/src/igraph/vendor/lapack/iladlr.c
Line | Count | Source (jump to first uncovered line) |
1 | | /* -- translated by f2c (version 20191129). |
2 | | You must link the resulting object file with libf2c: |
3 | | on Microsoft Windows system, link with libf2c.lib; |
4 | | on Linux or Unix systems, link with .../path/to/libf2c.a -lm |
5 | | or, if you install libf2c.a in a standard place, with -lf2c -lm |
6 | | -- in that order, at the end of the command line, as in |
7 | | cc *.o -lf2c -lm |
8 | | Source for libf2c is in /netlib/f2c/libf2c.zip, e.g., |
9 | | |
10 | | http://www.netlib.org/f2c/libf2c.zip |
11 | | */ |
12 | | |
13 | | #include "f2c.h" |
14 | | |
15 | | /* > \brief \b ILADLR scans a matrix for its last non-zero row. |
16 | | |
17 | | =========== DOCUMENTATION =========== |
18 | | |
19 | | Online html documentation available at |
20 | | http://www.netlib.org/lapack/explore-html/ |
21 | | |
22 | | > \htmlonly |
23 | | > Download ILADLR + dependencies |
24 | | > <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/iladlr. |
25 | | f"> |
26 | | > [TGZ]</a> |
27 | | > <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/iladlr. |
28 | | f"> |
29 | | > [ZIP]</a> |
30 | | > <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/iladlr. |
31 | | f"> |
32 | | > [TXT]</a> |
33 | | > \endhtmlonly |
34 | | |
35 | | Definition: |
36 | | =========== |
37 | | |
38 | | INTEGER FUNCTION ILADLR( M, N, A, LDA ) |
39 | | |
40 | | INTEGER M, N, LDA |
41 | | DOUBLE PRECISION A( LDA, * ) |
42 | | |
43 | | |
44 | | > \par Purpose: |
45 | | ============= |
46 | | > |
47 | | > \verbatim |
48 | | > |
49 | | > ILADLR scans A for its last non-zero row. |
50 | | > \endverbatim |
51 | | |
52 | | Arguments: |
53 | | ========== |
54 | | |
55 | | > \param[in] M |
56 | | > \verbatim |
57 | | > M is INTEGER |
58 | | > The number of rows of the matrix A. |
59 | | > \endverbatim |
60 | | > |
61 | | > \param[in] N |
62 | | > \verbatim |
63 | | > N is INTEGER |
64 | | > The number of columns of the matrix A. |
65 | | > \endverbatim |
66 | | > |
67 | | > \param[in] A |
68 | | > \verbatim |
69 | | > A is DOUBLE PRECISION array, dimension (LDA,N) |
70 | | > The m by n matrix A. |
71 | | > \endverbatim |
72 | | > |
73 | | > \param[in] LDA |
74 | | > \verbatim |
75 | | > LDA is INTEGER |
76 | | > The leading dimension of the array A. LDA >= max(1,M). |
77 | | > \endverbatim |
78 | | |
79 | | Authors: |
80 | | ======== |
81 | | |
82 | | > \author Univ. of Tennessee |
83 | | > \author Univ. of California Berkeley |
84 | | > \author Univ. of Colorado Denver |
85 | | > \author NAG Ltd. |
86 | | |
87 | | > \date September 2012 |
88 | | |
89 | | > \ingroup auxOTHERauxiliary |
90 | | |
91 | | ===================================================================== */ |
92 | | integer igraphiladlr_(integer *m, integer *n, doublereal *a, integer *lda) |
93 | 0 | { |
94 | | /* System generated locals */ |
95 | 0 | integer a_dim1, a_offset, ret_val, i__1; |
96 | | |
97 | | /* Local variables */ |
98 | 0 | integer i__, j; |
99 | | |
100 | | |
101 | | /* -- LAPACK auxiliary routine (version 3.4.2) -- |
102 | | -- LAPACK is a software package provided by Univ. of Tennessee, -- |
103 | | -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- |
104 | | September 2012 |
105 | | |
106 | | |
107 | | ===================================================================== |
108 | | |
109 | | |
110 | | Quick test for the common case where one corner is non-zero. |
111 | | Parameter adjustments */ |
112 | 0 | a_dim1 = *lda; |
113 | 0 | a_offset = 1 + a_dim1; |
114 | 0 | a -= a_offset; |
115 | | |
116 | | /* Function Body */ |
117 | 0 | if (*m == 0) { |
118 | 0 | ret_val = *m; |
119 | 0 | } else if (a[*m + a_dim1] != 0. || a[*m + *n * a_dim1] != 0.) { |
120 | 0 | ret_val = *m; |
121 | 0 | } else { |
122 | | /* Scan up each column tracking the last zero row seen. */ |
123 | 0 | ret_val = 0; |
124 | 0 | i__1 = *n; |
125 | 0 | for (j = 1; j <= i__1; ++j) { |
126 | 0 | i__ = *m; |
127 | 0 | while(a[max(i__,1) + j * a_dim1] == 0. && i__ >= 1) { |
128 | 0 | --i__; |
129 | 0 | } |
130 | 0 | ret_val = max(ret_val,i__); |
131 | 0 | } |
132 | 0 | } |
133 | 0 | return ret_val; |
134 | 0 | } /* igraphiladlr_ */ |
135 | | |