/src/igraph/src/misc/conversion.c
Line | Count | Source (jump to first uncovered line) |
1 | | /* -*- mode: C -*- */ |
2 | | /* |
3 | | IGraph library. |
4 | | Copyright (C) 2005-2012 Gabor Csardi <csardi.gabor@gmail.com> |
5 | | 334 Harvard street, Cambridge, MA 02139 USA |
6 | | |
7 | | This program is free software; you can redistribute it and/or modify |
8 | | it under the terms of the GNU General Public License as published by |
9 | | the Free Software Foundation; either version 2 of the License, or |
10 | | (at your option) any later version. |
11 | | |
12 | | This program is distributed in the hope that it will be useful, |
13 | | but WITHOUT ANY WARRANTY; without even the implied warranty of |
14 | | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
15 | | GNU General Public License for more details. |
16 | | |
17 | | You should have received a copy of the GNU General Public License |
18 | | along with this program; if not, write to the Free Software |
19 | | Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA |
20 | | 02110-1301 USA |
21 | | |
22 | | */ |
23 | | |
24 | | #include "igraph_conversion.h" |
25 | | |
26 | | #include "igraph_iterators.h" |
27 | | #include "igraph_interface.h" |
28 | | #include "igraph_attributes.h" |
29 | | #include "igraph_constructors.h" |
30 | | #include "igraph_structural.h" |
31 | | #include "igraph_sparsemat.h" |
32 | | #include "igraph_random.h" |
33 | | |
34 | | #include "core/fixed_vectorlist.h" |
35 | | #include "graph/attributes.h" |
36 | | #include "math/safe_intop.h" |
37 | | |
38 | 0 | #define WEIGHT_OF(eid) (weights ? VECTOR(*weights)[eid] : 1) |
39 | | |
40 | | /** |
41 | | * \ingroup conversion |
42 | | * \function igraph_get_adjacency |
43 | | * \brief The adjacency matrix of a graph. |
44 | | * |
45 | | * </para><para> |
46 | | * The result is an adjacency matrix. Entry i, j of the matrix |
47 | | * contains the number of edges connecting vertex i to vertex j in the unweighted |
48 | | * case, or the total weight of edges connecting vertex i to vertex j in the |
49 | | * weighted case. |
50 | | * |
51 | | * \param graph Pointer to the graph to convert |
52 | | * \param res Pointer to an initialized matrix object, it will be |
53 | | * resized if needed. |
54 | | * \param type Constant specifying the type of the adjacency matrix to |
55 | | * create for undirected graphs. It is ignored for directed |
56 | | * graphs. Possible values: |
57 | | * \clist |
58 | | * \cli IGRAPH_GET_ADJACENCY_UPPER |
59 | | * the upper right triangle of the matrix is used. |
60 | | * \cli IGRAPH_GET_ADJACENCY_LOWER |
61 | | * the lower left triangle of the matrix is used. |
62 | | * \cli IGRAPH_GET_ADJACENCY_BOTH |
63 | | * the whole matrix is used, a symmetric matrix is returned |
64 | | * if the graph is undirected. |
65 | | * \endclist |
66 | | * \param weights An optional vector containing the weight of each edge |
67 | | * in the graph. Supply a null pointer here to make all edges have |
68 | | * the same weight of 1. |
69 | | * \param loops Constant specifying how loop edges should be handled. |
70 | | * Possible values: |
71 | | * \clist |
72 | | * \cli IGRAPH_NO_LOOPS |
73 | | * loop edges are ignored and the diagonal of the matrix will contain |
74 | | * zeros only |
75 | | * \cli IGRAPH_LOOPS_ONCE |
76 | | * loop edges are counted once, i.e. a vertex with a single unweighted |
77 | | * loop edge will have 1 in the corresponding diagonal entry |
78 | | * \cli IGRAPH_LOOPS_TWICE |
79 | | * loop edges are counted twice in \em undirected graphs, i.e. a vertex |
80 | | * with a single unweighted loop edge in an undirected graph will have |
81 | | * 2 in the corresponding diagonal entry. Loop edges in directed graphs |
82 | | * are still counted as 1. Essentially, this means that the function is |
83 | | * counting the incident edge \em stems , which makes more sense when |
84 | | * using the adjacency matrix in linear algebra. |
85 | | * \endclist |
86 | | * \return Error code: |
87 | | * \c IGRAPH_EINVAL invalid type argument. |
88 | | * |
89 | | * \sa \ref igraph_get_adjacency_sparse() if you want a sparse matrix representation |
90 | | * |
91 | | * Time complexity: O(|V||V|), |V| is the number of vertices in the graph. |
92 | | */ |
93 | | |
94 | | igraph_error_t igraph_get_adjacency( |
95 | | const igraph_t *graph, igraph_matrix_t *res, igraph_get_adjacency_t type, |
96 | | const igraph_vector_t *weights, igraph_loops_t loops |
97 | 0 | ) { |
98 | 0 | igraph_integer_t no_of_nodes = igraph_vcount(graph); |
99 | 0 | igraph_integer_t no_of_edges = igraph_ecount(graph); |
100 | 0 | igraph_bool_t directed = igraph_is_directed(graph); |
101 | 0 | igraph_integer_t i, from, to; |
102 | |
|
103 | 0 | IGRAPH_CHECK(igraph_matrix_resize(res, no_of_nodes, no_of_nodes)); |
104 | 0 | igraph_matrix_null(res); |
105 | |
|
106 | 0 | if (directed) { |
107 | 0 | for (i = 0; i < no_of_edges; i++) { |
108 | 0 | from = IGRAPH_FROM(graph, i); |
109 | 0 | to = IGRAPH_TO(graph, i); |
110 | 0 | if (from != to || loops != IGRAPH_NO_LOOPS) { |
111 | 0 | MATRIX(*res, from, to) += WEIGHT_OF(i); |
112 | 0 | } |
113 | 0 | } |
114 | 0 | } else if (type == IGRAPH_GET_ADJACENCY_UPPER) { |
115 | 0 | for (i = 0; i < no_of_edges; i++) { |
116 | 0 | from = IGRAPH_FROM(graph, i); |
117 | 0 | to = IGRAPH_TO(graph, i); |
118 | 0 | if (to < from) { |
119 | 0 | MATRIX(*res, to, from) += WEIGHT_OF(i); |
120 | 0 | } else { |
121 | 0 | MATRIX(*res, from, to) += WEIGHT_OF(i); |
122 | 0 | } |
123 | 0 | if (to == from && loops == IGRAPH_LOOPS_TWICE) { |
124 | 0 | MATRIX(*res, to, to) += WEIGHT_OF(i); |
125 | 0 | } |
126 | 0 | } |
127 | 0 | } else if (type == IGRAPH_GET_ADJACENCY_LOWER) { |
128 | 0 | for (i = 0; i < no_of_edges; i++) { |
129 | 0 | from = IGRAPH_FROM(graph, i); |
130 | 0 | to = IGRAPH_TO(graph, i); |
131 | 0 | if (to < from) { |
132 | 0 | MATRIX(*res, from, to) += WEIGHT_OF(i); |
133 | 0 | } else { |
134 | 0 | MATRIX(*res, to, from) += WEIGHT_OF(i); |
135 | 0 | } |
136 | 0 | if (to == from && loops == IGRAPH_LOOPS_TWICE) { |
137 | 0 | MATRIX(*res, to, to) += WEIGHT_OF(i); |
138 | 0 | } |
139 | 0 | } |
140 | 0 | } else if (type == IGRAPH_GET_ADJACENCY_BOTH) { |
141 | 0 | for (i = 0; i < no_of_edges; i++) { |
142 | 0 | from = IGRAPH_FROM(graph, i); |
143 | 0 | to = IGRAPH_TO(graph, i); |
144 | 0 | MATRIX(*res, from, to) += WEIGHT_OF(i); |
145 | 0 | if (from != to || loops == IGRAPH_LOOPS_TWICE) { |
146 | 0 | MATRIX(*res, to, from) += WEIGHT_OF(i); |
147 | 0 | } |
148 | 0 | } |
149 | 0 | } else { |
150 | 0 | IGRAPH_ERROR("Invalid type argument", IGRAPH_EINVAL); |
151 | 0 | } |
152 | | |
153 | | /* Erase the diagonal if we don't need loop edges */ |
154 | 0 | if (loops == IGRAPH_NO_LOOPS) { |
155 | 0 | for (i = 0; i < no_of_nodes; i++) { |
156 | 0 | MATRIX(*res, i, i) = 0; |
157 | 0 | } |
158 | 0 | } |
159 | |
|
160 | 0 | return IGRAPH_SUCCESS; |
161 | 0 | } |
162 | | |
163 | | /** |
164 | | * \function igraph_get_adjacency_sparse |
165 | | * \brief Returns the adjacency matrix of a graph in a sparse matrix format. |
166 | | * |
167 | | * \param graph The input graph. |
168 | | * \param res Pointer to an \em initialized sparse matrix. The result |
169 | | * will be stored here. The matrix will be resized as needed. |
170 | | * \param type Constant specifying the type of the adjacency matrix to |
171 | | * create for undirected graphs. It is ignored for directed |
172 | | * graphs. Possible values: |
173 | | * \clist |
174 | | * \cli IGRAPH_GET_ADJACENCY_UPPER |
175 | | * the upper right triangle of the matrix is used. |
176 | | * \cli IGRAPH_GET_ADJACENCY_LOWER |
177 | | * the lower left triangle of the matrix is used. |
178 | | * \cli IGRAPH_GET_ADJACENCY_BOTH |
179 | | * the whole matrix is used, a symmetric matrix is returned |
180 | | * if the graph is undirected. |
181 | | * \endclist |
182 | | * \return Error code: |
183 | | * \c IGRAPH_EINVAL invalid type argument. |
184 | | * |
185 | | * \sa \ref igraph_get_adjacency(), the dense version of this function. |
186 | | * |
187 | | * Time complexity: TODO. |
188 | | */ |
189 | | |
190 | | igraph_error_t igraph_get_adjacency_sparse( |
191 | | const igraph_t *graph, igraph_sparsemat_t *res, igraph_get_adjacency_t type, |
192 | | const igraph_vector_t *weights, igraph_loops_t loops |
193 | 0 | ) { |
194 | |
|
195 | 0 | igraph_integer_t no_of_nodes = igraph_vcount(graph); |
196 | 0 | igraph_integer_t no_of_edges = igraph_ecount(graph); |
197 | 0 | igraph_bool_t directed = igraph_is_directed(graph); |
198 | 0 | igraph_integer_t nzmax = directed ? no_of_edges : no_of_edges * 2; |
199 | 0 | igraph_integer_t i, from, to; |
200 | |
|
201 | 0 | IGRAPH_CHECK(igraph_sparsemat_resize(res, no_of_nodes, no_of_nodes, nzmax)); |
202 | | |
203 | 0 | if (directed) { |
204 | 0 | for (i = 0; i < no_of_edges; i++) { |
205 | 0 | from = IGRAPH_FROM(graph, i); |
206 | 0 | to = IGRAPH_TO(graph, i); |
207 | 0 | if (from != to || loops != IGRAPH_NO_LOOPS) { |
208 | 0 | IGRAPH_CHECK(igraph_sparsemat_entry(res, from, to, WEIGHT_OF(i))); |
209 | 0 | } |
210 | 0 | } |
211 | 0 | } else if (type == IGRAPH_GET_ADJACENCY_UPPER) { |
212 | 0 | for (i = 0; i < no_of_edges; i++) { |
213 | 0 | from = IGRAPH_FROM(graph, i); |
214 | 0 | to = IGRAPH_TO(graph, i); |
215 | 0 | if (to < from) { |
216 | 0 | IGRAPH_CHECK(igraph_sparsemat_entry(res, to, from, WEIGHT_OF(i))); |
217 | 0 | } else if (to == from) { |
218 | 0 | switch (loops) { |
219 | 0 | case IGRAPH_LOOPS_ONCE: |
220 | 0 | IGRAPH_CHECK(igraph_sparsemat_entry(res, to, to, WEIGHT_OF(i))); |
221 | 0 | break; |
222 | 0 | case IGRAPH_LOOPS_TWICE: |
223 | 0 | IGRAPH_CHECK(igraph_sparsemat_entry(res, to, to, 2 * WEIGHT_OF(i))); |
224 | 0 | break; |
225 | 0 | case IGRAPH_NO_LOOPS: |
226 | 0 | default: |
227 | 0 | break; |
228 | 0 | } |
229 | 0 | } else { |
230 | 0 | IGRAPH_CHECK(igraph_sparsemat_entry(res, from, to, WEIGHT_OF(i))); |
231 | 0 | } |
232 | 0 | } |
233 | 0 | } else if (type == IGRAPH_GET_ADJACENCY_LOWER) { |
234 | 0 | for (i = 0; i < no_of_edges; i++) { |
235 | 0 | from = IGRAPH_FROM(graph, i); |
236 | 0 | to = IGRAPH_TO(graph, i); |
237 | 0 | if (to < from) { |
238 | 0 | IGRAPH_CHECK(igraph_sparsemat_entry(res, from, to, WEIGHT_OF(i))); |
239 | 0 | } else if (to == from) { |
240 | 0 | switch (loops) { |
241 | 0 | case IGRAPH_LOOPS_ONCE: |
242 | 0 | IGRAPH_CHECK(igraph_sparsemat_entry(res, to, to, WEIGHT_OF(i))); |
243 | 0 | break; |
244 | 0 | case IGRAPH_LOOPS_TWICE: |
245 | 0 | IGRAPH_CHECK(igraph_sparsemat_entry(res, to, to, 2 * WEIGHT_OF(i))); |
246 | 0 | break; |
247 | 0 | case IGRAPH_NO_LOOPS: |
248 | 0 | default: |
249 | 0 | break; |
250 | 0 | } |
251 | 0 | } else { |
252 | 0 | IGRAPH_CHECK(igraph_sparsemat_entry(res, to, from, WEIGHT_OF(i))); |
253 | 0 | } |
254 | 0 | } |
255 | 0 | } else if (type == IGRAPH_GET_ADJACENCY_BOTH) { |
256 | 0 | for (i = 0; i < no_of_edges; i++) { |
257 | 0 | from = IGRAPH_FROM(graph, i); |
258 | 0 | to = IGRAPH_TO(graph, i); |
259 | 0 | if (to == from) { |
260 | 0 | switch (loops) { |
261 | 0 | case IGRAPH_LOOPS_ONCE: |
262 | 0 | IGRAPH_CHECK(igraph_sparsemat_entry(res, to, to, WEIGHT_OF(i))); |
263 | 0 | break; |
264 | 0 | case IGRAPH_LOOPS_TWICE: |
265 | 0 | IGRAPH_CHECK(igraph_sparsemat_entry(res, to, to, 2 * WEIGHT_OF(i))); |
266 | 0 | break; |
267 | 0 | case IGRAPH_NO_LOOPS: |
268 | 0 | default: |
269 | 0 | break; |
270 | 0 | } |
271 | 0 | } else { |
272 | 0 | IGRAPH_CHECK(igraph_sparsemat_entry(res, from, to, WEIGHT_OF(i))); |
273 | 0 | IGRAPH_CHECK(igraph_sparsemat_entry(res, to, from, WEIGHT_OF(i))); |
274 | 0 | } |
275 | 0 | } |
276 | 0 | } else { |
277 | 0 | IGRAPH_ERROR("Invalid type argument", IGRAPH_EINVAL); |
278 | 0 | } |
279 | | |
280 | 0 | return IGRAPH_SUCCESS; |
281 | 0 | } |
282 | | |
283 | | #undef WEIGHT_OF |
284 | | |
285 | | /** |
286 | | * \function igraph_get_sparsemat |
287 | | * \brief Converts an igraph graph to a sparse matrix (deprecated). |
288 | | * |
289 | | * If the graph is undirected, then a symmetric matrix is created. |
290 | | * |
291 | | * </para><para> |
292 | | * This function is deprecated in favour of \ref igraph_get_adjacency_sparse(), |
293 | | * but does not work in an identical way. This function takes an \em uninitialized |
294 | | * \c igraph_sparsemat_t while \ref igraph_get_adjacency_sparse() takes |
295 | | * an already initialized one. |
296 | | * |
297 | | * \param graph The input graph. |
298 | | * \param res Pointer to an \em uninitialized sparse matrix. The result |
299 | | * will be stored here. |
300 | | * \return Error code. |
301 | | * |
302 | | * \deprecated-by igraph_get_adjacency_sparse 0.10.0 |
303 | | */ |
304 | | |
305 | 0 | igraph_error_t igraph_get_sparsemat(const igraph_t *graph, igraph_sparsemat_t *res) { |
306 | 0 | igraph_integer_t no_of_nodes = igraph_vcount(graph); |
307 | 0 | igraph_integer_t no_of_edges = igraph_ecount(graph); |
308 | 0 | igraph_integer_t nzmax = igraph_is_directed(graph) ? no_of_edges : 2*no_of_edges; |
309 | 0 | IGRAPH_CHECK(igraph_sparsemat_init(res, no_of_nodes, no_of_nodes, nzmax)); |
310 | 0 | return igraph_get_adjacency_sparse(graph, res, IGRAPH_GET_ADJACENCY_BOTH, NULL, IGRAPH_LOOPS_ONCE); |
311 | 0 | } |
312 | | |
313 | | /** |
314 | | * \ingroup conversion |
315 | | * \function igraph_get_edgelist |
316 | | * \brief The list of edges in a graph. |
317 | | * |
318 | | * The order of the edges is given by the edge IDs. |
319 | | * |
320 | | * \param graph Pointer to the graph object |
321 | | * \param res Pointer to an initialized vector object, it will be |
322 | | * resized. |
323 | | * \param bycol Logical, if true, the edges will be returned |
324 | | * columnwise, e.g. the first edge is |
325 | | * <code>res[0]->res[|E|]</code>, the second is |
326 | | * <code>res[1]->res[|E|+1]</code>, etc. |
327 | | * \return Error code. |
328 | | * |
329 | | * \sa \ref igraph_edges() to return the result only for some edge IDs. |
330 | | * |
331 | | * Time complexity: O(|E|), the number of edges in the graph. |
332 | | */ |
333 | | |
334 | 46.7k | igraph_error_t igraph_get_edgelist(const igraph_t *graph, igraph_vector_int_t *res, igraph_bool_t bycol) { |
335 | | |
336 | 46.7k | igraph_eit_t edgeit; |
337 | 46.7k | igraph_integer_t no_of_edges = igraph_ecount(graph); |
338 | 46.7k | igraph_integer_t vptr = 0; |
339 | 46.7k | igraph_integer_t from, to; |
340 | | |
341 | 46.7k | IGRAPH_CHECK(igraph_vector_int_resize(res, no_of_edges * 2)); |
342 | 46.7k | IGRAPH_CHECK(igraph_eit_create(graph, igraph_ess_all(IGRAPH_EDGEORDER_ID), |
343 | 46.7k | &edgeit)); |
344 | 46.7k | IGRAPH_FINALLY(igraph_eit_destroy, &edgeit); |
345 | | |
346 | 46.7k | if (bycol) { |
347 | 0 | while (!IGRAPH_EIT_END(edgeit)) { |
348 | 0 | igraph_edge(graph, IGRAPH_EIT_GET(edgeit), &from, &to); |
349 | 0 | VECTOR(*res)[vptr] = from; |
350 | 0 | VECTOR(*res)[vptr + no_of_edges] = to; |
351 | 0 | vptr++; |
352 | 0 | IGRAPH_EIT_NEXT(edgeit); |
353 | 0 | } |
354 | 46.7k | } else { |
355 | 408M | while (!IGRAPH_EIT_END(edgeit)) { |
356 | 408M | igraph_edge(graph, IGRAPH_EIT_GET(edgeit), &from, &to); |
357 | 408M | VECTOR(*res)[vptr++] = from; |
358 | 408M | VECTOR(*res)[vptr++] = to; |
359 | 408M | IGRAPH_EIT_NEXT(edgeit); |
360 | 408M | } |
361 | 46.7k | } |
362 | | |
363 | 46.7k | igraph_eit_destroy(&edgeit); |
364 | 46.7k | IGRAPH_FINALLY_CLEAN(1); |
365 | 46.7k | return IGRAPH_SUCCESS; |
366 | 46.7k | } |
367 | | |
368 | | /** |
369 | | * \function igraph_to_directed |
370 | | * \brief Convert an undirected graph to a directed one. |
371 | | * |
372 | | * If the supplied graph is directed, this function does nothing. |
373 | | * |
374 | | * \param graph The graph object to convert. |
375 | | * \param mode Constant, specifies the details of how exactly the |
376 | | * conversion is done. Possible values: |
377 | | * \clist |
378 | | * \cli IGRAPH_TO_DIRECTED_ARBITRARY |
379 | | * The number of edges in the |
380 | | * graph stays the same, an arbitrarily directed edge is |
381 | | * created for each undirected edge. |
382 | | * \cli IGRAPH_TO_DIRECTED_MUTUAL |
383 | | * Two directed edges are |
384 | | * created for each undirected edge, one in each direction. |
385 | | * \cli IGRAPH_TO_DIRECTED_RANDOM |
386 | | * Each undirected edge is converted to a randomly oriented |
387 | | * directed one. |
388 | | * \cli IGRAPH_TO_DIRECTED_ACYCLIC |
389 | | * Each undirected edge is converted to a directed edge oriented |
390 | | * from a lower index vertex to a higher index one. If no self-loops |
391 | | * were present, then the result is a directed acyclic graph. |
392 | | * \endclist |
393 | | * \return Error code. |
394 | | * |
395 | | * Time complexity: O(|V|+|E|), the number of vertices plus the number |
396 | | * of edges. |
397 | | */ |
398 | | |
399 | | igraph_error_t igraph_to_directed(igraph_t *graph, |
400 | 0 | igraph_to_directed_t mode) { |
401 | 0 | igraph_integer_t no_of_edges = igraph_ecount(graph); |
402 | 0 | igraph_integer_t no_of_nodes = igraph_vcount(graph); |
403 | |
|
404 | 0 | if (igraph_is_directed(graph)) { |
405 | 0 | return IGRAPH_SUCCESS; |
406 | 0 | } |
407 | | |
408 | 0 | switch (mode) { |
409 | 0 | case IGRAPH_TO_DIRECTED_ARBITRARY: |
410 | 0 | case IGRAPH_TO_DIRECTED_RANDOM: |
411 | 0 | case IGRAPH_TO_DIRECTED_ACYCLIC: |
412 | 0 | { |
413 | 0 | igraph_t newgraph; |
414 | 0 | igraph_vector_int_t edges; |
415 | 0 | igraph_integer_t size = no_of_edges * 2; |
416 | |
|
417 | 0 | IGRAPH_VECTOR_INT_INIT_FINALLY(&edges, size); |
418 | 0 | IGRAPH_CHECK(igraph_get_edgelist(graph, &edges, 0)); |
419 | | |
420 | 0 | if (mode == IGRAPH_TO_DIRECTED_RANDOM) { |
421 | 0 | RNG_BEGIN(); |
422 | |
|
423 | 0 | for (igraph_integer_t i=0; i < no_of_edges; ++i) { |
424 | 0 | if (RNG_INTEGER(0,1)) { |
425 | 0 | igraph_integer_t temp = VECTOR(edges)[2*i]; |
426 | 0 | VECTOR(edges)[2*i] = VECTOR(edges)[2*i+1]; |
427 | 0 | VECTOR(edges)[2*i+1] = temp; |
428 | 0 | } |
429 | 0 | } |
430 | |
|
431 | 0 | RNG_END(); |
432 | 0 | } else if (mode == IGRAPH_TO_DIRECTED_ACYCLIC) { |
433 | | /* Currently, the endpoints of undirected edges are ordered in the |
434 | | internal graph datastructure, i.e. it is always true that from < to. |
435 | | However, it is not guaranteed that this will not be changed in |
436 | | the future, and this ordering should not be relied on outside of |
437 | | the implementation of the minimal API in type_indexededgelist.c. |
438 | | |
439 | | Therefore, we order the edge endpoints anyway in the following loop: */ |
440 | 0 | for (igraph_integer_t i=0; i < no_of_edges; ++i) { |
441 | 0 | if (VECTOR(edges)[2*i] > VECTOR(edges)[2*i+1]) { |
442 | 0 | igraph_integer_t temp = VECTOR(edges)[2*i]; |
443 | 0 | VECTOR(edges)[2*i] = VECTOR(edges)[2*i+1]; |
444 | 0 | VECTOR(edges)[2*i+1] = temp; |
445 | 0 | } |
446 | 0 | } |
447 | 0 | } |
448 | |
|
449 | 0 | IGRAPH_CHECK(igraph_create(&newgraph, &edges, |
450 | 0 | no_of_nodes, |
451 | 0 | IGRAPH_DIRECTED)); |
452 | 0 | IGRAPH_FINALLY(igraph_destroy, &newgraph); |
453 | 0 | IGRAPH_I_ATTRIBUTE_DESTROY(&newgraph); |
454 | 0 | IGRAPH_I_ATTRIBUTE_COPY(&newgraph, graph, true, true, true); |
455 | 0 | igraph_vector_int_destroy(&edges); |
456 | 0 | IGRAPH_FINALLY_CLEAN(2); |
457 | |
|
458 | 0 | igraph_destroy(graph); |
459 | 0 | *graph = newgraph; |
460 | |
|
461 | 0 | break; |
462 | 0 | } |
463 | 0 | case IGRAPH_TO_DIRECTED_MUTUAL: |
464 | 0 | { |
465 | 0 | igraph_t newgraph; |
466 | 0 | igraph_vector_int_t edges; |
467 | 0 | igraph_vector_int_t index; |
468 | 0 | igraph_integer_t size; |
469 | |
|
470 | 0 | IGRAPH_SAFE_MULT(no_of_edges, 4, &size); |
471 | 0 | IGRAPH_VECTOR_INT_INIT_FINALLY(&edges, 0); |
472 | 0 | IGRAPH_CHECK(igraph_vector_int_reserve(&edges, size)); |
473 | 0 | IGRAPH_CHECK(igraph_get_edgelist(graph, &edges, 0)); |
474 | 0 | IGRAPH_CHECK(igraph_vector_int_resize(&edges, size)); |
475 | 0 | IGRAPH_VECTOR_INT_INIT_FINALLY(&index, no_of_edges * 2); |
476 | 0 | for (igraph_integer_t i = 0; i < no_of_edges; i++) { |
477 | 0 | VECTOR(edges)[no_of_edges * 2 + i * 2] = VECTOR(edges)[i * 2 + 1]; |
478 | 0 | VECTOR(edges)[no_of_edges * 2 + i * 2 + 1] = VECTOR(edges)[i * 2]; |
479 | 0 | VECTOR(index)[i] = VECTOR(index)[no_of_edges + i] = i; |
480 | 0 | } |
481 | |
|
482 | 0 | IGRAPH_CHECK(igraph_create(&newgraph, &edges, |
483 | 0 | no_of_nodes, |
484 | 0 | IGRAPH_DIRECTED)); |
485 | 0 | IGRAPH_FINALLY(igraph_destroy, &newgraph); |
486 | 0 | IGRAPH_I_ATTRIBUTE_DESTROY(&newgraph); |
487 | 0 | IGRAPH_I_ATTRIBUTE_COPY(&newgraph, graph, true, true, /*edges=*/false); |
488 | 0 | IGRAPH_CHECK(igraph_i_attribute_permute_edges(graph, &newgraph, &index)); |
489 | | |
490 | 0 | igraph_vector_int_destroy(&index); |
491 | 0 | igraph_vector_int_destroy(&edges); |
492 | 0 | IGRAPH_FINALLY_CLEAN(3); |
493 | |
|
494 | 0 | igraph_destroy(graph); |
495 | 0 | *graph = newgraph; |
496 | |
|
497 | 0 | break; |
498 | 0 | } |
499 | 0 | default: |
500 | 0 | IGRAPH_ERROR("Cannot direct graph, invalid mode.", IGRAPH_EINVAL); |
501 | 0 | } |
502 | | |
503 | 0 | return IGRAPH_SUCCESS; |
504 | 0 | } |
505 | | |
506 | | /** |
507 | | * \function igraph_to_undirected |
508 | | * \brief Convert a directed graph to an undirected one. |
509 | | * |
510 | | * </para><para> |
511 | | * If the supplied graph is undirected, this function does nothing. |
512 | | * |
513 | | * \param graph The graph object to convert. |
514 | | * \param mode Constant, specifies the details of how exactly the |
515 | | * conversion is done. Possible values: \c |
516 | | * IGRAPH_TO_UNDIRECTED_EACH: the number of edges remains |
517 | | * constant, an undirected edge is created for each directed |
518 | | * one, this version might create graphs with multiple edges; |
519 | | * \c IGRAPH_TO_UNDIRECTED_COLLAPSE: one undirected edge will |
520 | | * be created for each pair of vertices that are connected |
521 | | * with at least one directed edge, no multiple edges will be |
522 | | * created. \c IGRAPH_TO_UNDIRECTED_MUTUAL creates an undirected |
523 | | * edge for each pair of mutual edges in the directed graph. |
524 | | * Non-mutual edges are lost; loop edges are kept unconditionally. |
525 | | * This mode might create multiple edges. |
526 | | * \param edge_comb What to do with the edge attributes. See the igraph |
527 | | * manual section about attributes for details. \c NULL means that |
528 | | * the edge attributes are lost during the conversion, \em except |
529 | | * when \c mode is \c IGRAPH_TO_UNDIRECTED_EACH, in which case the |
530 | | * edge attributes are kept intact. |
531 | | * \return Error code. |
532 | | * |
533 | | * Time complexity: O(|V|+|E|), the number of vertices plus the number |
534 | | * of edges. |
535 | | * |
536 | | * \example examples/simple/igraph_to_undirected.c |
537 | | */ |
538 | | |
539 | | igraph_error_t igraph_to_undirected(igraph_t *graph, |
540 | | igraph_to_undirected_t mode, |
541 | 1.15k | const igraph_attribute_combination_t *edge_comb) { |
542 | | |
543 | 1.15k | igraph_integer_t no_of_nodes = igraph_vcount(graph); |
544 | 1.15k | igraph_integer_t no_of_edges = igraph_ecount(graph); |
545 | 1.15k | igraph_vector_int_t edges; |
546 | 1.15k | igraph_t newgraph; |
547 | 1.15k | igraph_bool_t attr = edge_comb && igraph_has_attribute_table(); |
548 | | |
549 | 1.15k | if (mode != IGRAPH_TO_UNDIRECTED_EACH && |
550 | 1.15k | mode != IGRAPH_TO_UNDIRECTED_COLLAPSE && |
551 | 1.15k | mode != IGRAPH_TO_UNDIRECTED_MUTUAL) { |
552 | 0 | IGRAPH_ERROR("Cannot undirect graph, invalid mode", IGRAPH_EINVAL); |
553 | 0 | } |
554 | | |
555 | 1.15k | if (!igraph_is_directed(graph)) { |
556 | 0 | return IGRAPH_SUCCESS; |
557 | 0 | } |
558 | | |
559 | 1.15k | IGRAPH_VECTOR_INT_INIT_FINALLY(&edges, 0); |
560 | | |
561 | 1.15k | if (mode == IGRAPH_TO_UNDIRECTED_EACH) { |
562 | 0 | igraph_es_t es; |
563 | 0 | igraph_eit_t eit; |
564 | |
|
565 | 0 | IGRAPH_CHECK(igraph_vector_int_reserve(&edges, no_of_edges * 2)); |
566 | 0 | IGRAPH_CHECK(igraph_es_all(&es, IGRAPH_EDGEORDER_ID)); |
567 | 0 | IGRAPH_FINALLY(igraph_es_destroy, &es); |
568 | 0 | IGRAPH_CHECK(igraph_eit_create(graph, es, &eit)); |
569 | 0 | IGRAPH_FINALLY(igraph_eit_destroy, &eit); |
570 | |
|
571 | 0 | while (!IGRAPH_EIT_END(eit)) { |
572 | 0 | igraph_integer_t edge = IGRAPH_EIT_GET(eit); |
573 | 0 | IGRAPH_CHECK(igraph_vector_int_push_back(&edges, IGRAPH_FROM(graph, edge))); |
574 | 0 | IGRAPH_CHECK(igraph_vector_int_push_back(&edges, IGRAPH_TO(graph, edge))); |
575 | 0 | IGRAPH_EIT_NEXT(eit); |
576 | 0 | } |
577 | | |
578 | 0 | igraph_eit_destroy(&eit); |
579 | 0 | igraph_es_destroy(&es); |
580 | 0 | IGRAPH_FINALLY_CLEAN(2); |
581 | |
|
582 | 0 | IGRAPH_CHECK(igraph_create(&newgraph, &edges, |
583 | 0 | no_of_nodes, |
584 | 0 | IGRAPH_UNDIRECTED)); |
585 | 0 | IGRAPH_FINALLY(igraph_destroy, &newgraph); |
586 | 0 | igraph_vector_int_destroy(&edges); |
587 | 0 | IGRAPH_I_ATTRIBUTE_DESTROY(&newgraph); |
588 | 0 | IGRAPH_I_ATTRIBUTE_COPY(&newgraph, graph, true, true, true); |
589 | 0 | IGRAPH_FINALLY_CLEAN(2); |
590 | 0 | igraph_destroy(graph); |
591 | 0 | *graph = newgraph; |
592 | |
|
593 | 1.15k | } else if (mode == IGRAPH_TO_UNDIRECTED_COLLAPSE) { |
594 | 1.15k | igraph_vector_int_t inadj, outadj; |
595 | 1.15k | igraph_vector_int_t mergeinto; |
596 | 1.15k | igraph_integer_t actedge = 0; |
597 | | |
598 | 1.15k | if (attr) { |
599 | 0 | IGRAPH_VECTOR_INT_INIT_FINALLY(&mergeinto, no_of_edges); |
600 | 0 | } |
601 | | |
602 | 1.15k | IGRAPH_CHECK(igraph_vector_int_reserve(&edges, no_of_edges * 2)); |
603 | 1.15k | IGRAPH_VECTOR_INT_INIT_FINALLY(&inadj, 0); |
604 | 1.15k | IGRAPH_VECTOR_INT_INIT_FINALLY(&outadj, 0); |
605 | | |
606 | 89.2k | for (igraph_integer_t i = 0; i < no_of_nodes; i++) { |
607 | 88.1k | igraph_integer_t n_out, n_in; |
608 | 88.1k | igraph_integer_t p1 = -1, p2 = -1; |
609 | 88.1k | igraph_integer_t e1 = 0, e2 = 0, n1 = 0, n2 = 0, last; |
610 | 88.1k | IGRAPH_CHECK(igraph_incident(graph, &outadj, i, IGRAPH_OUT)); |
611 | 88.1k | IGRAPH_CHECK(igraph_incident(graph, &inadj, i, IGRAPH_IN)); |
612 | 88.1k | n_out = igraph_vector_int_size(&outadj); |
613 | 88.1k | n_in = igraph_vector_int_size(&inadj); |
614 | | |
615 | 1.15M | #define STEPOUT() if ( (++p1) < n_out) { \ |
616 | 1.09M | e1 = VECTOR(outadj)[p1]; \ |
617 | 1.09M | n1 = IGRAPH_TO(graph, e1); \ |
618 | 1.09M | } |
619 | 1.20M | #define STEPIN() if ( (++p2) < n_in) { \ |
620 | 1.13M | e2 = VECTOR(inadj )[p2]; \ |
621 | 1.13M | n2 = IGRAPH_FROM(graph, e2); \ |
622 | 1.13M | } |
623 | 313k | #define ADD_NEW_EDGE() { \ |
624 | 313k | IGRAPH_CHECK(igraph_vector_int_push_back(&edges, i)); \ |
625 | 313k | IGRAPH_CHECK(igraph_vector_int_push_back(&edges, last)); \ |
626 | 313k | } |
627 | 2.17M | #define MERGE_INTO_CURRENT_EDGE(which) { \ |
628 | 2.17M | if (attr) { \ |
629 | 0 | VECTOR(mergeinto)[which] = actedge; \ |
630 | 0 | } \ |
631 | 2.17M | } |
632 | | |
633 | 88.1k | STEPOUT(); |
634 | 88.1k | STEPIN(); |
635 | | |
636 | 353k | while (p1 < n_out && n1 <= i && p2 < n_in && n2 <= i) { |
637 | 264k | last = (n1 <= n2) ? n1 : n2; |
638 | 264k | ADD_NEW_EDGE(); |
639 | 1.26M | while (p1 < n_out && last == n1) { |
640 | 998k | MERGE_INTO_CURRENT_EDGE(e1); |
641 | 998k | STEPOUT(); |
642 | 998k | } |
643 | 1.28M | while (p2 < n_in && last == n2) { |
644 | 1.02M | MERGE_INTO_CURRENT_EDGE(e2); |
645 | 1.02M | STEPIN(); |
646 | 1.02M | } |
647 | 264k | actedge++; |
648 | 264k | } |
649 | | |
650 | 106k | while (p1 < n_out && n1 <= i) { |
651 | 18.4k | last = n1; |
652 | 18.4k | ADD_NEW_EDGE(); |
653 | 83.8k | while (p1 < n_out && last == n1) { |
654 | 65.3k | MERGE_INTO_CURRENT_EDGE(e1); |
655 | 65.3k | STEPOUT(); |
656 | 65.3k | } |
657 | 18.4k | actedge++; |
658 | 18.4k | } |
659 | | |
660 | 118k | while (p2 < n_in && n2 <= i) { |
661 | 30.1k | last = n2; |
662 | 30.1k | ADD_NEW_EDGE(); |
663 | 121k | while (p2 < n_in && last == n2) { |
664 | 90.9k | MERGE_INTO_CURRENT_EDGE(e2); |
665 | 90.9k | STEPIN(); |
666 | 90.9k | } |
667 | 30.1k | actedge++; |
668 | 30.1k | } |
669 | 88.1k | } |
670 | | |
671 | 1.15k | #undef MERGE_INTO_CURRENT_EDGE |
672 | 1.15k | #undef ADD_NEW_EDGE |
673 | 1.15k | #undef STEPOUT |
674 | 1.15k | #undef STEPIN |
675 | | |
676 | 1.15k | igraph_vector_int_destroy(&outadj); |
677 | 1.15k | igraph_vector_int_destroy(&inadj); |
678 | 1.15k | IGRAPH_FINALLY_CLEAN(2); |
679 | | |
680 | 1.15k | IGRAPH_CHECK(igraph_create(&newgraph, &edges, |
681 | 1.15k | no_of_nodes, |
682 | 1.15k | IGRAPH_UNDIRECTED)); |
683 | 1.15k | IGRAPH_FINALLY(igraph_destroy, &newgraph); |
684 | 1.15k | igraph_vector_int_destroy(&edges); |
685 | 1.15k | IGRAPH_I_ATTRIBUTE_DESTROY(&newgraph); |
686 | 1.15k | IGRAPH_I_ATTRIBUTE_COPY(&newgraph, graph, true, true, /*edges*/ false); /* no edge attributes */ |
687 | | |
688 | 1.15k | if (attr) { |
689 | 0 | igraph_fixed_vectorlist_t vl; |
690 | 0 | IGRAPH_CHECK(igraph_fixed_vectorlist_convert(&vl, &mergeinto, actedge)); |
691 | 0 | IGRAPH_FINALLY(igraph_fixed_vectorlist_destroy, &vl); |
692 | |
|
693 | 0 | IGRAPH_CHECK(igraph_i_attribute_combine_edges(graph, &newgraph, &vl.vecs, edge_comb)); |
694 | | |
695 | 0 | igraph_fixed_vectorlist_destroy(&vl); |
696 | 0 | IGRAPH_FINALLY_CLEAN(1); |
697 | 0 | } |
698 | | |
699 | 1.15k | IGRAPH_FINALLY_CLEAN(2); |
700 | 1.15k | igraph_destroy(graph); |
701 | 1.15k | *graph = newgraph; |
702 | | |
703 | 1.15k | if (attr) { |
704 | 0 | igraph_vector_int_destroy(&mergeinto); |
705 | 0 | IGRAPH_FINALLY_CLEAN(1); |
706 | 0 | } |
707 | 1.15k | } else if (mode == IGRAPH_TO_UNDIRECTED_MUTUAL) { |
708 | 0 | igraph_vector_int_t inadj, outadj; |
709 | 0 | igraph_vector_int_t mergeinto; |
710 | 0 | igraph_integer_t actedge = 0; |
711 | |
|
712 | 0 | if (attr) { |
713 | 0 | IGRAPH_VECTOR_INT_INIT_FINALLY(&mergeinto, no_of_edges); |
714 | 0 | igraph_vector_int_fill(&mergeinto, -1); |
715 | 0 | } |
716 | | |
717 | 0 | IGRAPH_CHECK(igraph_vector_int_reserve(&edges, no_of_edges * 2)); |
718 | 0 | IGRAPH_VECTOR_INT_INIT_FINALLY(&inadj, 0); |
719 | 0 | IGRAPH_VECTOR_INT_INIT_FINALLY(&outadj, 0); |
720 | | |
721 | 0 | for (igraph_integer_t i = 0; i < no_of_nodes; i++) { |
722 | 0 | igraph_integer_t n_out, n_in; |
723 | 0 | igraph_integer_t p1 = -1, p2 = -1; |
724 | 0 | igraph_integer_t e1 = 0, e2 = 0, n1 = 0, n2 = 0; |
725 | 0 | IGRAPH_CHECK(igraph_incident(graph, &outadj, i, |
726 | 0 | IGRAPH_OUT)); |
727 | 0 | IGRAPH_CHECK(igraph_incident(graph, &inadj, i, |
728 | 0 | IGRAPH_IN)); |
729 | 0 | n_out = igraph_vector_int_size(&outadj); |
730 | 0 | n_in = igraph_vector_int_size(&inadj); |
731 | |
|
732 | 0 | #define STEPOUT() if ( (++p1) < n_out) { \ |
733 | 0 | e1 = VECTOR(outadj)[p1]; \ |
734 | 0 | n1 = IGRAPH_TO(graph, e1); \ |
735 | 0 | } |
736 | 0 | #define STEPIN() if ( (++p2) < n_in) { \ |
737 | 0 | e2 = VECTOR(inadj )[p2]; \ |
738 | 0 | n2 = IGRAPH_FROM(graph, e2); \ |
739 | 0 | } |
740 | |
|
741 | 0 | STEPOUT(); |
742 | 0 | STEPIN(); |
743 | |
|
744 | 0 | while (p1 < n_out && n1 <= i && p2 < n_in && n2 <= i) { |
745 | 0 | if (n1 == n2) { |
746 | 0 | IGRAPH_CHECK(igraph_vector_int_push_back(&edges, i)); |
747 | 0 | IGRAPH_CHECK(igraph_vector_int_push_back(&edges, n1)); |
748 | 0 | if (attr) { |
749 | 0 | VECTOR(mergeinto)[e1] = actedge; |
750 | 0 | VECTOR(mergeinto)[e2] = actedge; |
751 | 0 | actedge++; |
752 | 0 | } |
753 | 0 | STEPOUT(); |
754 | 0 | STEPIN(); |
755 | 0 | } else if (n1 < n2) { |
756 | 0 | STEPOUT(); |
757 | 0 | } else { /* n2<n1 */ |
758 | 0 | STEPIN(); |
759 | 0 | } |
760 | 0 | } |
761 | 0 | } |
762 | | |
763 | 0 | #undef STEPOUT |
764 | 0 | #undef STEPIN |
765 | | |
766 | 0 | igraph_vector_int_destroy(&outadj); |
767 | 0 | igraph_vector_int_destroy(&inadj); |
768 | 0 | IGRAPH_FINALLY_CLEAN(2); |
769 | |
|
770 | 0 | IGRAPH_CHECK(igraph_create(&newgraph, &edges, |
771 | 0 | no_of_nodes, |
772 | 0 | IGRAPH_UNDIRECTED)); |
773 | 0 | IGRAPH_FINALLY(igraph_destroy, &newgraph); |
774 | 0 | igraph_vector_int_destroy(&edges); |
775 | 0 | IGRAPH_I_ATTRIBUTE_DESTROY(&newgraph); |
776 | 0 | IGRAPH_I_ATTRIBUTE_COPY(&newgraph, graph, true, true, /*edges*/ false); /* no edge attributes */ |
777 | | |
778 | 0 | if (attr) { |
779 | 0 | igraph_fixed_vectorlist_t vl; |
780 | 0 | IGRAPH_CHECK(igraph_fixed_vectorlist_convert(&vl, &mergeinto, actedge)); |
781 | 0 | IGRAPH_FINALLY(igraph_fixed_vectorlist_destroy, &vl); |
782 | |
|
783 | 0 | IGRAPH_CHECK(igraph_i_attribute_combine_edges(graph, &newgraph, &vl.vecs, edge_comb)); |
784 | | |
785 | 0 | igraph_fixed_vectorlist_destroy(&vl); |
786 | 0 | IGRAPH_FINALLY_CLEAN(1); |
787 | 0 | } |
788 | | |
789 | 0 | IGRAPH_FINALLY_CLEAN(2); |
790 | 0 | igraph_destroy(graph); |
791 | 0 | *graph = newgraph; |
792 | |
|
793 | 0 | if (attr) { |
794 | 0 | igraph_vector_int_destroy(&mergeinto); |
795 | 0 | IGRAPH_FINALLY_CLEAN(1); |
796 | 0 | } |
797 | 0 | } |
798 | | |
799 | 1.15k | return IGRAPH_SUCCESS; |
800 | 1.15k | } |
801 | | |
802 | 0 | #define WEIGHT_OF(eid) (weights ? VECTOR(*weights)[eid] : 1) |
803 | | |
804 | | /** |
805 | | * \function igraph_get_stochastic |
806 | | * \brief Stochastic adjacency matrix of a graph. |
807 | | * |
808 | | * Stochastic matrix of a graph. The stochastic matrix of a graph is |
809 | | * its adjacency matrix, normalized row-wise or column-wise, such that |
810 | | * the sum of each row (or column) is one. |
811 | | * |
812 | | * \param graph The input graph. |
813 | | * \param res Pointer to an initialized matrix, the result is stored here. |
814 | | * It will be resized as needed. |
815 | | * \param column_wise Whether to normalize column-wise. |
816 | | * \return Error code. |
817 | | * |
818 | | * Time complexity: O(|V||V|), |V| is the number of vertices in the graph. |
819 | | * |
820 | | * \sa \ref igraph_get_stochastic_sparse(), the sparse version of this |
821 | | * function. |
822 | | */ |
823 | | |
824 | | igraph_error_t igraph_get_stochastic( |
825 | | const igraph_t *graph, igraph_matrix_t *res, igraph_bool_t column_wise, |
826 | | const igraph_vector_t *weights |
827 | 0 | ) { |
828 | 0 | igraph_integer_t no_of_nodes = igraph_vcount(graph); |
829 | 0 | igraph_integer_t no_of_edges = igraph_ecount(graph); |
830 | 0 | igraph_bool_t directed = igraph_is_directed(graph); |
831 | 0 | igraph_integer_t i, from, to; |
832 | 0 | igraph_vector_t sums; |
833 | 0 | igraph_real_t sum; |
834 | |
|
835 | 0 | IGRAPH_CHECK(igraph_matrix_resize(res, no_of_nodes, no_of_nodes)); |
836 | 0 | igraph_matrix_null(res); |
837 | |
|
838 | 0 | IGRAPH_VECTOR_INIT_FINALLY(&sums, no_of_nodes); |
839 | | |
840 | 0 | if (directed) { |
841 | 0 | IGRAPH_CHECK(igraph_strength( |
842 | 0 | graph, &sums, igraph_vss_all(), |
843 | 0 | column_wise ? IGRAPH_IN : IGRAPH_OUT, |
844 | 0 | /* loops = */ true, weights |
845 | 0 | )); |
846 | | |
847 | 0 | for (i = 0; i < no_of_edges; i++) { |
848 | 0 | from = IGRAPH_FROM(graph, i); |
849 | 0 | to = IGRAPH_TO(graph, i); |
850 | 0 | sum = VECTOR(sums)[column_wise ? to : from]; |
851 | 0 | MATRIX(*res, from, to) += WEIGHT_OF(i) / sum; |
852 | 0 | } |
853 | 0 | } else { |
854 | 0 | IGRAPH_CHECK(igraph_strength( |
855 | 0 | graph, &sums, igraph_vss_all(), IGRAPH_ALL, |
856 | 0 | /* loops = */ true, weights |
857 | 0 | )); |
858 | | |
859 | 0 | for (i = 0; i < no_of_edges; i++) { |
860 | 0 | from = IGRAPH_FROM(graph, i); |
861 | 0 | to = IGRAPH_TO(graph, i); |
862 | 0 | MATRIX(*res, from, to) += WEIGHT_OF(i) / VECTOR(sums)[column_wise ? to : from]; |
863 | 0 | MATRIX(*res, to, from) += WEIGHT_OF(i) / VECTOR(sums)[column_wise ? from: to]; |
864 | 0 | } |
865 | 0 | } |
866 | | |
867 | 0 | igraph_vector_destroy(&sums); |
868 | 0 | IGRAPH_FINALLY_CLEAN(1); |
869 | |
|
870 | 0 | return IGRAPH_SUCCESS; |
871 | 0 | } |
872 | | |
873 | | #undef WEIGHT_OF |
874 | | |
875 | | /** |
876 | | * \function igraph_get_stochastic_sparse |
877 | | * \brief The stochastic adjacency matrix of a graph. |
878 | | * |
879 | | * Stochastic matrix of a graph. The stochastic matrix of a graph is |
880 | | * its adjacency matrix, normalized row-wise or column-wise, such that |
881 | | * the sum of each row (or column) is one. |
882 | | * |
883 | | * \param graph The input graph. |
884 | | * \param res Pointer to an \em initialized sparse matrix, the |
885 | | * result is stored here. The matrix will be resized as needed. |
886 | | * \param column_wise Whether to normalize column-wise. |
887 | | * \return Error code. |
888 | | * |
889 | | * Time complexity: O(|V|+|E|), linear in the number of vertices and |
890 | | * edges. |
891 | | * |
892 | | * \sa \ref igraph_get_stochastic(), the dense version of this function. |
893 | | */ |
894 | | |
895 | | igraph_error_t igraph_get_stochastic_sparse( |
896 | | const igraph_t *graph, igraph_sparsemat_t *res, igraph_bool_t column_wise, |
897 | | const igraph_vector_t *weights |
898 | 0 | ) { |
899 | 0 | IGRAPH_CHECK(igraph_get_adjacency_sparse(graph, res, IGRAPH_GET_ADJACENCY_BOTH, weights, IGRAPH_LOOPS_TWICE)); |
900 | | |
901 | 0 | if (column_wise) { |
902 | 0 | IGRAPH_CHECK(igraph_sparsemat_normalize_cols(res, /* allow_zeros = */ 0)); |
903 | 0 | } else { |
904 | 0 | IGRAPH_CHECK(igraph_sparsemat_normalize_rows(res, /* allow_zeros = */ 0)); |
905 | 0 | } |
906 | | |
907 | 0 | return IGRAPH_SUCCESS; |
908 | 0 | } |
909 | | |
910 | | |
911 | | /** |
912 | | * \function igraph_get_stochastic_sparsemat |
913 | | * \brief Stochastic adjacency matrix of a graph (deprecated). |
914 | | * |
915 | | * This function is deprecated in favour of \ref igraph_get_stochastic_sparse(), |
916 | | * but does not work in an identical way. This function takes an \em uninitialized |
917 | | * \c igraph_sparsemat_t while \ref igraph_get_stochastic_sparse() takes |
918 | | * an already initialized one. |
919 | | * |
920 | | * \param graph The input graph. |
921 | | * \param res Pointer to an \em uninitialized sparse matrix, the |
922 | | * result is stored here. The matrix will be resized as needed. |
923 | | * \param column_wise Whether to normalize column-wise. For undirected |
924 | | * graphs this argument does not have any effect. |
925 | | * \return Error code. |
926 | | * |
927 | | * \deprecated-by igraph_get_stochastic_sparse 0.10.0 |
928 | | */ |
929 | | |
930 | | igraph_error_t igraph_get_stochastic_sparsemat(const igraph_t *graph, |
931 | | igraph_sparsemat_t *res, |
932 | 0 | igraph_bool_t column_wise) { |
933 | |
|
934 | 0 | igraph_integer_t no_of_nodes = igraph_vcount(graph); |
935 | 0 | igraph_integer_t no_of_edges = igraph_ecount(graph); |
936 | 0 | igraph_integer_t nzmax = igraph_is_directed(graph) ? no_of_edges : 2*no_of_edges; |
937 | 0 | IGRAPH_CHECK(igraph_sparsemat_init(res, no_of_nodes, no_of_nodes, nzmax)); |
938 | 0 | return igraph_get_stochastic_sparse(graph, res, column_wise, NULL); |
939 | 0 | } |
940 | | |
941 | | |
942 | | /** |
943 | | * \ingroup conversion |
944 | | * \function igraph_to_prufer |
945 | | * \brief Converts a tree to its Prüfer sequence. |
946 | | * |
947 | | * A Prüfer sequence is a unique sequence of integers associated |
948 | | * with a labelled tree. A tree on n >= 2 vertices can be represented by a |
949 | | * sequence of n-2 integers, each between 0 and n-1 (inclusive). |
950 | | * |
951 | | * \param graph Pointer to an initialized graph object which |
952 | | must be a tree on n >= 2 vertices. |
953 | | * \param prufer A pointer to the integer vector that should hold the Prüfer sequence; |
954 | | the vector must be initialized and will be resized to n - 2. |
955 | | * \return Error code: |
956 | | * \clist |
957 | | * \cli IGRAPH_ENOMEM |
958 | | * there is not enough memory to perform the operation. |
959 | | * \cli IGRAPH_EINVAL |
960 | | * the graph is not a tree or it is has less than vertices |
961 | | * \endclist |
962 | | * |
963 | | * \sa \ref igraph_from_prufer() |
964 | | * |
965 | | */ |
966 | 0 | igraph_error_t igraph_to_prufer(const igraph_t *graph, igraph_vector_int_t* prufer) { |
967 | | /* For generating the Prüfer sequence, we enumerate the vertices u of the tree. |
968 | | We keep track of the degrees of all vertices, treating vertices |
969 | | of degree 0 as removed. We maintain the invariant that all leafs |
970 | | that are still contained in the tree are >= u. |
971 | | If u is a leaf, we remove it and add its unique neighbor to the Prüfer |
972 | | sequence. If the removal of u turns the neighbor into a leaf which is < u, |
973 | | we repeat the procedure for the new leaf and so on. */ |
974 | 0 | igraph_integer_t u; |
975 | 0 | igraph_vector_int_t degrees; |
976 | 0 | igraph_vector_int_t neighbors; |
977 | 0 | igraph_integer_t prufer_index = 0; |
978 | 0 | igraph_integer_t n = igraph_vcount(graph); |
979 | 0 | igraph_bool_t is_tree = false; |
980 | |
|
981 | 0 | IGRAPH_CHECK(igraph_is_tree(graph, &is_tree, NULL, IGRAPH_ALL)); |
982 | | |
983 | 0 | if (!is_tree) { |
984 | 0 | IGRAPH_ERROR("The graph must be a tree", IGRAPH_EINVAL); |
985 | 0 | } |
986 | | |
987 | 0 | if (n < 2) { |
988 | 0 | IGRAPH_ERROR("The tree must have at least 2 vertices", IGRAPH_EINVAL); |
989 | 0 | } |
990 | | |
991 | 0 | IGRAPH_CHECK(igraph_vector_int_resize(prufer, n - 2)); |
992 | 0 | IGRAPH_VECTOR_INT_INIT_FINALLY(°rees, n); |
993 | 0 | IGRAPH_VECTOR_INT_INIT_FINALLY(&neighbors, 1); |
994 | | |
995 | 0 | IGRAPH_CHECK(igraph_degree(graph, °rees, igraph_vss_all(), IGRAPH_ALL, IGRAPH_NO_LOOPS)); |
996 | | |
997 | 0 | for (u = 0; u < n; ++u) { |
998 | 0 | igraph_integer_t degree = VECTOR(degrees)[u]; |
999 | 0 | igraph_integer_t leaf = u; |
1000 | |
|
1001 | 0 | while (degree == 1 && leaf <= u) { |
1002 | 0 | igraph_integer_t neighbor = 0; |
1003 | 0 | igraph_integer_t neighbor_count = 0; |
1004 | |
|
1005 | 0 | VECTOR(degrees)[leaf] = 0; /* mark leaf v as deleted */ |
1006 | |
|
1007 | 0 | IGRAPH_CHECK(igraph_neighbors(graph, &neighbors, leaf, IGRAPH_ALL)); |
1008 | | |
1009 | | /* Find the unique remaining neighbor of the leaf */ |
1010 | 0 | neighbor_count = igraph_vector_int_size(&neighbors); |
1011 | 0 | for (igraph_integer_t i = 0; i < neighbor_count; i++) { |
1012 | 0 | neighbor = VECTOR(neighbors)[i]; |
1013 | 0 | if (VECTOR(degrees)[neighbor] > 0) { |
1014 | 0 | break; |
1015 | 0 | } |
1016 | 0 | } |
1017 | | |
1018 | | /* remember that we have removed the leaf */ |
1019 | 0 | VECTOR(degrees)[neighbor]--; |
1020 | 0 | degree = VECTOR(degrees)[neighbor]; |
1021 | | |
1022 | | /* Add the neighbor to the prufer sequence unless it is the last vertex |
1023 | | (i.e. degree == 0) */ |
1024 | 0 | if (degree > 0) { |
1025 | 0 | VECTOR(*prufer)[prufer_index] = neighbor; |
1026 | 0 | prufer_index++; |
1027 | 0 | } |
1028 | 0 | leaf = neighbor; |
1029 | 0 | } |
1030 | 0 | } |
1031 | | |
1032 | 0 | igraph_vector_int_destroy(°rees); |
1033 | 0 | igraph_vector_int_destroy(&neighbors); |
1034 | 0 | IGRAPH_FINALLY_CLEAN(2); |
1035 | |
|
1036 | 0 | return IGRAPH_SUCCESS; |
1037 | 0 | } |