/src/igraph/src/internal/utils.c
Line | Count | Source |
1 | | /* |
2 | | igraph library. |
3 | | Copyright (C) 2023 The igraph development team <igraph@igraph.org> |
4 | | |
5 | | This program is free software; you can redistribute it and/or modify |
6 | | it under the terms of the GNU General Public License as published by |
7 | | the Free Software Foundation; either version 2 of the License, or |
8 | | (at your option) any later version. |
9 | | |
10 | | This program is distributed in the hope that it will be useful, |
11 | | but WITHOUT ANY WARRANTY; without even the implied warranty of |
12 | | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
13 | | GNU General Public License for more details. |
14 | | |
15 | | You should have received a copy of the GNU General Public License |
16 | | along with this program. If not, see <https://www.gnu.org/licenses/>. |
17 | | */ |
18 | | |
19 | | #include "igraph_interface.h" |
20 | | #include "igraph_qsort.h" |
21 | | #include "igraph_random.h" |
22 | | |
23 | | #include "internal/utils.h" |
24 | | |
25 | | /** |
26 | | * \function igraph_i_matrix_subset_vertices |
27 | | * \brief Subsets a matrix whose rows/columns correspond to graph vertices. |
28 | | * |
29 | | * This is a convenience function to subset a matrix computed from a graph. |
30 | | * It takes a matrix whose rows and columns correspond to the vertices |
31 | | * of a graph, and subsets it in-place to retain only some of the vertices. |
32 | | * |
33 | | * \param m A square matrix with the same number of rows/columns as the vertex |
34 | | * count of \p graph. It will be modified in-place, deleting rows \em not present |
35 | | * in \p from and columns \em not present in \p to. |
36 | | * \param graph The corresponding graph. <code>m[u,v]</code> is assumed to contain |
37 | | * a value associated with vertices \c u and \c v of \p graph, e.g. the graph |
38 | | * distance between them, their similarity, etc. |
39 | | * \param from Vertex set, these rows of the matrix will be retained. |
40 | | * \param to Vertex set, these columns of the matrix will be retained. |
41 | | * \return Error code. |
42 | | * |
43 | | * Time complexity: |
44 | | * O(1) when taking all vertices, |
45 | | * O(|from|*|to|) otherwise where |from| and |to| denote the size |
46 | | * of the source and target vertex sets. |
47 | | */ |
48 | | igraph_error_t igraph_i_matrix_subset_vertices( |
49 | | igraph_matrix_t *m, |
50 | | const igraph_t *graph, |
51 | | igraph_vs_t from, |
52 | 0 | igraph_vs_t to) { |
53 | | |
54 | | /* Assertion: the size of 'm' agrees with 'graph': */ |
55 | |
|
56 | 0 | igraph_int_t no_of_nodes = igraph_vcount(graph); |
57 | 0 | igraph_int_t ncol = igraph_matrix_ncol(m); |
58 | 0 | igraph_int_t nrow = igraph_matrix_nrow(m); |
59 | |
|
60 | 0 | IGRAPH_ASSERT(nrow == no_of_nodes && nrow == ncol); |
61 | | |
62 | | /* When taking all vertices, nothing needs to be done: */ |
63 | | |
64 | 0 | if (igraph_vs_is_all(&from) && igraph_vs_is_all(&to)) { |
65 | 0 | return IGRAPH_SUCCESS; |
66 | 0 | } |
67 | | |
68 | | /* Otherwise, allocate a temporary matrix to copy the data into: */ |
69 | | |
70 | 0 | igraph_vit_t fromvit, tovit; |
71 | 0 | igraph_matrix_t tmp; |
72 | |
|
73 | 0 | IGRAPH_CHECK(igraph_vit_create(graph, from, &fromvit)); |
74 | 0 | IGRAPH_FINALLY(igraph_vit_destroy, &fromvit); |
75 | |
|
76 | 0 | IGRAPH_CHECK(igraph_vit_create(graph, to, &tovit)); |
77 | 0 | IGRAPH_FINALLY(igraph_vit_destroy, &tovit); |
78 | |
|
79 | 0 | IGRAPH_MATRIX_INIT_FINALLY(&tmp, IGRAPH_VIT_SIZE(fromvit), IGRAPH_VIT_SIZE(tovit)); |
80 | | |
81 | 0 | for (igraph_int_t j=0; ! IGRAPH_VIT_END(tovit); IGRAPH_VIT_NEXT(tovit), j++) { |
82 | 0 | igraph_int_t i; |
83 | 0 | for (IGRAPH_VIT_RESET(fromvit), i=0; ! IGRAPH_VIT_END(fromvit); IGRAPH_VIT_NEXT(fromvit), i++) { |
84 | 0 | MATRIX(tmp, i, j) = MATRIX(*m, IGRAPH_VIT_GET(fromvit), IGRAPH_VIT_GET(tovit)); |
85 | 0 | } |
86 | 0 | } |
87 | | |
88 | | /* This is O(1) time */ |
89 | 0 | igraph_matrix_swap(m, &tmp); |
90 | |
|
91 | 0 | igraph_matrix_destroy(&tmp); |
92 | 0 | igraph_vit_destroy(&tovit); |
93 | 0 | igraph_vit_destroy(&fromvit); |
94 | 0 | IGRAPH_FINALLY_CLEAN(3); |
95 | |
|
96 | 0 | return IGRAPH_SUCCESS; |
97 | 0 | } |
98 | | |
99 | | |
100 | | /* Lexicographic edge comparator, used with igraph_qsort() in igraph_i_simplify_edge_list() */ |
101 | 0 | static int edge_comparator(const void *a, const void *b) { |
102 | 0 | igraph_int_t *A = (igraph_int_t *) a; |
103 | 0 | igraph_int_t *B = (igraph_int_t *) b; |
104 | |
|
105 | 0 | if (A[0] < B[0]) { |
106 | 0 | return -1; |
107 | 0 | } |
108 | 0 | if (A[0] > B[0]) { |
109 | 0 | return 1; |
110 | 0 | } |
111 | | |
112 | | /* first are equal */ |
113 | 0 | if (A[1] < B[1]) { |
114 | 0 | return -1; |
115 | 0 | } |
116 | 0 | if (A[1] > B[1]) { |
117 | 0 | return 1; |
118 | 0 | } |
119 | | |
120 | | /* second are equal, so the edges must be equal */ |
121 | 0 | return 0; |
122 | 0 | } |
123 | | |
124 | | /** |
125 | | * Simplify an edge list in-place. Edges may be reordered by this function. |
126 | | * |
127 | | * TODO: Refactor this to take the number of vertices as input and use linear-time radix sort. |
128 | | * |
129 | | * \param edges The edge list vector, as a consecutive list of pairs. It will be modified in-place. |
130 | | * \param self_loops Set to \c false to remove self-loops. |
131 | | * \param multi_edges Set to \c false to eliminate multi-edges. |
132 | | * \param directed Whether to treat edges as directed. |
133 | | */ |
134 | | void igraph_i_simplify_edge_list( |
135 | | igraph_vector_int_t *edges, |
136 | | igraph_bool_t remove_loops, igraph_bool_t remove_multiple, |
137 | 0 | igraph_bool_t directed) { |
138 | |
|
139 | 0 | igraph_int_t size = igraph_vector_int_size(edges); |
140 | |
|
141 | 0 | if (size == 0 || (!remove_loops && !remove_multiple)) { |
142 | 0 | return; |
143 | 0 | } |
144 | | |
145 | | /* Canonicalize undirected edges. */ |
146 | 0 | if (!directed) { |
147 | 0 | for (igraph_int_t i = 0; i < size; i += 2) { |
148 | 0 | if (VECTOR(*edges)[i] > VECTOR(*edges)[i + 1]) { |
149 | 0 | igraph_int_t temp = VECTOR(*edges)[i]; |
150 | 0 | VECTOR(*edges)[i] = VECTOR(*edges)[i + 1]; |
151 | 0 | VECTOR(*edges)[i + 1] = temp; |
152 | 0 | } |
153 | 0 | } |
154 | 0 | } |
155 | | |
156 | | /* Sort edge list. Not needed if multi edges are allowed. */ |
157 | 0 | if (remove_multiple) { |
158 | 0 | igraph_qsort(VECTOR(*edges), size / 2, 2 * sizeof(igraph_int_t), |
159 | 0 | &edge_comparator); |
160 | 0 | } |
161 | | |
162 | | /* Remove self-loops and duplicate edges from the sorted edge list, in place. |
163 | | * i points to the current edge being examined, j points to the last edge copied. */ |
164 | |
|
165 | 0 | igraph_int_t j = -2; |
166 | 0 | for (igraph_int_t i = 0 ; i < size; i += 2) { |
167 | 0 | if (remove_multiple && |
168 | | /* If we've already copied some edges, */ |
169 | 0 | j != -2 && |
170 | | /* and the current edge is equal to the previously copied one: */ |
171 | 0 | VECTOR(*edges)[i] == VECTOR(*edges)[j] && |
172 | 0 | VECTOR(*edges)[i + 1] == VECTOR(*edges)[j + 1]) |
173 | 0 | { |
174 | | /* This edge is a duplicate, and should be skipped */ |
175 | 0 | continue; |
176 | 0 | } |
177 | | |
178 | 0 | if (remove_loops && |
179 | 0 | VECTOR(*edges)[i] == VECTOR(*edges)[i + 1]) |
180 | 0 | { |
181 | | /* This edge is a self loop, and should be skipped */ |
182 | 0 | continue; |
183 | 0 | } |
184 | | |
185 | 0 | j += 2; |
186 | 0 | VECTOR(*edges)[j] = VECTOR(*edges)[i]; |
187 | 0 | VECTOR(*edges)[j + 1] = VECTOR(*edges)[i + 1]; |
188 | 0 | } |
189 | |
|
190 | 0 | igraph_vector_int_resize(edges, j + 2); /* shrinks */ |
191 | 0 | } |
192 | | |
193 | | /** |
194 | | * Shuffle a list of pairs, such as an edge list. |
195 | | * |
196 | | * \param pairs Vector of pairs, will be modified in-place. |
197 | | * \return Error code, when the input is not of even length. |
198 | | */ |
199 | 0 | igraph_error_t igraph_i_vector_int_shuffle_pairs(igraph_vector_int_t *pairs) { |
200 | 0 | igraph_int_t pair_count = igraph_vector_int_size(pairs); |
201 | |
|
202 | 0 | if (pair_count % 2 == 1) { |
203 | 0 | IGRAPH_ERROR("A vector of pairs must have an even length.", IGRAPH_EINVAL); |
204 | 0 | } |
205 | | |
206 | 0 | pair_count /= 2; |
207 | 0 | while (pair_count > 1) { |
208 | 0 | igraph_int_t dummy, k; |
209 | |
|
210 | 0 | pair_count--; |
211 | 0 | k = RNG_INTEGER(0, pair_count); |
212 | |
|
213 | 0 | dummy = VECTOR(*pairs)[pair_count * 2]; |
214 | 0 | VECTOR(*pairs)[pair_count * 2] = VECTOR(*pairs)[k * 2]; |
215 | |
|
216 | 0 | VECTOR(*pairs)[k * 2] = dummy; |
217 | 0 | dummy = VECTOR(*pairs)[pair_count * 2 + 1]; |
218 | |
|
219 | 0 | VECTOR(*pairs)[pair_count * 2] = VECTOR(*pairs)[k * 2 + 1]; |
220 | 0 | VECTOR(*pairs)[k * 2 + 1] = dummy; |
221 | 0 | } |
222 | |
|
223 | 0 | return IGRAPH_SUCCESS; |
224 | 0 | } |