() > 0 |
1120 | 68.1k | && pp.getIndex() < workText.length() |
1121 | 67.8k | && pp.getIndex() != start); |
1122 | | |
1123 | | // update the caller's ParsePosition with our high-water mark |
1124 | | // (i.e., it now points at the first character this function |
1125 | | // didn't match-- the ParsePosition is therefore unchanged if |
1126 | | // we didn't match anything) |
1127 | 30.1M | parsePosition.setIndex(highWaterMark); |
1128 | 30.1M | if (highWaterMark > 0) { |
1129 | 1.76M | parsePosition.setErrorIndex(0); |
1130 | 1.76M | } |
1131 | | |
1132 | | // this is a hack for one unusual condition: Normally, whether this |
1133 | | // rule belong to a fraction rule set or not is handled by its |
1134 | | // substitutions. But if that rule HAS NO substitutions, then |
1135 | | // we have to account for it here. By definition, if the matching |
1136 | | // rule in a fraction rule set has no substitutions, its numerator |
1137 | | // is 1, and so the result is the reciprocal of its base value. |
1138 | 30.1M | if (isFractionRule && highWaterMark > 0 && sub1 == nullptr) { |
1139 | 62.7k | result = 1 / result; |
1140 | 62.7k | } |
1141 | | |
1142 | 30.1M | resVal.setDouble(result); |
1143 | 30.1M | return true; // ??? do we need to worry if it is a long or a double? |
1144 | 30.1M | } |
1145 | | |
1146 | | /** |
1147 | | * This function is used by parse() to match the text being parsed |
1148 | | * against a possible prefix string. This function |
1149 | | * matches characters from the beginning of the string being parsed |
1150 | | * to characters from the prospective prefix. If they match, pp is |
1151 | | * updated to the first character not matched, and the result is |
1152 | | * the unparsed part of the string. If they don't match, the whole |
1153 | | * string is returned, and pp is left unchanged. |
1154 | | * @param text The string being parsed |
1155 | | * @param prefix The text to match against |
1156 | | * @param pp On entry, ignored and assumed to be 0. On exit, points |
1157 | | * to the first unmatched character (assuming the whole prefix matched), |
1158 | | * or is unchanged (if the whole prefix didn't match). |
1159 | | * @return If things match, this is the unparsed part of "text"; |
1160 | | * if they didn't match, this is "text". |
1161 | | */ |
1162 | | void |
1163 | | NFRule::stripPrefix(UnicodeString& text, const UnicodeString& prefix, ParsePosition& pp) const |
1164 | 38.0M | { |
1165 | | // if the prefix text is empty, dump out without doing anything |
1166 | 38.0M | if (prefix.length() != 0) { |
1167 | 8.98M | UErrorCode status = U_ZERO_ERROR; |
1168 | | // use prefixLength() to match the beginning of |
1169 | | // "text" against "prefix". This function returns the |
1170 | | // number of characters from "text" that matched (or 0 if |
1171 | | // we didn't match the whole prefix) |
1172 | 8.98M | int32_t pfl = prefixLength(text, prefix, status); |
1173 | 8.98M | if (U_FAILURE(status)) { // Memory allocation error. |
1174 | 0 | return; |
1175 | 0 | } |
1176 | 8.98M | if (pfl != 0) { |
1177 | | // if we got a successful match, update the parse position |
1178 | | // and strip the prefix off of "text" |
1179 | 1.07M | pp.setIndex(pp.getIndex() + pfl); |
1180 | 1.07M | text.remove(0, pfl); |
1181 | 1.07M | } |
1182 | 8.98M | } |
1183 | 38.0M | } |
1184 | | |
1185 | | /** |
1186 | | * Used by parse() to match a substitution and any following text. |
1187 | | * "text" is searched for instances of "delimiter". For each instance |
1188 | | * of delimiter, the intervening text is tested to see whether it |
1189 | | * matches the substitution. The longest match wins. |
1190 | | * @param text The string being parsed |
1191 | | * @param startPos The position in "text" where we should start looking |
1192 | | * for "delimiter". |
1193 | | * @param baseValue A partial parse result (often the rule's base value), |
1194 | | * which is combined with the result from matching the substitution |
1195 | | * @param delimiter The string to search "text" for. |
1196 | | * @param pp Ignored and presumed to be 0 on entry. If there's a match, |
1197 | | * on exit this will point to the first unmatched character. |
1198 | | * @param sub If we find "delimiter" in "text", this substitution is used |
1199 | | * to match the text between the beginning of the string and the |
1200 | | * position of "delimiter." (If "delimiter" is the empty string, then |
1201 | | * this function just matches against this substitution and updates |
1202 | | * everything accordingly.) |
1203 | | * @param upperBound When matching the substitution, it will only |
1204 | | * consider rules with base values lower than this value. |
1205 | | * @return If there's a match, this is the result of composing |
1206 | | * baseValue with the result of matching the substitution. Otherwise, |
1207 | | * this is new Long(0). It's never null. If the result is an integer, |
1208 | | * this will be an instance of Long; otherwise, it's an instance of |
1209 | | * Double. |
1210 | | * |
1211 | | * !!! note {dlf} in point of fact, in the java code the caller always converts |
1212 | | * the result to a double, so we might as well return one. |
1213 | | */ |
1214 | | double |
1215 | | NFRule::matchToDelimiter(const UnicodeString& text, |
1216 | | int32_t startPos, |
1217 | | double _baseValue, |
1218 | | const UnicodeString& delimiter, |
1219 | | ParsePosition& pp, |
1220 | | const NFSubstitution* sub, |
1221 | | uint32_t nonNumericalExecutedRuleMask, |
1222 | | int32_t recursionCount, |
1223 | | double upperBound) const |
1224 | 32.1M | { |
1225 | 32.1M | UErrorCode status = U_ZERO_ERROR; |
1226 | | // if "delimiter" contains real (i.e., non-ignorable) text, search |
1227 | | // it for "delimiter" beginning at "start". If that succeeds, then |
1228 | | // use "sub"'s doParse() method to match the text before the |
1229 | | // instance of "delimiter" we just found. |
1230 | 32.1M | if (!allIgnorable(delimiter, status)) { |
1231 | 9.81M | if (U_FAILURE(status)) { //Memory allocation error. |
1232 | 0 | return 0; |
1233 | 0 | } |
1234 | 9.81M | ParsePosition tempPP; |
1235 | 9.81M | Formattable result; |
1236 | 9.81M | int currPos = startPos; |
1237 | 9.81M | double bestResult = 0.0; |
1238 | 9.81M | UBool bestResultSet = false; |
1239 | | |
1240 | 22.9M | for (;;) { |
1241 | | // use findText() to search for "delimiter". It returns a two- |
1242 | | // element array: element 0 is the position of the match, and |
1243 | | // element 1 is the number of characters that matched |
1244 | | // "delimiter". |
1245 | 22.9M | tempPP.setIndex(0); |
1246 | 22.9M | int32_t dLen; |
1247 | 22.9M | int32_t dPos = findText(text, delimiter, currPos, &dLen); |
1248 | | |
1249 | 22.9M | if (dPos < 0) { |
1250 | 9.81M | break; |
1251 | 9.81M | } |
1252 | | // if findText() succeeded, isolate the text preceding the |
1253 | | // match, and use "sub" to match that text |
1254 | 13.1M | UnicodeString subText; |
1255 | 13.1M | subText.setTo(text, 0, dPos); |
1256 | 13.1M | if (!subText.isEmpty()) { |
1257 | 9.12M | UBool success = sub->doParse(subText, tempPP, _baseValue, upperBound, |
1258 | | #if UCONFIG_NO_COLLATION |
1259 | | false, |
1260 | | #else |
1261 | 9.12M | formatter->isLenient(), |
1262 | 9.12M | #endif |
1263 | 9.12M | nonNumericalExecutedRuleMask, |
1264 | 9.12M | recursionCount, |
1265 | 9.12M | result); |
1266 | | |
1267 | | // if the substitution could match all the text up to |
1268 | | // where we found "delimiter", then this function has |
1269 | | // a successful match. Bump the caller's parse position |
1270 | | // to point to the first character after the text |
1271 | | // that matches "delimiter", and return the result |
1272 | | // we got from parsing the substitution. |
1273 | 9.12M | if (success && tempPP.getIndex() == dPos) { |
1274 | 69.5k | pp.setIndex(dPos + dLen); |
1275 | 69.5k | bestResult = result.getDouble(); |
1276 | 69.5k | bestResultSet = true; |
1277 | 69.5k | } |
1278 | 9.05M | else { |
1279 | 9.05M | if (bestResultSet) { |
1280 | | // We matched the delimiter once already. |
1281 | | // We didn't find a better match. |
1282 | 5.92k | return bestResult; |
1283 | 5.92k | } |
1284 | 9.05M | if (tempPP.getErrorIndex() > 0) { |
1285 | 521k | pp.setErrorIndex(tempPP.getErrorIndex()); |
1286 | 8.53M | } else { |
1287 | 8.53M | pp.setErrorIndex(tempPP.getIndex()); |
1288 | 8.53M | } |
1289 | 9.05M | } |
1290 | 9.12M | } |
1291 | | |
1292 | | // if we didn't match the substitution, search for another |
1293 | | // copy of "delimiter" in "text" and repeat the loop if |
1294 | | // we find it |
1295 | 13.1M | currPos = dPos + dLen; |
1296 | 13.1M | tempPP.setIndex(0); |
1297 | 13.1M | } |
1298 | 9.81M | if (bestResultSet) { |
1299 | 62.5k | return bestResult; |
1300 | 62.5k | } |
1301 | | // if we make it here, this was an unsuccessful match, and we |
1302 | | // leave pp unchanged and return 0 |
1303 | 9.74M | pp.setIndex(0); |
1304 | 9.74M | return 0; |
1305 | | |
1306 | | // if "delimiter" is empty, or consists only of ignorable characters |
1307 | | // (i.e., is semantically empty), thwe we obviously can't search |
1308 | | // for "delimiter". Instead, just use "sub" to parse as much of |
1309 | | // "text" as possible. |
1310 | 9.81M | } |
1311 | 22.2M | else if (sub == nullptr) { |
1312 | 2.72M | return _baseValue; |
1313 | 2.72M | } |
1314 | 19.5M | else { |
1315 | 19.5M | ParsePosition tempPP; |
1316 | 19.5M | Formattable result; |
1317 | | |
1318 | | // try to match the whole string against the substitution |
1319 | 19.5M | UBool success = sub->doParse(text, tempPP, _baseValue, upperBound, |
1320 | | #if UCONFIG_NO_COLLATION |
1321 | | false, |
1322 | | #else |
1323 | 19.5M | formatter->isLenient(), |
1324 | 19.5M | #endif |
1325 | 19.5M | nonNumericalExecutedRuleMask, |
1326 | 19.5M | recursionCount, |
1327 | 19.5M | result); |
1328 | 19.5M | if (success && (tempPP.getIndex() != 0)) { |
1329 | | // if there's a successful match (or it's a null |
1330 | | // substitution), update pp to point to the first |
1331 | | // character we didn't match, and pass the result from |
1332 | | // sub.doParse() on through to the caller |
1333 | 938k | pp.setIndex(tempPP.getIndex()); |
1334 | 938k | return result.getDouble(); |
1335 | 938k | } |
1336 | 18.6M | else { |
1337 | | // commented out because ParsePosition doesn't have error index in 1.1.x |
1338 | | // restored for ICU4C port |
1339 | 18.6M | pp.setErrorIndex(tempPP.getErrorIndex()); |
1340 | 18.6M | } |
1341 | | |
1342 | | // and if we get to here, then nothing matched, so we return |
1343 | | // 0 and leave pp alone |
1344 | 18.6M | return 0; |
1345 | 19.5M | } |
1346 | 32.1M | } |
1347 | | |
1348 | | /** |
1349 | | * Used by stripPrefix() to match characters. If lenient parse mode |
1350 | | * is off, this just calls startsWith(). If lenient parse mode is on, |
1351 | | * this function uses CollationElementIterators to match characters in |
1352 | | * the strings (only primary-order differences are significant in |
1353 | | * determining whether there's a match). |
1354 | | * @param str The string being tested |
1355 | | * @param prefix The text we're hoping to see at the beginning |
1356 | | * of "str" |
1357 | | * @return If "prefix" is found at the beginning of "str", this |
1358 | | * is the number of characters in "str" that were matched (this |
1359 | | * isn't necessarily the same as the length of "prefix" when matching |
1360 | | * text with a collator). If there's no match, this is 0. |
1361 | | */ |
1362 | | int32_t |
1363 | | NFRule::prefixLength(const UnicodeString& str, const UnicodeString& prefix, UErrorCode& status) const |
1364 | 8.98M | { |
1365 | | // if we're looking for an empty prefix, it obviously matches |
1366 | | // zero characters. Just go ahead and return 0. |
1367 | 8.98M | if (prefix.length() == 0) { |
1368 | 0 | return 0; |
1369 | 0 | } |
1370 | | |
1371 | 8.98M | #if !UCONFIG_NO_COLLATION |
1372 | | // go through all this grief if we're in lenient-parse mode |
1373 | 8.98M | if (formatter->isLenient()) { |
1374 | | // Check if non-lenient rule finds the text before call lenient parsing |
1375 | 0 | if (str.startsWith(prefix)) { |
1376 | 0 | return prefix.length(); |
1377 | 0 | } |
1378 | | // get the formatter's collator and use it to create two |
1379 | | // collation element iterators, one over the target string |
1380 | | // and another over the prefix (right now, we'll throw an |
1381 | | // exception if the collator we get back from the formatter |
1382 | | // isn't a RuleBasedCollator, because RuleBasedCollator defines |
1383 | | // the CollationElementIterator protocol. Hopefully, this |
1384 | | // will change someday.) |
1385 | 0 | const RuleBasedCollator* collator = formatter->getCollator(); |
1386 | 0 | if (collator == nullptr) { |
1387 | 0 | status = U_MEMORY_ALLOCATION_ERROR; |
1388 | 0 | return 0; |
1389 | 0 | } |
1390 | 0 | LocalPointer<CollationElementIterator> strIter(collator->createCollationElementIterator(str)); |
1391 | 0 | LocalPointer<CollationElementIterator> prefixIter(collator->createCollationElementIterator(prefix)); |
1392 | | // Check for memory allocation error. |
1393 | 0 | if (strIter.isNull() || prefixIter.isNull()) { |
1394 | 0 | status = U_MEMORY_ALLOCATION_ERROR; |
1395 | 0 | return 0; |
1396 | 0 | } |
1397 | | |
1398 | 0 | UErrorCode err = U_ZERO_ERROR; |
1399 | | |
1400 | | // The original code was problematic. Consider this match: |
1401 | | // prefix = "fifty-" |
1402 | | // string = " fifty-7" |
1403 | | // The intent is to match string up to the '7', by matching 'fifty-' at position 1 |
1404 | | // in the string. Unfortunately, we were getting a match, and then computing where |
1405 | | // the match terminated by rematching the string. The rematch code was using as an |
1406 | | // initial guess the substring of string between 0 and prefix.length. Because of |
1407 | | // the leading space and trailing hyphen (both ignorable) this was succeeding, leaving |
1408 | | // the position before the hyphen in the string. Recursing down, we then parsed the |
1409 | | // remaining string '-7' as numeric. The resulting number turned out as 43 (50 - 7). |
1410 | | // This was not pretty, especially since the string "fifty-7" parsed just fine. |
1411 | | // |
1412 | | // We have newer APIs now, so we can use calls on the iterator to determine what we |
1413 | | // matched up to. If we terminate because we hit the last element in the string, |
1414 | | // our match terminates at this length. If we terminate because we hit the last element |
1415 | | // in the target, our match terminates at one before the element iterator position. |
1416 | | |
1417 | | // match collation elements between the strings |
1418 | 0 | int32_t oStr = strIter->next(err); |
1419 | 0 | int32_t oPrefix = prefixIter->next(err); |
1420 | |
|
1421 | 0 | while (oPrefix != CollationElementIterator::NULLORDER) { |
1422 | | // skip over ignorable characters in the target string |
1423 | 0 | while (CollationElementIterator::primaryOrder(oStr) == 0 |
1424 | 0 | && oStr != CollationElementIterator::NULLORDER) { |
1425 | 0 | oStr = strIter->next(err); |
1426 | 0 | } |
1427 | | |
1428 | | // skip over ignorable characters in the prefix |
1429 | 0 | while (CollationElementIterator::primaryOrder(oPrefix) == 0 |
1430 | 0 | && oPrefix != CollationElementIterator::NULLORDER) { |
1431 | 0 | oPrefix = prefixIter->next(err); |
1432 | 0 | } |
1433 | | |
1434 | | // dlf: move this above following test, if we consume the |
1435 | | // entire target, aren't we ok even if the source was also |
1436 | | // entirely consumed? |
1437 | | |
1438 | | // if skipping over ignorables brought to the end of |
1439 | | // the prefix, we DID match: drop out of the loop |
1440 | 0 | if (oPrefix == CollationElementIterator::NULLORDER) { |
1441 | 0 | break; |
1442 | 0 | } |
1443 | | |
1444 | | // if skipping over ignorables brought us to the end |
1445 | | // of the target string, we didn't match and return 0 |
1446 | 0 | if (oStr == CollationElementIterator::NULLORDER) { |
1447 | 0 | return 0; |
1448 | 0 | } |
1449 | | |
1450 | | // match collation elements from the two strings |
1451 | | // (considering only primary differences). If we |
1452 | | // get a mismatch, dump out and return 0 |
1453 | 0 | if (CollationElementIterator::primaryOrder(oStr) |
1454 | 0 | != CollationElementIterator::primaryOrder(oPrefix)) { |
1455 | 0 | return 0; |
1456 | | |
1457 | | // otherwise, advance to the next character in each string |
1458 | | // and loop (we drop out of the loop when we exhaust |
1459 | | // collation elements in the prefix) |
1460 | 0 | } else { |
1461 | 0 | oStr = strIter->next(err); |
1462 | 0 | oPrefix = prefixIter->next(err); |
1463 | 0 | } |
1464 | 0 | } |
1465 | | |
1466 | 0 | int32_t result = strIter->getOffset(); |
1467 | 0 | if (oStr != CollationElementIterator::NULLORDER) { |
1468 | 0 | --result; // back over character that we don't want to consume; |
1469 | 0 | } |
1470 | |
|
1471 | | #ifdef RBNF_DEBUG |
1472 | | fprintf(stderr, "prefix length: %d\n", result); |
1473 | | #endif |
1474 | 0 | return result; |
1475 | | #if 0 |
1476 | | //---------------------------------------------------------------- |
1477 | | // JDK 1.2-specific API call |
1478 | | // return strIter.getOffset(); |
1479 | | //---------------------------------------------------------------- |
1480 | | // JDK 1.1 HACK (take out for 1.2-specific code) |
1481 | | |
1482 | | // if we make it to here, we have a successful match. Now we |
1483 | | // have to find out HOW MANY characters from the target string |
1484 | | // matched the prefix (there isn't necessarily a one-to-one |
1485 | | // mapping between collation elements and characters). |
1486 | | // In JDK 1.2, there's a simple getOffset() call we can use. |
1487 | | // In JDK 1.1, on the other hand, we have to go through some |
1488 | | // ugly contortions. First, use the collator to compare the |
1489 | | // same number of characters from the prefix and target string. |
1490 | | // If they're equal, we're done. |
1491 | | collator->setStrength(Collator::PRIMARY); |
1492 | | if (str.length() >= prefix.length()) { |
1493 | | UnicodeString temp; |
1494 | | temp.setTo(str, 0, prefix.length()); |
1495 | | if (collator->equals(temp, prefix)) { |
1496 | | #ifdef RBNF_DEBUG |
1497 | | fprintf(stderr, "returning: %d\n", prefix.length()); |
1498 | | #endif |
1499 | | return prefix.length(); |
1500 | | } |
1501 | | } |
1502 | | |
1503 | | // if they're not equal, then we have to compare successively |
1504 | | // larger and larger substrings of the target string until we |
1505 | | // get to one that matches the prefix. At that point, we know |
1506 | | // how many characters matched the prefix, and we can return. |
1507 | | int32_t p = 1; |
1508 | | while (p <= str.length()) { |
1509 | | UnicodeString temp; |
1510 | | temp.setTo(str, 0, p); |
1511 | | if (collator->equals(temp, prefix)) { |
1512 | | return p; |
1513 | | } else { |
1514 | | ++p; |
1515 | | } |
1516 | | } |
1517 | | |
1518 | | // SHOULD NEVER GET HERE!!! |
1519 | | return 0; |
1520 | | //---------------------------------------------------------------- |
1521 | | #endif |
1522 | | |
1523 | | // If lenient parsing is turned off, forget all that crap above. |
1524 | | // Just use String.startsWith() and be done with it. |
1525 | 0 | } else |
1526 | 8.98M | #endif |
1527 | 8.98M | { |
1528 | 8.98M | if (str.startsWith(prefix)) { |
1529 | 1.07M | return prefix.length(); |
1530 | 7.90M | } else { |
1531 | 7.90M | return 0; |
1532 | 7.90M | } |
1533 | 8.98M | } |
1534 | 8.98M | } |
1535 | | |
1536 | | /** |
1537 | | * Searches a string for another string. If lenient parsing is off, |
1538 | | * this just calls indexOf(). If lenient parsing is on, this function |
1539 | | * uses CollationElementIterator to match characters, and only |
1540 | | * primary-order differences are significant in determining whether |
1541 | | * there's a match. |
1542 | | * @param str The string to search |
1543 | | * @param key The string to search "str" for |
1544 | | * @param startingAt The index into "str" where the search is to |
1545 | | * begin |
1546 | | * @return A two-element array of ints. Element 0 is the position |
1547 | | * of the match, or -1 if there was no match. Element 1 is the |
1548 | | * number of characters in "str" that matched (which isn't necessarily |
1549 | | * the same as the length of "key") |
1550 | | */ |
1551 | | int32_t |
1552 | | NFRule::findText(const UnicodeString& str, |
1553 | | const UnicodeString& key, |
1554 | | int32_t startingAt, |
1555 | | int32_t* length) const |
1556 | 22.9M | { |
1557 | 22.9M | if (rulePatternFormat) { |
1558 | 0 | Formattable result; |
1559 | 0 | FieldPosition position(UNUM_INTEGER_FIELD); |
1560 | 0 | position.setBeginIndex(startingAt); |
1561 | 0 | rulePatternFormat->parseType(str, this, result, position); |
1562 | 0 | int start = position.getBeginIndex(); |
1563 | 0 | if (start >= 0) { |
1564 | 0 | int32_t pluralRuleStart = ruleText.indexOf(gDollarOpenParenthesis, -1, 0); |
1565 | 0 | int32_t pluralRuleSuffix = ruleText.indexOf(gClosedParenthesisDollar, -1, pluralRuleStart) + 2; |
1566 | 0 | int32_t matchLen = position.getEndIndex() - start; |
1567 | 0 | UnicodeString prefix(ruleText.tempSubString(0, pluralRuleStart)); |
1568 | 0 | UnicodeString suffix(ruleText.tempSubString(pluralRuleSuffix)); |
1569 | 0 | if (str.compare(start - prefix.length(), prefix.length(), prefix, 0, prefix.length()) == 0 |
1570 | 0 | && str.compare(start + matchLen, suffix.length(), suffix, 0, suffix.length()) == 0) |
1571 | 0 | { |
1572 | 0 | *length = matchLen + prefix.length() + suffix.length(); |
1573 | 0 | return start - prefix.length(); |
1574 | 0 | } |
1575 | 0 | } |
1576 | 0 | *length = 0; |
1577 | 0 | return -1; |
1578 | 0 | } |
1579 | 22.9M | if (!formatter->isLenient()) { |
1580 | | // if lenient parsing is turned off, this is easy: just call |
1581 | | // String.indexOf() and we're done |
1582 | 22.9M | *length = key.length(); |
1583 | 22.9M | return str.indexOf(key, startingAt); |
1584 | 22.9M | } |
1585 | 0 | else { |
1586 | | // Check if non-lenient rule finds the text before call lenient parsing |
1587 | 0 | *length = key.length(); |
1588 | 0 | int32_t pos = str.indexOf(key, startingAt); |
1589 | 0 | if(pos >= 0) { |
1590 | 0 | return pos; |
1591 | 0 | } else { |
1592 | | // but if lenient parsing is turned ON, we've got some work ahead of us |
1593 | 0 | return findTextLenient(str, key, startingAt, length); |
1594 | 0 | } |
1595 | 0 | } |
1596 | 22.9M | } |
1597 | | |
1598 | | int32_t |
1599 | | NFRule::findTextLenient(const UnicodeString& str, |
1600 | | const UnicodeString& key, |
1601 | | int32_t startingAt, |
1602 | | int32_t* length) const |
1603 | 0 | { |
1604 | | //---------------------------------------------------------------- |
1605 | | // JDK 1.1 HACK (take out of 1.2-specific code) |
1606 | | |
1607 | | // in JDK 1.2, CollationElementIterator provides us with an |
1608 | | // API to map between character offsets and collation elements |
1609 | | // and we can do this by marching through the string comparing |
1610 | | // collation elements. We can't do that in JDK 1.1. Instead, |
1611 | | // we have to go through this horrible slow mess: |
1612 | 0 | int32_t p = startingAt; |
1613 | 0 | int32_t keyLen = 0; |
1614 | | |
1615 | | // basically just isolate smaller and smaller substrings of |
1616 | | // the target string (each running to the end of the string, |
1617 | | // and with the first one running from startingAt to the end) |
1618 | | // and then use prefixLength() to see if the search key is at |
1619 | | // the beginning of each substring. This is excruciatingly |
1620 | | // slow, but it will locate the key and tell use how long the |
1621 | | // matching text was. |
1622 | 0 | UnicodeString temp; |
1623 | 0 | UErrorCode status = U_ZERO_ERROR; |
1624 | 0 | while (p < str.length() && keyLen == 0) { |
1625 | 0 | temp.setTo(str, p, str.length() - p); |
1626 | 0 | keyLen = prefixLength(temp, key, status); |
1627 | 0 | if (U_FAILURE(status)) { |
1628 | 0 | break; |
1629 | 0 | } |
1630 | 0 | if (keyLen != 0) { |
1631 | 0 | *length = keyLen; |
1632 | 0 | return p; |
1633 | 0 | } |
1634 | 0 | ++p; |
1635 | 0 | } |
1636 | | // if we make it to here, we didn't find it. Return -1 for the |
1637 | | // location. The length should be ignored, but set it to 0, |
1638 | | // which should be "safe" |
1639 | 0 | *length = 0; |
1640 | 0 | return -1; |
1641 | 0 | } |
1642 | | |
1643 | | /** |
1644 | | * Checks to see whether a string consists entirely of ignorable |
1645 | | * characters. |
1646 | | * @param str The string to test. |
1647 | | * @return true if the string is empty of consists entirely of |
1648 | | * characters that the number formatter's collator says are |
1649 | | * ignorable at the primary-order level. false otherwise. |
1650 | | */ |
1651 | | UBool |
1652 | | NFRule::allIgnorable(const UnicodeString& str, UErrorCode& status) const |
1653 | 32.1M | { |
1654 | | // if the string is empty, we can just return true |
1655 | 32.1M | if (str.length() == 0) { |
1656 | 22.2M | return true; |
1657 | 22.2M | } |
1658 | | |
1659 | 9.81M | #if !UCONFIG_NO_COLLATION |
1660 | | // if lenient parsing is turned on, walk through the string with |
1661 | | // a collation element iterator and make sure each collation |
1662 | | // element is 0 (ignorable) at the primary level |
1663 | 9.81M | if (formatter->isLenient()) { |
1664 | 0 | const RuleBasedCollator* collator = formatter->getCollator(); |
1665 | 0 | if (collator == nullptr) { |
1666 | 0 | status = U_MEMORY_ALLOCATION_ERROR; |
1667 | 0 | return false; |
1668 | 0 | } |
1669 | 0 | LocalPointer<CollationElementIterator> iter(collator->createCollationElementIterator(str)); |
1670 | | |
1671 | | // Memory allocation error check. |
1672 | 0 | if (iter.isNull()) { |
1673 | 0 | status = U_MEMORY_ALLOCATION_ERROR; |
1674 | 0 | return false; |
1675 | 0 | } |
1676 | | |
1677 | 0 | UErrorCode err = U_ZERO_ERROR; |
1678 | 0 | int32_t o = iter->next(err); |
1679 | 0 | while (o != CollationElementIterator::NULLORDER |
1680 | 0 | && CollationElementIterator::primaryOrder(o) == 0) { |
1681 | 0 | o = iter->next(err); |
1682 | 0 | } |
1683 | |
|
1684 | 0 | return o == CollationElementIterator::NULLORDER; |
1685 | 0 | } |
1686 | 9.81M | #endif |
1687 | | |
1688 | | // if lenient parsing is turned off, there is no such thing as |
1689 | | // an ignorable character: return true only if the string is empty |
1690 | 9.81M | return false; |
1691 | 9.81M | } |
1692 | | |
1693 | | void |
1694 | 0 | NFRule::setDecimalFormatSymbols(const DecimalFormatSymbols& newSymbols, UErrorCode& status) { |
1695 | 0 | if (sub1 != nullptr) { |
1696 | 0 | sub1->setDecimalFormatSymbols(newSymbols, status); |
1697 | 0 | } |
1698 | 0 | if (sub2 != nullptr) { |
1699 | 0 | sub2->setDecimalFormatSymbols(newSymbols, status); |
1700 | 0 | } |
1701 | 0 | } |
1702 | | |
1703 | | U_NAMESPACE_END |
1704 | | |
1705 | | /* U_HAVE_RBNF */ |
1706 | | #endif |