/src/igraph/src/math/complex.c
Line | Count | Source (jump to first uncovered line) |
1 | | /* |
2 | | IGraph library. |
3 | | Copyright (C) 2010-2012 Gabor Csardi <csardi.gabor@gmail.com> |
4 | | 334 Harvard street, Cambridge, MA 02139 USA |
5 | | |
6 | | This program is free software; you can redistribute it and/or modify |
7 | | it under the terms of the GNU General Public License as published by |
8 | | the Free Software Foundation; either version 2 of the License, or |
9 | | (at your option) any later version. |
10 | | |
11 | | This program is distributed in the hope that it will be useful, |
12 | | but WITHOUT ANY WARRANTY; without even the implied warranty of |
13 | | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
14 | | GNU General Public License for more details. |
15 | | |
16 | | You should have received a copy of the GNU General Public License |
17 | | along with this program; if not, write to the Free Software |
18 | | Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA |
19 | | 02110-1301 USA |
20 | | |
21 | | */ |
22 | | |
23 | | #include "igraph_complex.h" |
24 | | |
25 | | #include <math.h> |
26 | | |
27 | | /** |
28 | | * \example igraph_complex.c |
29 | | */ |
30 | | |
31 | 0 | igraph_complex_t igraph_complex(igraph_real_t x, igraph_real_t y) { |
32 | 0 | igraph_complex_t res; |
33 | 0 | IGRAPH_REAL(res) = x; |
34 | 0 | IGRAPH_IMAG(res) = y; |
35 | 0 | return res; |
36 | 0 | } |
37 | | |
38 | 0 | igraph_complex_t igraph_complex_polar(igraph_real_t r, igraph_real_t theta) { |
39 | 0 | igraph_complex_t res; |
40 | 0 | IGRAPH_REAL(res) = r * cos(theta); |
41 | 0 | IGRAPH_IMAG(res) = r * sin(theta); |
42 | 0 | return res; |
43 | 0 | } |
44 | | |
45 | 0 | igraph_real_t igraph_complex_arg(igraph_complex_t z) { |
46 | 0 | igraph_real_t x = IGRAPH_REAL(z); |
47 | 0 | igraph_real_t y = IGRAPH_IMAG(z); |
48 | 0 | if (x == 0.0 && y == 0.0) { |
49 | 0 | return 0.0; |
50 | 0 | } |
51 | 0 | return atan2(y, x); |
52 | 0 | } |
53 | | |
54 | | igraph_complex_t igraph_complex_add(igraph_complex_t z1, |
55 | 0 | igraph_complex_t z2) { |
56 | 0 | igraph_complex_t res; |
57 | 0 | IGRAPH_REAL(res) = IGRAPH_REAL(z1) + IGRAPH_REAL(z2); |
58 | 0 | IGRAPH_IMAG(res) = IGRAPH_IMAG(z1) + IGRAPH_IMAG(z2); |
59 | 0 | return res; |
60 | 0 | } |
61 | | |
62 | | igraph_complex_t igraph_complex_sub(igraph_complex_t z1, |
63 | 0 | igraph_complex_t z2) { |
64 | 0 | igraph_complex_t res; |
65 | 0 | IGRAPH_REAL(res) = IGRAPH_REAL(z1) - IGRAPH_REAL(z2); |
66 | 0 | IGRAPH_IMAG(res) = IGRAPH_IMAG(z1) - IGRAPH_IMAG(z2); |
67 | 0 | return res; |
68 | 0 | } |
69 | | |
70 | | igraph_complex_t igraph_complex_mul(igraph_complex_t z1, |
71 | 0 | igraph_complex_t z2) { |
72 | 0 | igraph_complex_t res; |
73 | 0 | IGRAPH_REAL(res) = IGRAPH_REAL(z1) * IGRAPH_REAL(z2) - |
74 | 0 | IGRAPH_IMAG(z1) * IGRAPH_IMAG(z2); |
75 | 0 | IGRAPH_IMAG(res) = IGRAPH_REAL(z1) * IGRAPH_IMAG(z2) + |
76 | 0 | IGRAPH_IMAG(z1) * IGRAPH_REAL(z2); |
77 | 0 | return res; |
78 | 0 | } |
79 | | |
80 | | igraph_complex_t igraph_complex_div(igraph_complex_t z1, |
81 | 0 | igraph_complex_t z2) { |
82 | 0 | igraph_complex_t res; |
83 | 0 | igraph_real_t z1r = IGRAPH_REAL(z1), z1i = IGRAPH_IMAG(z1); |
84 | 0 | igraph_real_t z2r = IGRAPH_REAL(z2), z2i = IGRAPH_IMAG(z2); |
85 | 0 | igraph_real_t s = 1.0 / igraph_complex_abs(z2); |
86 | 0 | igraph_real_t sz2r = s * z2r; |
87 | 0 | igraph_real_t sz2i = s * z2i; |
88 | 0 | IGRAPH_REAL(res) = (z1r * sz2r + z1i * sz2i) * s; |
89 | 0 | IGRAPH_IMAG(res) = (z1i * sz2r - z1r * sz2i) * s; |
90 | 0 | return res; |
91 | 0 | } |
92 | | |
93 | | igraph_complex_t igraph_complex_add_real(igraph_complex_t z, |
94 | 0 | igraph_real_t x) { |
95 | 0 | igraph_complex_t res; |
96 | 0 | IGRAPH_REAL(res) = IGRAPH_REAL(z) + x; |
97 | 0 | IGRAPH_IMAG(res) = IGRAPH_IMAG(z); |
98 | 0 | return res; |
99 | 0 | } |
100 | | |
101 | | igraph_complex_t igraph_complex_add_imag(igraph_complex_t z, |
102 | 0 | igraph_real_t y) { |
103 | 0 | igraph_complex_t res; |
104 | 0 | IGRAPH_REAL(res) = IGRAPH_REAL(z); |
105 | 0 | IGRAPH_IMAG(res) = IGRAPH_IMAG(z) + y; |
106 | 0 | return res; |
107 | 0 | } |
108 | | |
109 | | igraph_complex_t igraph_complex_sub_real(igraph_complex_t z, |
110 | 0 | igraph_real_t x) { |
111 | 0 | igraph_complex_t res; |
112 | 0 | IGRAPH_REAL(res) = IGRAPH_REAL(z) - x; |
113 | 0 | IGRAPH_IMAG(res) = IGRAPH_IMAG(z); |
114 | 0 | return res; |
115 | 0 | } |
116 | | |
117 | | igraph_complex_t igraph_complex_sub_imag(igraph_complex_t z, |
118 | 0 | igraph_real_t y) { |
119 | 0 | igraph_complex_t res; |
120 | 0 | IGRAPH_REAL(res) = IGRAPH_REAL(z); |
121 | 0 | IGRAPH_IMAG(res) = IGRAPH_IMAG(z) - y; |
122 | 0 | return res; |
123 | 0 | } |
124 | | |
125 | | igraph_complex_t igraph_complex_mul_real(igraph_complex_t z, |
126 | 0 | igraph_real_t x) { |
127 | 0 | igraph_complex_t res; |
128 | 0 | IGRAPH_REAL(res) = IGRAPH_REAL(z) * x; |
129 | 0 | IGRAPH_IMAG(res) = IGRAPH_IMAG(z) * x; |
130 | 0 | return res; |
131 | 0 | } |
132 | | |
133 | | igraph_complex_t igraph_complex_mul_imag(igraph_complex_t z, |
134 | 0 | igraph_real_t y) { |
135 | 0 | igraph_complex_t res; |
136 | 0 | IGRAPH_REAL(res) = - IGRAPH_IMAG(z) * y; |
137 | 0 | IGRAPH_IMAG(res) = IGRAPH_REAL(z) * y; |
138 | 0 | return res; |
139 | 0 | } |
140 | | |
141 | | igraph_complex_t igraph_complex_div_real(igraph_complex_t z, |
142 | 0 | igraph_real_t x) { |
143 | 0 | igraph_complex_t res; |
144 | 0 | IGRAPH_REAL(res) = IGRAPH_REAL(z) / x; |
145 | 0 | IGRAPH_IMAG(res) = IGRAPH_IMAG(z) / x; |
146 | 0 | return res; |
147 | 0 | } |
148 | | |
149 | | igraph_complex_t igraph_complex_div_imag(igraph_complex_t z, |
150 | 0 | igraph_real_t y) { |
151 | 0 | igraph_complex_t res; |
152 | 0 | IGRAPH_REAL(res) = IGRAPH_IMAG(z) / y; |
153 | 0 | IGRAPH_IMAG(res) = - IGRAPH_REAL(z) / y; |
154 | 0 | return res; |
155 | 0 | } |
156 | | |
157 | 0 | igraph_complex_t igraph_complex_conj(igraph_complex_t z) { |
158 | 0 | igraph_complex_t res; |
159 | 0 | IGRAPH_REAL(res) = IGRAPH_REAL(z); |
160 | 0 | IGRAPH_IMAG(res) = - IGRAPH_IMAG(z); |
161 | 0 | return res; |
162 | 0 | } |
163 | | |
164 | 0 | igraph_complex_t igraph_complex_neg(igraph_complex_t z) { |
165 | 0 | igraph_complex_t res; |
166 | 0 | IGRAPH_REAL(res) = - IGRAPH_REAL(z); |
167 | 0 | IGRAPH_IMAG(res) = - IGRAPH_IMAG(z); |
168 | 0 | return res; |
169 | 0 | } |
170 | | |
171 | 0 | igraph_complex_t igraph_complex_inv(igraph_complex_t z) { |
172 | 0 | igraph_complex_t res; |
173 | 0 | igraph_real_t s = 1.0 / igraph_complex_abs(z); |
174 | 0 | IGRAPH_REAL(res) = (IGRAPH_REAL(z) * s) * s; |
175 | 0 | IGRAPH_IMAG(res) = - (IGRAPH_IMAG(z) * s) * s; |
176 | 0 | return res; |
177 | 0 | } |
178 | | |
179 | 0 | igraph_real_t igraph_complex_abs(igraph_complex_t z) { |
180 | | /* hypot() avoids overflow at intermediate stages of the calculation */ |
181 | 0 | return hypot(IGRAPH_REAL(z), IGRAPH_IMAG(z)); |
182 | 0 | } |
183 | | |
184 | 0 | igraph_real_t igraph_complex_logabs(igraph_complex_t z) { |
185 | 0 | igraph_real_t xabs = fabs(IGRAPH_REAL(z)); |
186 | 0 | igraph_real_t yabs = fabs(IGRAPH_IMAG(z)); |
187 | 0 | igraph_real_t max, u; |
188 | 0 | if (xabs >= yabs) { |
189 | 0 | max = xabs; |
190 | 0 | u = yabs / xabs; |
191 | 0 | } else { |
192 | 0 | max = yabs; |
193 | 0 | u = xabs / yabs; |
194 | 0 | } |
195 | 0 | return log (max) + 0.5 * log1p (u * u); |
196 | 0 | } |
197 | | |
198 | 0 | igraph_complex_t igraph_complex_sqrt(igraph_complex_t z) { |
199 | 0 | igraph_complex_t res; |
200 | |
|
201 | 0 | if (IGRAPH_REAL(z) == 0.0 && IGRAPH_IMAG(z) == 0.0) { |
202 | 0 | IGRAPH_REAL(res) = IGRAPH_IMAG(res) = 0.0; |
203 | 0 | } else { |
204 | 0 | igraph_real_t x = fabs (IGRAPH_REAL(z)); |
205 | 0 | igraph_real_t y = fabs (IGRAPH_IMAG(z)); |
206 | 0 | igraph_real_t w; |
207 | 0 | if (x >= y) { |
208 | 0 | igraph_real_t t = y / x; |
209 | 0 | w = sqrt (x) * sqrt (0.5 * (1.0 + sqrt (1.0 + t * t))); |
210 | 0 | } else { |
211 | 0 | igraph_real_t t = x / y; |
212 | 0 | w = sqrt (y) * sqrt (0.5 * (t + sqrt (1.0 + t * t))); |
213 | 0 | } |
214 | |
|
215 | 0 | if (IGRAPH_REAL(z) >= 0.0) { |
216 | 0 | igraph_real_t ai = IGRAPH_IMAG(z); |
217 | 0 | IGRAPH_REAL(res) = w; |
218 | 0 | IGRAPH_IMAG(res) = ai / (2.0 * w); |
219 | 0 | } else { |
220 | 0 | igraph_real_t ai = IGRAPH_IMAG(z); |
221 | 0 | igraph_real_t vi = (ai >= 0) ? w : -w; |
222 | 0 | IGRAPH_REAL(res) = ai / (2.0 * vi); |
223 | 0 | IGRAPH_IMAG(res) = vi; |
224 | 0 | } |
225 | 0 | } |
226 | |
|
227 | 0 | return res; |
228 | 0 | } |
229 | | |
230 | 0 | igraph_complex_t igraph_complex_sqrt_real(igraph_real_t x) { |
231 | 0 | igraph_complex_t res; |
232 | 0 | if (x >= 0) { |
233 | 0 | IGRAPH_REAL(res) = sqrt(x); |
234 | 0 | IGRAPH_IMAG(res) = 0.0; |
235 | 0 | } else { |
236 | 0 | IGRAPH_REAL(res) = 0.0; |
237 | 0 | IGRAPH_IMAG(res) = sqrt(-x); |
238 | 0 | } |
239 | 0 | return res; |
240 | 0 | } |
241 | | |
242 | 0 | igraph_complex_t igraph_complex_exp(igraph_complex_t z) { |
243 | 0 | igraph_real_t rho = exp(IGRAPH_REAL(z)); |
244 | 0 | igraph_real_t theta = IGRAPH_IMAG(z); |
245 | 0 | igraph_complex_t res; |
246 | 0 | IGRAPH_REAL(res) = rho * cos(theta); |
247 | 0 | IGRAPH_IMAG(res) = rho * sin(theta); |
248 | 0 | return res; |
249 | 0 | } |
250 | | |
251 | | igraph_complex_t igraph_complex_pow(igraph_complex_t z1, |
252 | 0 | igraph_complex_t z2) { |
253 | 0 | igraph_complex_t res; |
254 | |
|
255 | 0 | if (IGRAPH_REAL(z1) == 0 && IGRAPH_IMAG(z1) == 0.0) { |
256 | 0 | if (IGRAPH_REAL(z2) == 0 && IGRAPH_IMAG(z2) == 0.0) { |
257 | 0 | IGRAPH_REAL(res) = 1.0; |
258 | 0 | IGRAPH_IMAG(res) = 0.0; |
259 | 0 | } else { |
260 | 0 | IGRAPH_REAL(res) = IGRAPH_IMAG(res) = 0.0; |
261 | 0 | } |
262 | 0 | } else if (IGRAPH_REAL(z2) == 1.0 && IGRAPH_IMAG(z2) == 0.0) { |
263 | 0 | IGRAPH_REAL(res) = IGRAPH_REAL(z1); |
264 | 0 | IGRAPH_IMAG(res) = IGRAPH_IMAG(z1); |
265 | 0 | } else if (IGRAPH_REAL(z2) == -1.0 && IGRAPH_IMAG(z2) == 0.0) { |
266 | 0 | res = igraph_complex_inv(z1); |
267 | 0 | } else { |
268 | 0 | igraph_real_t logr = igraph_complex_logabs (z1); |
269 | 0 | igraph_real_t theta = igraph_complex_arg (z1); |
270 | 0 | igraph_real_t z2r = IGRAPH_REAL(z2), z2i = IGRAPH_IMAG(z2); |
271 | 0 | igraph_real_t rho = exp (logr * z2r - z2i * theta); |
272 | 0 | igraph_real_t beta = theta * z2r + z2i * logr; |
273 | 0 | IGRAPH_REAL(res) = rho * cos(beta); |
274 | 0 | IGRAPH_IMAG(res) = rho * sin(beta); |
275 | 0 | } |
276 | |
|
277 | 0 | return res; |
278 | 0 | } |
279 | | |
280 | | igraph_complex_t igraph_complex_pow_real(igraph_complex_t z, |
281 | 0 | igraph_real_t x) { |
282 | 0 | igraph_complex_t res; |
283 | 0 | if (IGRAPH_REAL(z) == 0.0 && IGRAPH_IMAG(z) == 0.0) { |
284 | 0 | if (x == 0) { |
285 | 0 | IGRAPH_REAL(res) = 1.0; |
286 | 0 | IGRAPH_IMAG(res) = 0.0; |
287 | 0 | } else { |
288 | 0 | IGRAPH_REAL(res) = IGRAPH_IMAG(res) = 0.0; |
289 | 0 | } |
290 | 0 | } else { |
291 | 0 | igraph_real_t logr = igraph_complex_logabs(z); |
292 | 0 | igraph_real_t theta = igraph_complex_arg(z); |
293 | 0 | igraph_real_t rho = exp (logr * x); |
294 | 0 | igraph_real_t beta = theta * x; |
295 | 0 | IGRAPH_REAL(res) = rho * cos(beta); |
296 | 0 | IGRAPH_IMAG(res) = rho * sin(beta); |
297 | 0 | } |
298 | 0 | return res; |
299 | 0 | } |
300 | | |
301 | 0 | igraph_complex_t igraph_complex_log(igraph_complex_t z) { |
302 | 0 | igraph_complex_t res; |
303 | 0 | IGRAPH_REAL(res) = igraph_complex_logabs(z); |
304 | 0 | IGRAPH_IMAG(res) = igraph_complex_arg(z); |
305 | 0 | return res; |
306 | 0 | } |
307 | | |
308 | 0 | igraph_complex_t igraph_complex_log10(igraph_complex_t z) { |
309 | 0 | return igraph_complex_mul_real(igraph_complex_log(z), 1 / log(10.0)); |
310 | 0 | } |
311 | | |
312 | | igraph_complex_t igraph_complex_log_b(igraph_complex_t z, |
313 | 0 | igraph_complex_t b) { |
314 | 0 | return igraph_complex_div (igraph_complex_log(z), igraph_complex_log(b)); |
315 | 0 | } |
316 | | |
317 | 0 | igraph_complex_t igraph_complex_sin(igraph_complex_t z) { |
318 | 0 | igraph_real_t zr = IGRAPH_REAL(z); |
319 | 0 | igraph_real_t zi = IGRAPH_IMAG(z); |
320 | 0 | igraph_complex_t res; |
321 | 0 | if (zi == 0.0) { |
322 | 0 | IGRAPH_REAL(res) = sin(zr); |
323 | 0 | IGRAPH_IMAG(res) = 0.0; |
324 | 0 | } else { |
325 | 0 | IGRAPH_REAL(res) = sin(zr) * cosh(zi); |
326 | 0 | IGRAPH_IMAG(res) = cos(zr) * sinh(zi); |
327 | 0 | } |
328 | 0 | return res; |
329 | 0 | } |
330 | | |
331 | 0 | igraph_complex_t igraph_complex_cos(igraph_complex_t z) { |
332 | 0 | igraph_real_t zr = IGRAPH_REAL(z); |
333 | 0 | igraph_real_t zi = IGRAPH_IMAG(z); |
334 | 0 | igraph_complex_t res; |
335 | 0 | if (zi == 0.0) { |
336 | 0 | IGRAPH_REAL(res) = cos(zr); |
337 | 0 | IGRAPH_IMAG(res) = 0.0; |
338 | 0 | } else { |
339 | 0 | IGRAPH_REAL(res) = cos(zr) * cosh(zi); |
340 | 0 | IGRAPH_IMAG(res) = sin(zr) * sinh(-zi); |
341 | 0 | } |
342 | 0 | return res; |
343 | 0 | } |
344 | | |
345 | 0 | igraph_complex_t igraph_complex_tan(igraph_complex_t z) { |
346 | 0 | igraph_real_t zr = IGRAPH_REAL(z); |
347 | 0 | igraph_real_t zi = IGRAPH_IMAG(z); |
348 | 0 | igraph_complex_t res; |
349 | 0 | if (fabs (zi) < 1) { |
350 | 0 | igraph_real_t D = pow (cos (zr), 2.0) + pow (sinh (zi), 2.0); |
351 | 0 | IGRAPH_REAL(res) = 0.5 * sin (2 * zr) / D; |
352 | 0 | IGRAPH_IMAG(res) = 0.5 * sinh (2 * zi) / D; |
353 | 0 | } else { |
354 | 0 | igraph_real_t u = exp (-zi); |
355 | 0 | igraph_real_t C = 2 * u / (1 - pow (u, 2.0)); |
356 | 0 | igraph_real_t D = 1 + pow (cos (zr), 2.0) * pow (C, 2.0); |
357 | 0 | igraph_real_t S = pow (C, 2.0); |
358 | 0 | igraph_real_t T = 1.0 / tanh (zi); |
359 | 0 | IGRAPH_REAL(res) = 0.5 * sin (2 * zr) * S / D; |
360 | 0 | IGRAPH_IMAG(res) = T / D; |
361 | 0 | } |
362 | 0 | return res; |
363 | 0 | } |
364 | | |
365 | 0 | igraph_complex_t igraph_complex_sec(igraph_complex_t z) { |
366 | 0 | return igraph_complex_inv(igraph_complex_cos(z)); |
367 | 0 | } |
368 | | |
369 | 0 | igraph_complex_t igraph_complex_csc(igraph_complex_t z) { |
370 | 0 | return igraph_complex_inv(igraph_complex_sin(z)); |
371 | 0 | } |
372 | | |
373 | 0 | igraph_complex_t igraph_complex_cot(igraph_complex_t z) { |
374 | 0 | return igraph_complex_inv(igraph_complex_tan(z)); |
375 | 0 | } |