Coverage Report

Created: 2023-06-07 06:06

/src/igraph/vendor/lapack/dlaln2.c
Line
Count
Source (jump to first uncovered line)
1
/*  -- translated by f2c (version 20191129).
2
   You must link the resulting object file with libf2c:
3
  on Microsoft Windows system, link with libf2c.lib;
4
  on Linux or Unix systems, link with .../path/to/libf2c.a -lm
5
  or, if you install libf2c.a in a standard place, with -lf2c -lm
6
  -- in that order, at the end of the command line, as in
7
    cc *.o -lf2c -lm
8
  Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
9
10
    http://www.netlib.org/f2c/libf2c.zip
11
*/
12
13
#include "f2c.h"
14
15
/* > \brief \b DLALN2 solves a 1-by-1 or 2-by-2 linear system of equations of the specified form.   
16
17
    =========== DOCUMENTATION ===========   
18
19
   Online html documentation available at   
20
              http://www.netlib.org/lapack/explore-html/   
21
22
   > \htmlonly   
23
   > Download DLALN2 + dependencies   
24
   > <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dlaln2.
25
f">   
26
   > [TGZ]</a>   
27
   > <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dlaln2.
28
f">   
29
   > [ZIP]</a>   
30
   > <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dlaln2.
31
f">   
32
   > [TXT]</a>   
33
   > \endhtmlonly   
34
35
    Definition:   
36
    ===========   
37
38
         SUBROUTINE DLALN2( LTRANS, NA, NW, SMIN, CA, A, LDA, D1, D2, B,   
39
                            LDB, WR, WI, X, LDX, SCALE, XNORM, INFO )   
40
41
         LOGICAL            LTRANS   
42
         INTEGER            INFO, LDA, LDB, LDX, NA, NW   
43
         DOUBLE PRECISION   CA, D1, D2, SCALE, SMIN, WI, WR, XNORM   
44
         DOUBLE PRECISION   A( LDA, * ), B( LDB, * ), X( LDX, * )   
45
46
47
   > \par Purpose:   
48
    =============   
49
   >   
50
   > \verbatim   
51
   >   
52
   > DLALN2 solves a system of the form  (ca A - w D ) X = s B   
53
   > or (ca A**T - w D) X = s B   with possible scaling ("s") and   
54
   > perturbation of A.  (A**T means A-transpose.)   
55
   >   
56
   > A is an NA x NA real matrix, ca is a real scalar, D is an NA x NA   
57
   > real diagonal matrix, w is a real or complex value, and X and B are   
58
   > NA x 1 matrices -- real if w is real, complex if w is complex.  NA   
59
   > may be 1 or 2.   
60
   >   
61
   > If w is complex, X and B are represented as NA x 2 matrices,   
62
   > the first column of each being the real part and the second   
63
   > being the imaginary part.   
64
   >   
65
   > "s" is a scaling factor (.LE. 1), computed by DLALN2, which is   
66
   > so chosen that X can be computed without overflow.  X is further   
67
   > scaled if necessary to assure that norm(ca A - w D)*norm(X) is less   
68
   > than overflow.   
69
   >   
70
   > If both singular values of (ca A - w D) are less than SMIN,   
71
   > SMIN*identity will be used instead of (ca A - w D).  If only one   
72
   > singular value is less than SMIN, one element of (ca A - w D) will be   
73
   > perturbed enough to make the smallest singular value roughly SMIN.   
74
   > If both singular values are at least SMIN, (ca A - w D) will not be   
75
   > perturbed.  In any case, the perturbation will be at most some small   
76
   > multiple of max( SMIN, ulp*norm(ca A - w D) ).  The singular values   
77
   > are computed by infinity-norm approximations, and thus will only be   
78
   > correct to a factor of 2 or so.   
79
   >   
80
   > Note: all input quantities are assumed to be smaller than overflow   
81
   > by a reasonable factor.  (See BIGNUM.)   
82
   > \endverbatim   
83
84
    Arguments:   
85
    ==========   
86
87
   > \param[in] LTRANS   
88
   > \verbatim   
89
   >          LTRANS is LOGICAL   
90
   >          =.TRUE.:  A-transpose will be used.   
91
   >          =.FALSE.: A will be used (not transposed.)   
92
   > \endverbatim   
93
   >   
94
   > \param[in] NA   
95
   > \verbatim   
96
   >          NA is INTEGER   
97
   >          The size of the matrix A.  It may (only) be 1 or 2.   
98
   > \endverbatim   
99
   >   
100
   > \param[in] NW   
101
   > \verbatim   
102
   >          NW is INTEGER   
103
   >          1 if "w" is real, 2 if "w" is complex.  It may only be 1   
104
   >          or 2.   
105
   > \endverbatim   
106
   >   
107
   > \param[in] SMIN   
108
   > \verbatim   
109
   >          SMIN is DOUBLE PRECISION   
110
   >          The desired lower bound on the singular values of A.  This   
111
   >          should be a safe distance away from underflow or overflow,   
112
   >          say, between (underflow/machine precision) and  (machine   
113
   >          precision * overflow ).  (See BIGNUM and ULP.)   
114
   > \endverbatim   
115
   >   
116
   > \param[in] CA   
117
   > \verbatim   
118
   >          CA is DOUBLE PRECISION   
119
   >          The coefficient c, which A is multiplied by.   
120
   > \endverbatim   
121
   >   
122
   > \param[in] A   
123
   > \verbatim   
124
   >          A is DOUBLE PRECISION array, dimension (LDA,NA)   
125
   >          The NA x NA matrix A.   
126
   > \endverbatim   
127
   >   
128
   > \param[in] LDA   
129
   > \verbatim   
130
   >          LDA is INTEGER   
131
   >          The leading dimension of A.  It must be at least NA.   
132
   > \endverbatim   
133
   >   
134
   > \param[in] D1   
135
   > \verbatim   
136
   >          D1 is DOUBLE PRECISION   
137
   >          The 1,1 element in the diagonal matrix D.   
138
   > \endverbatim   
139
   >   
140
   > \param[in] D2   
141
   > \verbatim   
142
   >          D2 is DOUBLE PRECISION   
143
   >          The 2,2 element in the diagonal matrix D.  Not used if NW=1.   
144
   > \endverbatim   
145
   >   
146
   > \param[in] B   
147
   > \verbatim   
148
   >          B is DOUBLE PRECISION array, dimension (LDB,NW)   
149
   >          The NA x NW matrix B (right-hand side).  If NW=2 ("w" is   
150
   >          complex), column 1 contains the real part of B and column 2   
151
   >          contains the imaginary part.   
152
   > \endverbatim   
153
   >   
154
   > \param[in] LDB   
155
   > \verbatim   
156
   >          LDB is INTEGER   
157
   >          The leading dimension of B.  It must be at least NA.   
158
   > \endverbatim   
159
   >   
160
   > \param[in] WR   
161
   > \verbatim   
162
   >          WR is DOUBLE PRECISION   
163
   >          The real part of the scalar "w".   
164
   > \endverbatim   
165
   >   
166
   > \param[in] WI   
167
   > \verbatim   
168
   >          WI is DOUBLE PRECISION   
169
   >          The imaginary part of the scalar "w".  Not used if NW=1.   
170
   > \endverbatim   
171
   >   
172
   > \param[out] X   
173
   > \verbatim   
174
   >          X is DOUBLE PRECISION array, dimension (LDX,NW)   
175
   >          The NA x NW matrix X (unknowns), as computed by DLALN2.   
176
   >          If NW=2 ("w" is complex), on exit, column 1 will contain   
177
   >          the real part of X and column 2 will contain the imaginary   
178
   >          part.   
179
   > \endverbatim   
180
   >   
181
   > \param[in] LDX   
182
   > \verbatim   
183
   >          LDX is INTEGER   
184
   >          The leading dimension of X.  It must be at least NA.   
185
   > \endverbatim   
186
   >   
187
   > \param[out] SCALE   
188
   > \verbatim   
189
   >          SCALE is DOUBLE PRECISION   
190
   >          The scale factor that B must be multiplied by to insure   
191
   >          that overflow does not occur when computing X.  Thus,   
192
   >          (ca A - w D) X  will be SCALE*B, not B (ignoring   
193
   >          perturbations of A.)  It will be at most 1.   
194
   > \endverbatim   
195
   >   
196
   > \param[out] XNORM   
197
   > \verbatim   
198
   >          XNORM is DOUBLE PRECISION   
199
   >          The infinity-norm of X, when X is regarded as an NA x NW   
200
   >          real matrix.   
201
   > \endverbatim   
202
   >   
203
   > \param[out] INFO   
204
   > \verbatim   
205
   >          INFO is INTEGER   
206
   >          An error flag.  It will be set to zero if no error occurs,   
207
   >          a negative number if an argument is in error, or a positive   
208
   >          number if  ca A - w D  had to be perturbed.   
209
   >          The possible values are:   
210
   >          = 0: No error occurred, and (ca A - w D) did not have to be   
211
   >                 perturbed.   
212
   >          = 1: (ca A - w D) had to be perturbed to make its smallest   
213
   >               (or only) singular value greater than SMIN.   
214
   >          NOTE: In the interests of speed, this routine does not   
215
   >                check the inputs for errors.   
216
   > \endverbatim   
217
218
    Authors:   
219
    ========   
220
221
   > \author Univ. of Tennessee   
222
   > \author Univ. of California Berkeley   
223
   > \author Univ. of Colorado Denver   
224
   > \author NAG Ltd.   
225
226
   > \date September 2012   
227
228
   > \ingroup doubleOTHERauxiliary   
229
230
    =====================================================================   
231
   Subroutine */ int igraphdlaln2_(logical *ltrans, integer *na, integer *nw, 
232
  doublereal *smin, doublereal *ca, doublereal *a, integer *lda, 
233
  doublereal *d1, doublereal *d2, doublereal *b, integer *ldb, 
234
  doublereal *wr, doublereal *wi, doublereal *x, integer *ldx, 
235
  doublereal *scale, doublereal *xnorm, integer *info)
236
0
{
237
    /* Initialized data */
238
239
0
    static logical zswap[4] = { FALSE_,FALSE_,TRUE_,TRUE_ };
240
0
    static logical rswap[4] = { FALSE_,TRUE_,FALSE_,TRUE_ };
241
0
    static integer ipivot[16] /* was [4][4] */ = { 1,2,3,4,2,1,4,3,3,4,1,2,
242
0
      4,3,2,1 };
243
244
    /* System generated locals */
245
0
    integer a_dim1, a_offset, b_dim1, b_offset, x_dim1, x_offset;
246
0
    doublereal d__1, d__2, d__3, d__4, d__5, d__6;
247
0
    IGRAPH_F77_SAVE doublereal equiv_0[4], equiv_1[4];
248
249
    /* Local variables */
250
0
    integer j;
251
0
#define ci (equiv_0)
252
0
#define cr (equiv_1)
253
0
    doublereal bi1, bi2, br1, br2, xi1, xi2, xr1, xr2, ci21, ci22, cr21, cr22,
254
0
       li21, csi, ui11, lr21, ui12, ui22;
255
0
#define civ (equiv_0)
256
0
    doublereal csr, ur11, ur12, ur22;
257
0
#define crv (equiv_1)
258
0
    doublereal bbnd, cmax, ui11r, ui12s, temp, ur11r, ur12s, u22abs;
259
0
    integer icmax;
260
0
    doublereal bnorm, cnorm, smini;
261
0
    extern doublereal igraphdlamch_(char *);
262
0
    extern /* Subroutine */ int igraphdladiv_(doublereal *, doublereal *, 
263
0
      doublereal *, doublereal *, doublereal *, doublereal *);
264
0
    doublereal bignum, smlnum;
265
266
267
/*  -- LAPACK auxiliary routine (version 3.4.2) --   
268
    -- LAPACK is a software package provided by Univ. of Tennessee,    --   
269
    -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--   
270
       September 2012   
271
272
273
   =====================================================================   
274
275
       Parameter adjustments */
276
0
    a_dim1 = *lda;
277
0
    a_offset = 1 + a_dim1;
278
0
    a -= a_offset;
279
0
    b_dim1 = *ldb;
280
0
    b_offset = 1 + b_dim1;
281
0
    b -= b_offset;
282
0
    x_dim1 = *ldx;
283
0
    x_offset = 1 + x_dim1;
284
0
    x -= x_offset;
285
286
    /* Function Body   
287
288
       Compute BIGNUM */
289
290
0
    smlnum = 2. * igraphdlamch_("Safe minimum");
291
0
    bignum = 1. / smlnum;
292
0
    smini = max(*smin,smlnum);
293
294
/*     Don't check for input errors */
295
296
0
    *info = 0;
297
298
/*     Standard Initializations */
299
300
0
    *scale = 1.;
301
302
0
    if (*na == 1) {
303
304
/*        1 x 1  (i.e., scalar) system   C X = B */
305
306
0
  if (*nw == 1) {
307
308
/*           Real 1x1 system.   
309
310
             C = ca A - w D */
311
312
0
      csr = *ca * a[a_dim1 + 1] - *wr * *d1;
313
0
      cnorm = abs(csr);
314
315
/*           If | C | < SMINI, use C = SMINI */
316
317
0
      if (cnorm < smini) {
318
0
    csr = smini;
319
0
    cnorm = smini;
320
0
    *info = 1;
321
0
      }
322
323
/*           Check scaling for  X = B / C */
324
325
0
      bnorm = (d__1 = b[b_dim1 + 1], abs(d__1));
326
0
      if (cnorm < 1. && bnorm > 1.) {
327
0
    if (bnorm > bignum * cnorm) {
328
0
        *scale = 1. / bnorm;
329
0
    }
330
0
      }
331
332
/*           Compute X */
333
334
0
      x[x_dim1 + 1] = b[b_dim1 + 1] * *scale / csr;
335
0
      *xnorm = (d__1 = x[x_dim1 + 1], abs(d__1));
336
0
  } else {
337
338
/*           Complex 1x1 system (w is complex)   
339
340
             C = ca A - w D */
341
342
0
      csr = *ca * a[a_dim1 + 1] - *wr * *d1;
343
0
      csi = -(*wi) * *d1;
344
0
      cnorm = abs(csr) + abs(csi);
345
346
/*           If | C | < SMINI, use C = SMINI */
347
348
0
      if (cnorm < smini) {
349
0
    csr = smini;
350
0
    csi = 0.;
351
0
    cnorm = smini;
352
0
    *info = 1;
353
0
      }
354
355
/*           Check scaling for  X = B / C */
356
357
0
      bnorm = (d__1 = b[b_dim1 + 1], abs(d__1)) + (d__2 = b[(b_dim1 << 
358
0
        1) + 1], abs(d__2));
359
0
      if (cnorm < 1. && bnorm > 1.) {
360
0
    if (bnorm > bignum * cnorm) {
361
0
        *scale = 1. / bnorm;
362
0
    }
363
0
      }
364
365
/*           Compute X */
366
367
0
      d__1 = *scale * b[b_dim1 + 1];
368
0
      d__2 = *scale * b[(b_dim1 << 1) + 1];
369
0
      igraphdladiv_(&d__1, &d__2, &csr, &csi, &x[x_dim1 + 1], &x[(x_dim1 << 1)
370
0
         + 1]);
371
0
      *xnorm = (d__1 = x[x_dim1 + 1], abs(d__1)) + (d__2 = x[(x_dim1 << 
372
0
        1) + 1], abs(d__2));
373
0
  }
374
375
0
    } else {
376
377
/*        2x2 System   
378
379
          Compute the real part of  C = ca A - w D  (or  ca A**T - w D ) */
380
381
0
  cr[0] = *ca * a[a_dim1 + 1] - *wr * *d1;
382
0
  cr[3] = *ca * a[(a_dim1 << 1) + 2] - *wr * *d2;
383
0
  if (*ltrans) {
384
0
      cr[2] = *ca * a[a_dim1 + 2];
385
0
      cr[1] = *ca * a[(a_dim1 << 1) + 1];
386
0
  } else {
387
0
      cr[1] = *ca * a[a_dim1 + 2];
388
0
      cr[2] = *ca * a[(a_dim1 << 1) + 1];
389
0
  }
390
391
0
  if (*nw == 1) {
392
393
/*           Real 2x2 system  (w is real)   
394
395
             Find the largest element in C */
396
397
0
      cmax = 0.;
398
0
      icmax = 0;
399
400
0
      for (j = 1; j <= 4; ++j) {
401
0
    if ((d__1 = crv[j - 1], abs(d__1)) > cmax) {
402
0
        cmax = (d__1 = crv[j - 1], abs(d__1));
403
0
        icmax = j;
404
0
    }
405
/* L10: */
406
0
      }
407
408
/*           If norm(C) < SMINI, use SMINI*identity. */
409
410
0
      if (cmax < smini) {
411
/* Computing MAX */
412
0
    d__3 = (d__1 = b[b_dim1 + 1], abs(d__1)), d__4 = (d__2 = b[
413
0
      b_dim1 + 2], abs(d__2));
414
0
    bnorm = max(d__3,d__4);
415
0
    if (smini < 1. && bnorm > 1.) {
416
0
        if (bnorm > bignum * smini) {
417
0
      *scale = 1. / bnorm;
418
0
        }
419
0
    }
420
0
    temp = *scale / smini;
421
0
    x[x_dim1 + 1] = temp * b[b_dim1 + 1];
422
0
    x[x_dim1 + 2] = temp * b[b_dim1 + 2];
423
0
    *xnorm = temp * bnorm;
424
0
    *info = 1;
425
0
    return 0;
426
0
      }
427
428
/*           Gaussian elimination with complete pivoting. */
429
430
0
      ur11 = crv[icmax - 1];
431
0
      cr21 = crv[ipivot[(icmax << 2) - 3] - 1];
432
0
      ur12 = crv[ipivot[(icmax << 2) - 2] - 1];
433
0
      cr22 = crv[ipivot[(icmax << 2) - 1] - 1];
434
0
      ur11r = 1. / ur11;
435
0
      lr21 = ur11r * cr21;
436
0
      ur22 = cr22 - ur12 * lr21;
437
438
/*           If smaller pivot < SMINI, use SMINI */
439
440
0
      if (abs(ur22) < smini) {
441
0
    ur22 = smini;
442
0
    *info = 1;
443
0
      }
444
0
      if (rswap[icmax - 1]) {
445
0
    br1 = b[b_dim1 + 2];
446
0
    br2 = b[b_dim1 + 1];
447
0
      } else {
448
0
    br1 = b[b_dim1 + 1];
449
0
    br2 = b[b_dim1 + 2];
450
0
      }
451
0
      br2 -= lr21 * br1;
452
/* Computing MAX */
453
0
      d__2 = (d__1 = br1 * (ur22 * ur11r), abs(d__1)), d__3 = abs(br2);
454
0
      bbnd = max(d__2,d__3);
455
0
      if (bbnd > 1. && abs(ur22) < 1.) {
456
0
    if (bbnd >= bignum * abs(ur22)) {
457
0
        *scale = 1. / bbnd;
458
0
    }
459
0
      }
460
461
0
      xr2 = br2 * *scale / ur22;
462
0
      xr1 = *scale * br1 * ur11r - xr2 * (ur11r * ur12);
463
0
      if (zswap[icmax - 1]) {
464
0
    x[x_dim1 + 1] = xr2;
465
0
    x[x_dim1 + 2] = xr1;
466
0
      } else {
467
0
    x[x_dim1 + 1] = xr1;
468
0
    x[x_dim1 + 2] = xr2;
469
0
      }
470
/* Computing MAX */
471
0
      d__1 = abs(xr1), d__2 = abs(xr2);
472
0
      *xnorm = max(d__1,d__2);
473
474
/*           Further scaling if  norm(A) norm(X) > overflow */
475
476
0
      if (*xnorm > 1. && cmax > 1.) {
477
0
    if (*xnorm > bignum / cmax) {
478
0
        temp = cmax / bignum;
479
0
        x[x_dim1 + 1] = temp * x[x_dim1 + 1];
480
0
        x[x_dim1 + 2] = temp * x[x_dim1 + 2];
481
0
        *xnorm = temp * *xnorm;
482
0
        *scale = temp * *scale;
483
0
    }
484
0
      }
485
0
  } else {
486
487
/*           Complex 2x2 system  (w is complex)   
488
489
             Find the largest element in C */
490
491
0
      ci[0] = -(*wi) * *d1;
492
0
      ci[1] = 0.;
493
0
      ci[2] = 0.;
494
0
      ci[3] = -(*wi) * *d2;
495
0
      cmax = 0.;
496
0
      icmax = 0;
497
498
0
      for (j = 1; j <= 4; ++j) {
499
0
    if ((d__1 = crv[j - 1], abs(d__1)) + (d__2 = civ[j - 1], abs(
500
0
      d__2)) > cmax) {
501
0
        cmax = (d__1 = crv[j - 1], abs(d__1)) + (d__2 = civ[j - 1]
502
0
          , abs(d__2));
503
0
        icmax = j;
504
0
    }
505
/* L20: */
506
0
      }
507
508
/*           If norm(C) < SMINI, use SMINI*identity. */
509
510
0
      if (cmax < smini) {
511
/* Computing MAX */
512
0
    d__5 = (d__1 = b[b_dim1 + 1], abs(d__1)) + (d__2 = b[(b_dim1 
513
0
      << 1) + 1], abs(d__2)), d__6 = (d__3 = b[b_dim1 + 2], 
514
0
      abs(d__3)) + (d__4 = b[(b_dim1 << 1) + 2], abs(d__4));
515
0
    bnorm = max(d__5,d__6);
516
0
    if (smini < 1. && bnorm > 1.) {
517
0
        if (bnorm > bignum * smini) {
518
0
      *scale = 1. / bnorm;
519
0
        }
520
0
    }
521
0
    temp = *scale / smini;
522
0
    x[x_dim1 + 1] = temp * b[b_dim1 + 1];
523
0
    x[x_dim1 + 2] = temp * b[b_dim1 + 2];
524
0
    x[(x_dim1 << 1) + 1] = temp * b[(b_dim1 << 1) + 1];
525
0
    x[(x_dim1 << 1) + 2] = temp * b[(b_dim1 << 1) + 2];
526
0
    *xnorm = temp * bnorm;
527
0
    *info = 1;
528
0
    return 0;
529
0
      }
530
531
/*           Gaussian elimination with complete pivoting. */
532
533
0
      ur11 = crv[icmax - 1];
534
0
      ui11 = civ[icmax - 1];
535
0
      cr21 = crv[ipivot[(icmax << 2) - 3] - 1];
536
0
      ci21 = civ[ipivot[(icmax << 2) - 3] - 1];
537
0
      ur12 = crv[ipivot[(icmax << 2) - 2] - 1];
538
0
      ui12 = civ[ipivot[(icmax << 2) - 2] - 1];
539
0
      cr22 = crv[ipivot[(icmax << 2) - 1] - 1];
540
0
      ci22 = civ[ipivot[(icmax << 2) - 1] - 1];
541
0
      if (icmax == 1 || icmax == 4) {
542
543
/*              Code when off-diagonals of pivoted C are real */
544
545
0
    if (abs(ur11) > abs(ui11)) {
546
0
        temp = ui11 / ur11;
547
/* Computing 2nd power */
548
0
        d__1 = temp;
549
0
        ur11r = 1. / (ur11 * (d__1 * d__1 + 1.));
550
0
        ui11r = -temp * ur11r;
551
0
    } else {
552
0
        temp = ur11 / ui11;
553
/* Computing 2nd power */
554
0
        d__1 = temp;
555
0
        ui11r = -1. / (ui11 * (d__1 * d__1 + 1.));
556
0
        ur11r = -temp * ui11r;
557
0
    }
558
0
    lr21 = cr21 * ur11r;
559
0
    li21 = cr21 * ui11r;
560
0
    ur12s = ur12 * ur11r;
561
0
    ui12s = ur12 * ui11r;
562
0
    ur22 = cr22 - ur12 * lr21;
563
0
    ui22 = ci22 - ur12 * li21;
564
0
      } else {
565
566
/*              Code when diagonals of pivoted C are real */
567
568
0
    ur11r = 1. / ur11;
569
0
    ui11r = 0.;
570
0
    lr21 = cr21 * ur11r;
571
0
    li21 = ci21 * ur11r;
572
0
    ur12s = ur12 * ur11r;
573
0
    ui12s = ui12 * ur11r;
574
0
    ur22 = cr22 - ur12 * lr21 + ui12 * li21;
575
0
    ui22 = -ur12 * li21 - ui12 * lr21;
576
0
      }
577
0
      u22abs = abs(ur22) + abs(ui22);
578
579
/*           If smaller pivot < SMINI, use SMINI */
580
581
0
      if (u22abs < smini) {
582
0
    ur22 = smini;
583
0
    ui22 = 0.;
584
0
    *info = 1;
585
0
      }
586
0
      if (rswap[icmax - 1]) {
587
0
    br2 = b[b_dim1 + 1];
588
0
    br1 = b[b_dim1 + 2];
589
0
    bi2 = b[(b_dim1 << 1) + 1];
590
0
    bi1 = b[(b_dim1 << 1) + 2];
591
0
      } else {
592
0
    br1 = b[b_dim1 + 1];
593
0
    br2 = b[b_dim1 + 2];
594
0
    bi1 = b[(b_dim1 << 1) + 1];
595
0
    bi2 = b[(b_dim1 << 1) + 2];
596
0
      }
597
0
      br2 = br2 - lr21 * br1 + li21 * bi1;
598
0
      bi2 = bi2 - li21 * br1 - lr21 * bi1;
599
/* Computing MAX */
600
0
      d__1 = (abs(br1) + abs(bi1)) * (u22abs * (abs(ur11r) + abs(ui11r))
601
0
        ), d__2 = abs(br2) + abs(bi2);
602
0
      bbnd = max(d__1,d__2);
603
0
      if (bbnd > 1. && u22abs < 1.) {
604
0
    if (bbnd >= bignum * u22abs) {
605
0
        *scale = 1. / bbnd;
606
0
        br1 = *scale * br1;
607
0
        bi1 = *scale * bi1;
608
0
        br2 = *scale * br2;
609
0
        bi2 = *scale * bi2;
610
0
    }
611
0
      }
612
613
0
      igraphdladiv_(&br2, &bi2, &ur22, &ui22, &xr2, &xi2);
614
0
      xr1 = ur11r * br1 - ui11r * bi1 - ur12s * xr2 + ui12s * xi2;
615
0
      xi1 = ui11r * br1 + ur11r * bi1 - ui12s * xr2 - ur12s * xi2;
616
0
      if (zswap[icmax - 1]) {
617
0
    x[x_dim1 + 1] = xr2;
618
0
    x[x_dim1 + 2] = xr1;
619
0
    x[(x_dim1 << 1) + 1] = xi2;
620
0
    x[(x_dim1 << 1) + 2] = xi1;
621
0
      } else {
622
0
    x[x_dim1 + 1] = xr1;
623
0
    x[x_dim1 + 2] = xr2;
624
0
    x[(x_dim1 << 1) + 1] = xi1;
625
0
    x[(x_dim1 << 1) + 2] = xi2;
626
0
      }
627
/* Computing MAX */
628
0
      d__1 = abs(xr1) + abs(xi1), d__2 = abs(xr2) + abs(xi2);
629
0
      *xnorm = max(d__1,d__2);
630
631
/*           Further scaling if  norm(A) norm(X) > overflow */
632
633
0
      if (*xnorm > 1. && cmax > 1.) {
634
0
    if (*xnorm > bignum / cmax) {
635
0
        temp = cmax / bignum;
636
0
        x[x_dim1 + 1] = temp * x[x_dim1 + 1];
637
0
        x[x_dim1 + 2] = temp * x[x_dim1 + 2];
638
0
        x[(x_dim1 << 1) + 1] = temp * x[(x_dim1 << 1) + 1];
639
0
        x[(x_dim1 << 1) + 2] = temp * x[(x_dim1 << 1) + 2];
640
0
        *xnorm = temp * *xnorm;
641
0
        *scale = temp * *scale;
642
0
    }
643
0
      }
644
0
  }
645
0
    }
646
647
0
    return 0;
648
649
/*     End of DLALN2 */
650
651
0
} /* igraphdlaln2_ */
652
653
#undef crv
654
#undef civ
655
#undef cr
656
#undef ci
657
658