Coverage Report

Created: 2023-06-07 06:06

/src/igraph/vendor/lapack/dnrm2.c
Line
Count
Source (jump to first uncovered line)
1
/*  -- translated by f2c (version 20191129).
2
   You must link the resulting object file with libf2c:
3
  on Microsoft Windows system, link with libf2c.lib;
4
  on Linux or Unix systems, link with .../path/to/libf2c.a -lm
5
  or, if you install libf2c.a in a standard place, with -lf2c -lm
6
  -- in that order, at the end of the command line, as in
7
    cc *.o -lf2c -lm
8
  Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
9
10
    http://www.netlib.org/f2c/libf2c.zip
11
*/
12
13
#include "f2c.h"
14
15
/* > \brief \b DNRM2   
16
17
    =========== DOCUMENTATION ===========   
18
19
   Online html documentation available at   
20
              http://www.netlib.org/lapack/explore-html/   
21
22
    Definition:   
23
    ===========   
24
25
         DOUBLE PRECISION FUNCTION DNRM2(N,X,INCX)   
26
27
         INTEGER INCX,N   
28
         DOUBLE PRECISION X(*)   
29
30
31
   > \par Purpose:   
32
    =============   
33
   >   
34
   > \verbatim   
35
   >   
36
   > DNRM2 returns the euclidean norm of a vector via the function   
37
   > name, so that   
38
   >   
39
   >    DNRM2 := sqrt( x'*x )   
40
   > \endverbatim   
41
42
    Arguments:   
43
    ==========   
44
45
   > \param[in] N   
46
   > \verbatim   
47
   >          N is INTEGER   
48
   >         number of elements in input vector(s)   
49
   > \endverbatim   
50
   >   
51
   > \param[in] X   
52
   > \verbatim   
53
   >          X is DOUBLE PRECISION array, dimension ( 1 + ( N - 1 )*abs( INCX ) )   
54
   > \endverbatim   
55
   >   
56
   > \param[in] INCX   
57
   > \verbatim   
58
   >          INCX is INTEGER   
59
   >         storage spacing between elements of DX   
60
   > \endverbatim   
61
62
    Authors:   
63
    ========   
64
65
   > \author Univ. of Tennessee   
66
   > \author Univ. of California Berkeley   
67
   > \author Univ. of Colorado Denver   
68
   > \author NAG Ltd.   
69
70
   > \date November 2017   
71
72
   > \ingroup double_blas_level1   
73
74
   > \par Further Details:   
75
    =====================   
76
   >   
77
   > \verbatim   
78
   >   
79
   >  -- This version written on 25-October-1982.   
80
   >     Modified on 14-October-1993 to inline the call to DLASSQ.   
81
   >     Sven Hammarling, Nag Ltd.   
82
   > \endverbatim   
83
   >   
84
    ===================================================================== */
85
doublereal igraphdnrm2_(integer *n, doublereal *x, integer *incx)
86
0
{
87
    /* System generated locals */
88
0
    integer i__1, i__2;
89
0
    doublereal ret_val, d__1;
90
91
    /* Builtin functions */
92
0
    double sqrt(doublereal);
93
94
    /* Local variables */
95
0
    integer ix;
96
0
    doublereal ssq, norm, scale, absxi;
97
98
99
/*  -- Reference BLAS level1 routine (version 3.8.0) --   
100
    -- Reference BLAS is a software package provided by Univ. of Tennessee,    --   
101
    -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--   
102
       November 2017   
103
104
105
    =====================================================================   
106
107
       Parameter adjustments */
108
0
    --x;
109
110
    /* Function Body */
111
0
    if (*n < 1 || *incx < 1) {
112
0
  norm = 0.;
113
0
    } else if (*n == 1) {
114
0
  norm = abs(x[1]);
115
0
    } else {
116
0
  scale = 0.;
117
0
  ssq = 1.;
118
/*        The following loop is equivalent to this call to the LAPACK   
119
          auxiliary routine:   
120
          CALL DLASSQ( N, X, INCX, SCALE, SSQ ) */
121
122
0
  i__1 = (*n - 1) * *incx + 1;
123
0
  i__2 = *incx;
124
0
  for (ix = 1; i__2 < 0 ? ix >= i__1 : ix <= i__1; ix += i__2) {
125
0
      if (x[ix] != 0.) {
126
0
    absxi = (d__1 = x[ix], abs(d__1));
127
0
    if (scale < absxi) {
128
/* Computing 2nd power */
129
0
        d__1 = scale / absxi;
130
0
        ssq = ssq * (d__1 * d__1) + 1.;
131
0
        scale = absxi;
132
0
    } else {
133
/* Computing 2nd power */
134
0
        d__1 = absxi / scale;
135
0
        ssq += d__1 * d__1;
136
0
    }
137
0
      }
138
/* L10: */
139
0
  }
140
0
  norm = scale * sqrt(ssq);
141
0
    }
142
143
0
    ret_val = norm;
144
0
    return ret_val;
145
146
/*     End of DNRM2. */
147
148
0
} /* igraphdnrm2_ */
149