/src/igraph/src/misc/graphicality.c
Line | Count | Source |
1 | | /* |
2 | | igraph library. |
3 | | Copyright (C) 2020 The igraph development team <igraph@igraph.org> |
4 | | |
5 | | This program is free software; you can redistribute it and/or modify |
6 | | it under the terms of the GNU General Public License as published by |
7 | | the Free Software Foundation; either version 2 of the License, or |
8 | | (at your option) any later version. |
9 | | |
10 | | This program is distributed in the hope that it will be useful, |
11 | | but WITHOUT ANY WARRANTY; without even the implied warranty of |
12 | | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
13 | | GNU General Public License for more details. |
14 | | |
15 | | You should have received a copy of the GNU General Public License |
16 | | along with this program. If not, see <https://www.gnu.org/licenses/>. |
17 | | */ |
18 | | |
19 | | #include "igraph_graphicality.h" |
20 | | |
21 | | #include "misc/graphicality.h" |
22 | | |
23 | | |
24 | | igraph_error_t igraph_i_edge_type_to_loops_multiple( |
25 | | igraph_edge_type_sw_t allowed_edge_types, |
26 | 0 | igraph_bool_t *loops, igraph_bool_t *multiple) { |
27 | |
|
28 | 0 | *loops = (allowed_edge_types & IGRAPH_LOOPS_SW) ? true : false; |
29 | 0 | *multiple = (allowed_edge_types & IGRAPH_I_MULTI_EDGES_SW) ? true : false; |
30 | |
|
31 | 0 | if (*loops) { |
32 | 0 | igraph_bool_t multi_loops = (allowed_edge_types & IGRAPH_I_MULTI_LOOPS_SW); |
33 | 0 | if (*multiple != multi_loops) { |
34 | 0 | IGRAPH_ERROR("Either both multi-edges and multi-loops should be allowed or neither.", |
35 | 0 | IGRAPH_EINVAL); |
36 | 0 | } |
37 | 0 | } |
38 | | |
39 | 0 | return IGRAPH_SUCCESS; |
40 | 0 | } |
41 | | |
42 | | |
43 | | static igraph_error_t igraph_i_is_graphical_undirected_multi_loops(const igraph_vector_int_t *degrees, igraph_bool_t *res); |
44 | | static igraph_error_t igraph_i_is_graphical_undirected_loopless_multi(const igraph_vector_int_t *degrees, igraph_bool_t *res); |
45 | | static igraph_error_t igraph_i_is_graphical_undirected_loopy_simple(const igraph_vector_int_t *degrees, igraph_bool_t *res); |
46 | | static igraph_error_t igraph_i_is_graphical_undirected_simple(const igraph_vector_int_t *degrees, igraph_bool_t *res); |
47 | | |
48 | | static igraph_error_t igraph_i_is_graphical_directed_loopy_multi(const igraph_vector_int_t *out_degrees, const igraph_vector_int_t *in_degrees, igraph_bool_t *res); |
49 | | static igraph_error_t igraph_i_is_graphical_directed_loopless_multi(const igraph_vector_int_t *out_degrees, const igraph_vector_int_t *in_degrees, igraph_bool_t *res); |
50 | | static igraph_error_t igraph_i_is_graphical_directed_loopy_simple(const igraph_vector_int_t *out_degrees, const igraph_vector_int_t *in_degrees, igraph_bool_t *res); |
51 | | static igraph_error_t igraph_i_is_graphical_directed_simple(const igraph_vector_int_t *out_degrees, const igraph_vector_int_t *in_degrees, igraph_bool_t *res); |
52 | | |
53 | | static igraph_error_t igraph_i_is_bigraphical_multi(const igraph_vector_int_t *degrees1, const igraph_vector_int_t *degrees2, igraph_bool_t *res); |
54 | | static igraph_error_t igraph_i_is_bigraphical_simple(const igraph_vector_int_t *degrees1, const igraph_vector_int_t *degrees2, igraph_bool_t *res); |
55 | | |
56 | | |
57 | | /** |
58 | | * \function igraph_is_graphical |
59 | | * \brief Is there a graph with the given degree sequence? |
60 | | * |
61 | | * Determines whether a sequence of integers can be the degree sequence of some graph. |
62 | | * The classical concept of graphicality assumes simple graphs. This function can perform |
63 | | * the check also when either self-loops, multi-edge, or both are allowed in the graph. |
64 | | * |
65 | | * </para><para> |
66 | | * For simple undirected graphs, the Erdős-Gallai conditions are checked using the linear-time |
67 | | * algorithm of Cloteaux. If both self-loops and multi-edges are allowed, |
68 | | * it is sufficient to chek that that sum of degrees is even. If only multi-edges are allowed, but |
69 | | * not self-loops, there is an additional condition that the sum of degrees be no smaller than twice |
70 | | * the maximum degree. If at most one self-loop is allowed per vertex, but no multi-edges, a modified |
71 | | * version of the Erdős-Gallai conditions are used (see Cairns & Mendan). |
72 | | * |
73 | | * </para><para> |
74 | | * For simple directed graphs, the Fulkerson-Chen-Anstee theorem is used with the relaxation by Berger. |
75 | | * If both self-loops and multi-edges are allowed, then it is sufficient to check that the sum of |
76 | | * in- and out-degrees is the same. If only multi-edges are allowed, but not self loops, there is an |
77 | | * additional condition that the sum of out-degrees (or equivalently, in-degrees) is no smaller than |
78 | | * the maximum total degree. If single self-loops are allowed, but not multi-edges, the problem is equivalent |
79 | | * to realizability as a simple bipartite graph, thus the Gale-Ryser theorem can be used; see |
80 | | * \ref igraph_is_bigraphical() for more information. |
81 | | * |
82 | | * </para><para> |
83 | | * References: |
84 | | * |
85 | | * </para><para> |
86 | | * P. Erdős and T. Gallai, Gráfok előírt fokú pontokkal, Matematikai Lapok 11, pp. 264–274 (1960). |
87 | | * https://users.renyi.hu/~p_erdos/1961-05.pdf |
88 | | * |
89 | | * </para><para> |
90 | | * Z. Király, Recognizing graphic degree sequences and generating all realizations. |
91 | | * TR-2011-11, Egerváry Research Group, H-1117, Budapest, Hungary. ISSN 1587-4451 (2012). |
92 | | * https://egres.elte.hu/tr/egres-11-11.pdf |
93 | | * |
94 | | * </para><para> |
95 | | * B. Cloteaux, Is This for Real? Fast Graphicality Testing, Comput. Sci. Eng. 17, 91 (2015). |
96 | | * https://dx.doi.org/10.1109/MCSE.2015.125 |
97 | | * |
98 | | * </para><para> |
99 | | * A. Berger, A note on the characterization of digraphic sequences, Discrete Math. 314, 38 (2014). |
100 | | * https://dx.doi.org/10.1016/j.disc.2013.09.010 |
101 | | * |
102 | | * </para><para> |
103 | | * G. Cairns and S. Mendan, Degree Sequence for Graphs with Loops (2013). |
104 | | * https://arxiv.org/abs/1303.2145v1 |
105 | | * |
106 | | * \param out_degrees A vector of integers specifying the degree sequence for |
107 | | * undirected graphs or the out-degree sequence for directed graphs. |
108 | | * \param in_degrees A vector of integers specifying the in-degree sequence for |
109 | | * directed graphs. For undirected graphs, it must be \c NULL. |
110 | | * \param allowed_edge_types The types of edges to allow in the graph. See |
111 | | * \ref igraph_edge_type_sw_t for details. |
112 | | * \clist |
113 | | * \cli IGRAPH_SIMPLE_SW |
114 | | * simple graphs (i.e. no self-loops or multi-edges allowed). |
115 | | * \cli IGRAPH_LOOPS_SW |
116 | | * single self-loops are allowed, but not multi-edges. |
117 | | * \cli IGRAPH_MULTI_SW |
118 | | * multi-edges are allowed, but not self-loops. |
119 | | * \cli IGRAPH_LOOPS_SW | IGRAPH_MULTI_SW |
120 | | * both self-loops and multi-edges are allowed. |
121 | | * \endclist |
122 | | * \param res Pointer to a Boolean. The result will be stored here. |
123 | | * |
124 | | * \return Error code. |
125 | | * |
126 | | * \sa \ref igraph_is_bigraphical() to check if a bi-degree-sequence can be realized as a bipartite graph; |
127 | | * \ref igraph_realize_degree_sequence() to construct a graph with a given degree sequence. |
128 | | * |
129 | | * Time complexity: O(n), where n is the length of the degree sequence(s). |
130 | | */ |
131 | | igraph_error_t igraph_is_graphical(const igraph_vector_int_t *out_degrees, |
132 | | const igraph_vector_int_t *in_degrees, |
133 | | const igraph_edge_type_sw_t allowed_edge_types, |
134 | | igraph_bool_t *res) |
135 | 0 | { |
136 | | /* Undirected case: */ |
137 | 0 | if (in_degrees == NULL) |
138 | 0 | { |
139 | 0 | if ( (allowed_edge_types & IGRAPH_LOOPS_SW) && (allowed_edge_types & IGRAPH_I_MULTI_LOOPS_SW )) { |
140 | | /* Typically this case is used when multiple edges are allowed both as self-loops and |
141 | | * between distinct vertices. However, the conditions are the same even if multi-edges |
142 | | * are not allowed between distinct vertices (only as self-loops). Therefore, we |
143 | | * do not test IGRAPH_I_MULTI_EDGES_SW in the if (...). */ |
144 | 0 | return igraph_i_is_graphical_undirected_multi_loops(out_degrees, res); |
145 | 0 | } |
146 | 0 | else if ( ! (allowed_edge_types & IGRAPH_LOOPS_SW) && (allowed_edge_types & IGRAPH_I_MULTI_EDGES_SW) ) { |
147 | 0 | return igraph_i_is_graphical_undirected_loopless_multi(out_degrees, res); |
148 | 0 | } |
149 | 0 | else if ( (allowed_edge_types & IGRAPH_LOOPS_SW) && ! (allowed_edge_types & IGRAPH_I_MULTI_LOOPS_SW) && ! (allowed_edge_types & IGRAPH_I_MULTI_EDGES_SW) ) { |
150 | 0 | return igraph_i_is_graphical_undirected_loopy_simple(out_degrees, res); |
151 | 0 | } |
152 | 0 | else if ( ! (allowed_edge_types & IGRAPH_LOOPS_SW) && ! (allowed_edge_types & IGRAPH_I_MULTI_EDGES_SW) ) { |
153 | 0 | return igraph_i_is_graphical_undirected_simple(out_degrees, res); |
154 | 0 | } else { |
155 | | /* Remaining case: |
156 | | * - At most one self-loop per vertex but multi-edges between distinct vertices allowed. |
157 | | * These cases cannot currently be requested through the documented API, |
158 | | * so no explanatory error message for now. */ |
159 | 0 | return IGRAPH_UNIMPLEMENTED; |
160 | 0 | } |
161 | 0 | } |
162 | | /* Directed case: */ |
163 | 0 | else |
164 | 0 | { |
165 | 0 | if (igraph_vector_int_size(in_degrees) != igraph_vector_int_size(out_degrees)) { |
166 | 0 | IGRAPH_ERROR("The length of out- and in-degree sequences must be the same.", IGRAPH_EINVAL); |
167 | 0 | } |
168 | | |
169 | 0 | if ( (allowed_edge_types & IGRAPH_LOOPS_SW) && (allowed_edge_types & IGRAPH_I_MULTI_EDGES_SW) && (allowed_edge_types & IGRAPH_I_MULTI_LOOPS_SW ) ) { |
170 | 0 | return igraph_i_is_graphical_directed_loopy_multi(out_degrees, in_degrees, res); |
171 | 0 | } |
172 | 0 | else if ( ! (allowed_edge_types & IGRAPH_LOOPS_SW) && (allowed_edge_types & IGRAPH_I_MULTI_EDGES_SW) ) { |
173 | 0 | return igraph_i_is_graphical_directed_loopless_multi(out_degrees, in_degrees, res); |
174 | 0 | } |
175 | 0 | else if ( (allowed_edge_types & IGRAPH_LOOPS_SW) && ! (allowed_edge_types & IGRAPH_I_MULTI_LOOPS_SW) && ! (allowed_edge_types & IGRAPH_I_MULTI_EDGES_SW) ) { |
176 | 0 | return igraph_i_is_graphical_directed_loopy_simple(out_degrees, in_degrees, res); |
177 | 0 | } |
178 | 0 | else if ( ! (allowed_edge_types & IGRAPH_LOOPS_SW) && ! (allowed_edge_types & IGRAPH_I_MULTI_EDGES_SW) ) { |
179 | 0 | return igraph_i_is_graphical_directed_simple(out_degrees, in_degrees, res); |
180 | 0 | } else { |
181 | | /* Remaining cases: |
182 | | * - At most one self-loop per vertex but multi-edges between distinct vertices allowed. |
183 | | * - At most one edge between distinct vertices but multi-self-loops allowed. |
184 | | * These cases cannot currently be requested through the documented API, |
185 | | * so no explanatory error message for now. */ |
186 | 0 | return IGRAPH_UNIMPLEMENTED; |
187 | 0 | } |
188 | 0 | } |
189 | | |
190 | | /* can't reach here */ |
191 | 0 | } |
192 | | |
193 | | /** |
194 | | * \function igraph_is_bigraphical |
195 | | * \brief Is there a bipartite graph with the given bi-degree-sequence? |
196 | | * |
197 | | * Determines whether two sequences of integers can be the degree sequences of |
198 | | * a bipartite graph. Such a pair of degree sequence is called \em bigraphical. |
199 | | * |
200 | | * </para><para> |
201 | | * When multi-edges are allowed, it is sufficient to check that the sum of degrees is the |
202 | | * same in the two partitions. For simple graphs, the Gale-Ryser theorem is used |
203 | | * with Berger's relaxation. |
204 | | * |
205 | | * </para><para> |
206 | | * References: |
207 | | * |
208 | | * </para><para> |
209 | | * H. J. Ryser, Combinatorial Properties of Matrices of Zeros and Ones, Can. J. Math. 9, 371 (1957). |
210 | | * https://dx.doi.org/10.4153/cjm-1957-044-3 |
211 | | * |
212 | | * </para><para> |
213 | | * D. Gale, A theorem on flows in networks, Pacific J. Math. 7, 1073 (1957). |
214 | | * https://dx.doi.org/10.2140/pjm.1957.7.1073 |
215 | | * |
216 | | * </para><para> |
217 | | * A. Berger, A note on the characterization of digraphic sequences, Discrete Math. 314, 38 (2014). |
218 | | * https://dx.doi.org/10.1016/j.disc.2013.09.010 |
219 | | * |
220 | | * \param degrees1 A vector of integers specifying the degrees in the first partition |
221 | | * \param degrees2 A vector of integers specifying the degrees in the second partition |
222 | | * \param allowed_edge_types The types of edges to allow in the graph: |
223 | | * \clist |
224 | | * \cli IGRAPH_SIMPLE_SW |
225 | | * simple graphs (i.e. no multi-edges allowed). |
226 | | * \cli IGRAPH_MULTI_SW |
227 | | * multi-edges are allowed. |
228 | | * \endclist |
229 | | * \param res Pointer to a Boolean. The result will be stored here. |
230 | | * |
231 | | * \return Error code. |
232 | | * |
233 | | * \sa \ref igraph_is_graphical() |
234 | | * |
235 | | * Time complexity: O(n), where n is the length of the larger degree sequence. |
236 | | */ |
237 | | igraph_error_t igraph_is_bigraphical(const igraph_vector_int_t *degrees1, |
238 | | const igraph_vector_int_t *degrees2, |
239 | | const igraph_edge_type_sw_t allowed_edge_types, |
240 | | igraph_bool_t *res) |
241 | 0 | { |
242 | | /* Note: Bipartite graphs can't have self-loops so we ignore the IGRAPH_LOOPS_SW bit. */ |
243 | 0 | if (allowed_edge_types & IGRAPH_I_MULTI_EDGES_SW) { |
244 | 0 | return igraph_i_is_bigraphical_multi(degrees1, degrees2, res); |
245 | 0 | } else { |
246 | 0 | return igraph_i_is_bigraphical_simple(degrees1, degrees2, res); |
247 | 0 | } |
248 | 0 | } |
249 | | |
250 | | |
251 | | /***** Undirected case *****/ |
252 | | |
253 | | /* Undirected graph with multi-self-loops: |
254 | | * - Degrees must be non-negative. |
255 | | * - The sum of degrees must be even. |
256 | | * |
257 | | * These conditions are valid regardless of whether multi-edges are allowed between distinct vertices. |
258 | | */ |
259 | 0 | static igraph_error_t igraph_i_is_graphical_undirected_multi_loops(const igraph_vector_int_t *degrees, igraph_bool_t *res) { |
260 | 0 | igraph_int_t sum_parity = 0; /* 0 if the degree sum is even, 1 if it is odd */ |
261 | 0 | igraph_int_t n = igraph_vector_int_size(degrees); |
262 | 0 | igraph_int_t i; |
263 | |
|
264 | 0 | for (i = 0; i < n; ++i) { |
265 | 0 | igraph_int_t d = VECTOR(*degrees)[i]; |
266 | |
|
267 | 0 | if (d < 0) { |
268 | 0 | *res = false; |
269 | 0 | return IGRAPH_SUCCESS; |
270 | 0 | } |
271 | 0 | sum_parity = (sum_parity + d) & 1; |
272 | 0 | } |
273 | | |
274 | 0 | *res = (sum_parity == 0); |
275 | |
|
276 | 0 | return IGRAPH_SUCCESS; |
277 | 0 | } |
278 | | |
279 | | |
280 | | /* Undirected loopless multigraph: |
281 | | * - Degrees must be non-negative. |
282 | | * - The sum of degrees must be even. |
283 | | * - The sum of degrees must be no smaller than 2*d_max. |
284 | | */ |
285 | 0 | static igraph_error_t igraph_i_is_graphical_undirected_loopless_multi(const igraph_vector_int_t *degrees, igraph_bool_t *res) { |
286 | 0 | igraph_int_t i; |
287 | 0 | igraph_int_t n = igraph_vector_int_size(degrees); |
288 | 0 | igraph_int_t dsum, dmax; |
289 | | |
290 | | /* Zero-length sequences are considered graphical. */ |
291 | 0 | if (n == 0) { |
292 | 0 | *res = true; |
293 | 0 | return IGRAPH_SUCCESS; |
294 | 0 | } |
295 | | |
296 | 0 | dsum = 0; dmax = 0; |
297 | 0 | for (i = 0; i < n; ++i) { |
298 | 0 | igraph_int_t d = VECTOR(*degrees)[i]; |
299 | |
|
300 | 0 | if (d < 0) { |
301 | 0 | *res = false; |
302 | 0 | return IGRAPH_SUCCESS; |
303 | 0 | } |
304 | 0 | dsum += d; |
305 | 0 | if (d > dmax) { |
306 | 0 | dmax = d; |
307 | 0 | } |
308 | 0 | } |
309 | | |
310 | 0 | *res = (dsum % 2 == 0) && (dsum >= 2*dmax); |
311 | |
|
312 | 0 | return IGRAPH_SUCCESS; |
313 | 0 | } |
314 | | |
315 | | |
316 | | /* Undirected graph with no multi-edges and at most one self-loop per vertex: |
317 | | * - Degrees must be non-negative. |
318 | | * - The sum of degrees must be even. |
319 | | * - Use the modification of the Erdős-Gallai theorem due to Cairns and Mendan. |
320 | | */ |
321 | 0 | static igraph_error_t igraph_i_is_graphical_undirected_loopy_simple(const igraph_vector_int_t *degrees, igraph_bool_t *res) { |
322 | 0 | igraph_vector_int_t num_degs; |
323 | 0 | igraph_int_t w, b, s, c, n, k, wd, kd; |
324 | |
|
325 | 0 | n = igraph_vector_int_size(degrees); |
326 | | |
327 | | /* Zero-length sequences are considered graphical. */ |
328 | 0 | if (n == 0) { |
329 | 0 | *res = true; |
330 | 0 | return IGRAPH_SUCCESS; |
331 | 0 | } |
332 | | |
333 | | /* The conditions from the loopy multigraph case are necessary here as well. */ |
334 | 0 | IGRAPH_CHECK(igraph_i_is_graphical_undirected_multi_loops(degrees, res)); |
335 | 0 | if (! *res) { |
336 | 0 | return IGRAPH_SUCCESS; |
337 | 0 | } |
338 | | |
339 | | /* |
340 | | * We follow this paper: |
341 | | * |
342 | | * G. Cairns & S. Mendan: Degree Sequences for Graphs with Loops, 2013 |
343 | | * https://arxiv.org/abs/1303.2145v1 |
344 | | * |
345 | | * They give the following modification of the Erdős-Gallai theorem: |
346 | | * |
347 | | * A non-increasing degree sequence d_1 >= ... >= d_n has a realization as |
348 | | * a simple graph with loops (i.e. at most one self-loop allowed on each vertex) |
349 | | * iff |
350 | | * |
351 | | * \sum_{i=1}^k d_i <= k(k+1) + \sum_{i=k+1}^{n} min(d_i, k) |
352 | | * |
353 | | * for each k=1..n |
354 | | * |
355 | | * The difference from Erdős-Gallai is that here we have the term |
356 | | * k(k+1) instead of k(k-1). |
357 | | * |
358 | | * The implementation is analogous to igraph_i_is_graphical_undirected_simple(), |
359 | | * which in turn is based on Király 2012. See comments in that function for details. |
360 | | * w and k are zero-based here, unlike in the statement of the theorem above. |
361 | | */ |
362 | | |
363 | 0 | IGRAPH_VECTOR_INT_INIT_FINALLY(&num_degs, n+2); |
364 | | |
365 | 0 | for (igraph_int_t i = 0; i < n; ++i) { |
366 | 0 | igraph_int_t degree = VECTOR(*degrees)[i]; |
367 | | |
368 | | /* Negative degrees are already checked in igraph_i_is_graphical_undirected_multi_loops() */ |
369 | 0 | if (degree > n+1) { |
370 | 0 | *res = false; |
371 | 0 | goto undirected_loopy_simple_finish; |
372 | 0 | } |
373 | | |
374 | 0 | ++VECTOR(num_degs)[degree]; |
375 | 0 | } |
376 | | |
377 | | /* Convert num_degs to a cumulative sum array. */ |
378 | 0 | for (igraph_int_t d = n; d >= 0; --d) { |
379 | 0 | VECTOR(num_degs)[d] += VECTOR(num_degs)[d+1]; |
380 | 0 | } |
381 | |
|
382 | 0 | wd = 0, kd = n+1; |
383 | 0 | *res = true; |
384 | 0 | w = n - 1; b = 0; s = 0; c = 0; |
385 | 0 | for (k = 0; k < n; k++) { |
386 | 0 | while (k >= VECTOR(num_degs)[kd]) { |
387 | 0 | --kd; |
388 | 0 | } |
389 | 0 | b += kd; |
390 | 0 | c += w; |
391 | 0 | while (w > k) { |
392 | 0 | while (wd + 1 <= n + 1 && w < VECTOR(num_degs)[wd + 1]) { |
393 | 0 | wd++; |
394 | 0 | } |
395 | 0 | if (wd > k + 1) break; |
396 | 0 | s += wd; |
397 | 0 | c -= (k + 1); |
398 | 0 | w--; |
399 | 0 | } |
400 | 0 | if (b > c + s + 2*(k + 1)) { |
401 | 0 | *res = false; |
402 | 0 | break; |
403 | 0 | } |
404 | 0 | if (w == k) { |
405 | 0 | break; |
406 | 0 | } |
407 | 0 | } |
408 | |
|
409 | 0 | undirected_loopy_simple_finish: |
410 | 0 | igraph_vector_int_destroy(&num_degs); |
411 | 0 | IGRAPH_FINALLY_CLEAN(1); |
412 | |
|
413 | 0 | return IGRAPH_SUCCESS; |
414 | 0 | } |
415 | | |
416 | | |
417 | | /* Undirected simple graph: |
418 | | * - Degrees must be non-negative. |
419 | | * - The sum of degrees must be even. |
420 | | * - Use the Erdős-Gallai theorem. |
421 | | */ |
422 | 0 | static igraph_error_t igraph_i_is_graphical_undirected_simple(const igraph_vector_int_t *degrees, igraph_bool_t *res) { |
423 | 0 | igraph_vector_int_t num_degs; /* num_degs[d] is the # of vertices with degree d */ |
424 | 0 | const igraph_int_t p = igraph_vector_int_size(degrees); |
425 | 0 | igraph_int_t dmin, dmax, dsum; |
426 | 0 | igraph_int_t n; /* number of non-zero degrees */ |
427 | 0 | igraph_int_t k, sum_deg, sum_ni, sum_ini; |
428 | 0 | igraph_int_t i, dk; |
429 | 0 | igraph_int_t zverovich_bound; |
430 | |
|
431 | 0 | if (p == 0) { |
432 | 0 | *res = true; |
433 | 0 | return IGRAPH_SUCCESS; |
434 | 0 | } |
435 | | |
436 | | /* The following implementation of the Erdős-Gallai test |
437 | | * is mostly a direct translation of the Python code given in |
438 | | * |
439 | | * Brian Cloteaux, Is This for Real? Fast Graphicality Testing, |
440 | | * Computing Prescriptions, pp. 91-95, vol. 17 (2015) |
441 | | * https://dx.doi.org/10.1109/MCSE.2015.125 |
442 | | * |
443 | | * It uses counting sort to achieve linear runtime. |
444 | | */ |
445 | | |
446 | 0 | IGRAPH_VECTOR_INT_INIT_FINALLY(&num_degs, p); |
447 | | |
448 | 0 | dmin = p; dmax = 0; dsum = 0; n = 0; |
449 | 0 | for (i = 0; i < p; ++i) { |
450 | 0 | igraph_int_t d = VECTOR(*degrees)[i]; |
451 | |
|
452 | 0 | if (d < 0 || d >= p) { |
453 | 0 | *res = false; |
454 | 0 | goto finish; |
455 | 0 | } |
456 | | |
457 | 0 | if (d > 0) { |
458 | 0 | dmax = d > dmax ? d : dmax; |
459 | 0 | dmin = d < dmin ? d : dmin; |
460 | 0 | dsum += d; |
461 | 0 | n++; |
462 | 0 | VECTOR(num_degs)[d] += 1; |
463 | 0 | } |
464 | 0 | } |
465 | | |
466 | 0 | if (dsum % 2 != 0) { |
467 | 0 | *res = false; |
468 | 0 | goto finish; |
469 | 0 | } |
470 | | |
471 | 0 | if (n == 0) { |
472 | 0 | *res = true; |
473 | 0 | goto finish; /* all degrees are zero => graphical */ |
474 | 0 | } |
475 | | |
476 | | /* According to: |
477 | | * |
478 | | * G. Cairns, S. Mendan, and Y. Nikolayevsky, A sharp refinement of a result of Zverovich-Zverovich, |
479 | | * Discrete Math. 338, 1085 (2015). |
480 | | * https://dx.doi.org/10.1016/j.disc.2015.02.001 |
481 | | * |
482 | | * a sufficient but not necessary condition of graphicality for a sequence of |
483 | | * n strictly positive integers is that |
484 | | * |
485 | | * dmin * n >= floor( (dmax + dmin + 1)^2 / 4 ) - 1 |
486 | | * if dmin is odd or (dmax + dmin) mod 4 == 1 |
487 | | * |
488 | | * or |
489 | | * |
490 | | * dmin * n >= floor( (dmax + dmin + 1)^2 / 4 ) |
491 | | * otherwise. |
492 | | */ |
493 | | |
494 | 0 | zverovich_bound = ((dmax + dmin + 1) * (dmax + dmin + 1)) / 4; |
495 | 0 | if (dmin % 2 == 1 || (dmax + dmin) % 4 == 1) { |
496 | 0 | zverovich_bound -= 1; |
497 | 0 | } |
498 | |
|
499 | 0 | if (dmin*n >= zverovich_bound) { |
500 | 0 | *res = true; |
501 | 0 | goto finish; |
502 | 0 | } |
503 | | |
504 | 0 | k = 0; sum_deg = 0; sum_ni = 0; sum_ini = 0; |
505 | 0 | for (dk = dmax; dk >= dmin; --dk) { |
506 | 0 | igraph_int_t run_size, v; |
507 | |
|
508 | 0 | if (dk < k+1) { |
509 | 0 | *res = true; |
510 | 0 | goto finish; |
511 | 0 | } |
512 | | |
513 | 0 | run_size = VECTOR(num_degs)[dk]; |
514 | 0 | if (run_size > 0) { |
515 | 0 | if (dk < k + run_size) { |
516 | 0 | run_size = dk - k; |
517 | 0 | } |
518 | 0 | sum_deg += run_size * dk; |
519 | 0 | for (v=0; v < run_size; ++v) { |
520 | 0 | sum_ni += VECTOR(num_degs)[k+v]; |
521 | 0 | sum_ini += (k+v) * VECTOR(num_degs)[k+v]; |
522 | 0 | } |
523 | 0 | k += run_size; |
524 | 0 | if (sum_deg > k*(n-1) - k*sum_ni + sum_ini) { |
525 | 0 | *res = false; |
526 | 0 | goto finish; |
527 | 0 | } |
528 | 0 | } |
529 | 0 | } |
530 | | |
531 | 0 | *res = true; |
532 | |
|
533 | 0 | finish: |
534 | 0 | igraph_vector_int_destroy(&num_degs); |
535 | 0 | IGRAPH_FINALLY_CLEAN(1); |
536 | |
|
537 | 0 | return IGRAPH_SUCCESS; |
538 | 0 | } |
539 | | |
540 | | |
541 | | /***** Directed case *****/ |
542 | | |
543 | | /* Directed loopy multigraph: |
544 | | * - Degrees must be non-negative. |
545 | | * - The sum of in- and out-degrees must be the same. |
546 | | */ |
547 | 0 | static igraph_error_t igraph_i_is_graphical_directed_loopy_multi(const igraph_vector_int_t *out_degrees, const igraph_vector_int_t *in_degrees, igraph_bool_t *res) { |
548 | 0 | igraph_int_t sumdiff; /* difference between sum of in- and out-degrees */ |
549 | 0 | igraph_int_t n = igraph_vector_int_size(out_degrees); |
550 | 0 | igraph_int_t i; |
551 | |
|
552 | 0 | IGRAPH_ASSERT(igraph_vector_int_size(in_degrees) == n); |
553 | | |
554 | 0 | sumdiff = 0; |
555 | 0 | for (i = 0; i < n; ++i) { |
556 | 0 | igraph_int_t dout = VECTOR(*out_degrees)[i]; |
557 | 0 | igraph_int_t din = VECTOR(*in_degrees)[i]; |
558 | |
|
559 | 0 | if (dout < 0 || din < 0) { |
560 | 0 | *res = false; |
561 | 0 | return IGRAPH_SUCCESS; |
562 | 0 | } |
563 | | |
564 | 0 | sumdiff += din - dout; |
565 | 0 | } |
566 | | |
567 | 0 | *res = sumdiff == 0; |
568 | |
|
569 | 0 | return IGRAPH_SUCCESS; |
570 | 0 | } |
571 | | |
572 | | |
573 | | /* Directed loopless multigraph: |
574 | | * - Degrees must be non-negative. |
575 | | * - The sum of in- and out-degrees must be the same. |
576 | | * - The sum of out-degrees must be no smaller than d_max, |
577 | | * where d_max is the largest total degree. |
578 | | */ |
579 | 0 | static igraph_error_t igraph_i_is_graphical_directed_loopless_multi(const igraph_vector_int_t *out_degrees, const igraph_vector_int_t *in_degrees, igraph_bool_t *res) { |
580 | 0 | igraph_int_t i, sumin, sumout, dmax; |
581 | 0 | igraph_int_t n = igraph_vector_int_size(out_degrees); |
582 | |
|
583 | 0 | IGRAPH_ASSERT(igraph_vector_int_size(in_degrees) == n); |
584 | | |
585 | 0 | sumin = 0; sumout = 0; |
586 | 0 | dmax = 0; |
587 | 0 | for (i = 0; i < n; ++i) { |
588 | 0 | igraph_int_t dout = VECTOR(*out_degrees)[i]; |
589 | 0 | igraph_int_t din = VECTOR(*in_degrees)[i]; |
590 | 0 | igraph_int_t d = dout + din; |
591 | |
|
592 | 0 | if (dout < 0 || din < 0) { |
593 | 0 | *res = false; |
594 | 0 | return IGRAPH_SUCCESS; |
595 | 0 | } |
596 | | |
597 | 0 | sumin += din; sumout += dout; |
598 | |
|
599 | 0 | if (d > dmax) { |
600 | 0 | dmax = d; |
601 | 0 | } |
602 | 0 | } |
603 | | |
604 | 0 | *res = (sumin == sumout) && (sumout >= dmax); |
605 | |
|
606 | 0 | return IGRAPH_SUCCESS; |
607 | 0 | } |
608 | | |
609 | | |
610 | | /* Directed graph with no multi-edges and at most one self-loop per vertex: |
611 | | * - Degrees must be non-negative. |
612 | | * - Equivalent to bipartite simple graph. |
613 | | */ |
614 | 0 | static igraph_error_t igraph_i_is_graphical_directed_loopy_simple(const igraph_vector_int_t *out_degrees, const igraph_vector_int_t *in_degrees, igraph_bool_t *res) { |
615 | 0 | return igraph_i_is_bigraphical_simple(out_degrees, in_degrees, res); |
616 | 0 | } |
617 | | |
618 | | |
619 | | /* Directed simple graph: |
620 | | * - Degrees must be non-negative. |
621 | | * - The sum of in- and out-degrees must be the same. |
622 | | * - Use the Fulkerson-Chen-Anstee theorem |
623 | | */ |
624 | 0 | static igraph_error_t igraph_i_is_graphical_directed_simple(const igraph_vector_int_t *out_degrees, const igraph_vector_int_t *in_degrees, igraph_bool_t *res) { |
625 | 0 | igraph_vector_int_t in_degree_cumcounts, in_degree_counts; |
626 | 0 | igraph_vector_int_t sorted_in_degrees, sorted_out_degrees; |
627 | 0 | igraph_vector_int_t left_pq, right_pq; |
628 | 0 | igraph_int_t lhs, rhs, left_pq_size, right_pq_size, left_i, right_i, left_sum, right_sum; |
629 | | |
630 | | /* The conditions from the loopy multigraph case are necessary here as well. */ |
631 | 0 | IGRAPH_CHECK(igraph_i_is_graphical_directed_loopy_multi(out_degrees, in_degrees, res)); |
632 | 0 | if (! *res) { |
633 | 0 | return IGRAPH_SUCCESS; |
634 | 0 | } |
635 | | |
636 | 0 | const igraph_int_t vcount = igraph_vector_int_size(out_degrees); |
637 | 0 | if (vcount == 0) { |
638 | 0 | *res = true; |
639 | 0 | return IGRAPH_SUCCESS; |
640 | 0 | } |
641 | | |
642 | | |
643 | 0 | IGRAPH_VECTOR_INT_INIT_FINALLY(&in_degree_cumcounts, vcount+1); |
644 | | |
645 | | /* Compute in_degree_cumcounts[d+1] to be the no. of in-degrees == d */ |
646 | 0 | for (igraph_int_t v = 0; v < vcount; v++) { |
647 | 0 | igraph_int_t indeg = VECTOR(*in_degrees)[v]; |
648 | 0 | igraph_int_t outdeg = VECTOR(*out_degrees)[v]; |
649 | 0 | if (indeg >= vcount || outdeg >= vcount) { |
650 | 0 | *res = false; |
651 | 0 | igraph_vector_int_destroy(&in_degree_cumcounts); |
652 | 0 | IGRAPH_FINALLY_CLEAN(1); |
653 | 0 | return IGRAPH_SUCCESS; |
654 | 0 | } |
655 | 0 | VECTOR(in_degree_cumcounts)[indeg + 1]++; |
656 | 0 | } |
657 | | |
658 | | /* Compute in_degree_cumcounts[d] to be the no. of in-degrees < d */ |
659 | 0 | for (igraph_int_t indeg = 0; indeg < vcount; indeg++) { |
660 | 0 | VECTOR(in_degree_cumcounts)[indeg+1] += VECTOR(in_degree_cumcounts)[indeg]; |
661 | 0 | } |
662 | |
|
663 | 0 | IGRAPH_VECTOR_INT_INIT_FINALLY(&sorted_out_degrees, vcount); |
664 | 0 | IGRAPH_VECTOR_INT_INIT_FINALLY(&sorted_in_degrees, vcount); |
665 | | |
666 | | /* In the following loop, in_degree_counts[d] keeps track of the number of vertices |
667 | | * with in-degree d that were already placed. */ |
668 | 0 | IGRAPH_VECTOR_INT_INIT_FINALLY(&in_degree_counts, vcount); |
669 | | |
670 | 0 | for (igraph_int_t v = 0; v < vcount; v++) { |
671 | 0 | igraph_int_t outdeg = VECTOR(*out_degrees)[v]; |
672 | 0 | igraph_int_t indeg = VECTOR(*in_degrees)[v]; |
673 | 0 | igraph_int_t idx = VECTOR(in_degree_cumcounts)[indeg] + VECTOR(in_degree_counts)[indeg]; |
674 | 0 | VECTOR(sorted_out_degrees)[vcount - idx - 1] = outdeg; |
675 | 0 | VECTOR(sorted_in_degrees)[vcount - idx - 1] = indeg; |
676 | 0 | VECTOR(in_degree_counts)[indeg]++; |
677 | 0 | } |
678 | |
|
679 | 0 | igraph_vector_int_destroy(&in_degree_counts); |
680 | 0 | igraph_vector_int_destroy(&in_degree_cumcounts); |
681 | 0 | IGRAPH_FINALLY_CLEAN(2); |
682 | | |
683 | | /* Be optimistic, then check whether the Fulkerson–Chen–Anstee condition |
684 | | * holds for every k. In particular, for every k in [0; n), it must be true |
685 | | * that: |
686 | | * |
687 | | * \sum_{i=0}^k indegree[i] <= |
688 | | * \sum_{i=0}^k min(outdegree[i], k) + |
689 | | * \sum_{i=k+1}^{n-1} min(outdegree[i], k + 1) |
690 | | */ |
691 | |
|
692 | 0 | #define INDEGREE(x) (VECTOR(sorted_in_degrees)[x]) |
693 | 0 | #define OUTDEGREE(x) (VECTOR(sorted_out_degrees)[x]) |
694 | |
|
695 | 0 | IGRAPH_VECTOR_INT_INIT_FINALLY(&left_pq, vcount); |
696 | 0 | IGRAPH_VECTOR_INT_INIT_FINALLY(&right_pq, vcount); |
697 | | |
698 | 0 | left_pq_size = 0; |
699 | 0 | right_pq_size = vcount; |
700 | 0 | left_i = 0; |
701 | 0 | right_i = 0; |
702 | 0 | left_sum = 0; |
703 | 0 | right_sum = 0; |
704 | 0 | for (igraph_int_t i = 0; i < vcount; i++) { |
705 | 0 | VECTOR(right_pq)[OUTDEGREE(i)]++; |
706 | 0 | } |
707 | |
|
708 | 0 | *res = true; |
709 | 0 | lhs = 0; |
710 | 0 | rhs = 0; |
711 | 0 | for (igraph_int_t i = 0; i < vcount; i++) { |
712 | 0 | lhs += INDEGREE(i); |
713 | | |
714 | | /* It is enough to check for indexes where the in-degree is about to |
715 | | * decrease in the next step; see "Stronger condition" in the Wikipedia |
716 | | * entry for the Fulkerson-Chen-Anstee condition. However, this does not |
717 | | * provide any noticeable benefits for the current implementation. */ |
718 | |
|
719 | 0 | if (OUTDEGREE(i) < i) { |
720 | 0 | left_sum += OUTDEGREE(i); |
721 | 0 | } |
722 | 0 | else { |
723 | 0 | VECTOR(left_pq)[OUTDEGREE(i)]++; |
724 | 0 | left_pq_size++; |
725 | 0 | } |
726 | 0 | while (left_i < i) { |
727 | 0 | while (VECTOR(left_pq)[left_i] > 0) { |
728 | 0 | VECTOR(left_pq)[left_i]--; |
729 | 0 | left_pq_size--; |
730 | 0 | left_sum += left_i; |
731 | 0 | } |
732 | 0 | left_i++; |
733 | 0 | } |
734 | |
|
735 | 0 | while (right_i < i + 1) { |
736 | 0 | while (VECTOR(right_pq)[right_i] > 0) { |
737 | 0 | VECTOR(right_pq)[right_i]--; |
738 | 0 | right_pq_size--; |
739 | 0 | right_sum += right_i; |
740 | 0 | } |
741 | 0 | right_i++; |
742 | 0 | } |
743 | 0 | if (OUTDEGREE(i) < i + 1) { |
744 | 0 | right_sum -= OUTDEGREE(i); |
745 | 0 | } |
746 | 0 | else { |
747 | 0 | VECTOR(right_pq)[OUTDEGREE(i)]--; |
748 | 0 | right_pq_size--; |
749 | 0 | } |
750 | |
|
751 | 0 | rhs = left_sum + i * left_pq_size + right_sum + (i + 1) * right_pq_size; |
752 | 0 | if (lhs > rhs) { |
753 | 0 | *res = false; |
754 | 0 | break; |
755 | 0 | } |
756 | 0 | } |
757 | |
|
758 | 0 | #undef INDEGREE |
759 | 0 | #undef OUTDEGREE |
760 | |
|
761 | 0 | igraph_vector_int_destroy(&sorted_in_degrees); |
762 | 0 | igraph_vector_int_destroy(&sorted_out_degrees); |
763 | 0 | igraph_vector_int_destroy(&left_pq); |
764 | 0 | igraph_vector_int_destroy(&right_pq); |
765 | 0 | IGRAPH_FINALLY_CLEAN(4); |
766 | |
|
767 | 0 | return IGRAPH_SUCCESS; |
768 | 0 | } |
769 | | |
770 | | |
771 | | |
772 | | /***** Bipartite case *****/ |
773 | | |
774 | | /* Bipartite graph with multi-edges: |
775 | | * - Degrees must be non-negative. |
776 | | * - Sum of degrees must be the same in the two partitions. |
777 | | */ |
778 | 0 | static igraph_error_t igraph_i_is_bigraphical_multi(const igraph_vector_int_t *degrees1, const igraph_vector_int_t *degrees2, igraph_bool_t *res) { |
779 | 0 | igraph_int_t i; |
780 | 0 | igraph_int_t sum1, sum2; |
781 | 0 | igraph_int_t n1 = igraph_vector_int_size(degrees1), n2 = igraph_vector_int_size(degrees2); |
782 | |
|
783 | 0 | sum1 = 0; |
784 | 0 | for (i = 0; i < n1; ++i) { |
785 | 0 | igraph_int_t d = VECTOR(*degrees1)[i]; |
786 | |
|
787 | 0 | if (d < 0) { |
788 | 0 | *res = false; |
789 | 0 | return IGRAPH_SUCCESS; |
790 | 0 | } |
791 | | |
792 | 0 | sum1 += d; |
793 | 0 | } |
794 | | |
795 | 0 | sum2 = 0; |
796 | 0 | for (i = 0; i < n2; ++i) { |
797 | 0 | igraph_int_t d = VECTOR(*degrees2)[i]; |
798 | |
|
799 | 0 | if (d < 0) { |
800 | 0 | *res = false; |
801 | 0 | return IGRAPH_SUCCESS; |
802 | 0 | } |
803 | | |
804 | 0 | sum2 += d; |
805 | 0 | } |
806 | | |
807 | 0 | *res = (sum1 == sum2); |
808 | |
|
809 | 0 | return IGRAPH_SUCCESS; |
810 | 0 | } |
811 | | |
812 | | |
813 | | /* Bipartite simple graph: |
814 | | * - Degrees must be non-negative. |
815 | | * - Sum of degrees must be the same in the two partitions. |
816 | | * - Use the Gale-Ryser theorem. |
817 | | */ |
818 | 0 | static igraph_error_t igraph_i_is_bigraphical_simple(const igraph_vector_int_t *degrees1, const igraph_vector_int_t *degrees2, igraph_bool_t *res) { |
819 | 0 | igraph_int_t n1 = igraph_vector_int_size(degrees1), n2 = igraph_vector_int_size(degrees2); |
820 | 0 | igraph_vector_int_t deg_freq1, deg_freq2; |
821 | 0 | igraph_int_t lhs_sum, partial_rhs_sum, partial_rhs_count; |
822 | 0 | igraph_int_t a, b, k; |
823 | |
|
824 | 0 | if (n1 == 0 && n2 == 0) { |
825 | 0 | *res = true; |
826 | 0 | return IGRAPH_SUCCESS; |
827 | 0 | } |
828 | | |
829 | | /* The conditions from the multigraph case are necessary here as well. */ |
830 | 0 | IGRAPH_CHECK(igraph_i_is_bigraphical_multi(degrees1, degrees2, res)); |
831 | 0 | if (! *res) { |
832 | 0 | return IGRAPH_SUCCESS; |
833 | 0 | } |
834 | | |
835 | | /* Ensure that degrees1 is the shorter vector as a minor optimization: */ |
836 | 0 | if (n2 < n1) { |
837 | 0 | const igraph_vector_int_t *tmp; |
838 | 0 | igraph_int_t n; |
839 | |
|
840 | 0 | tmp = degrees1; |
841 | 0 | degrees1 = degrees2; |
842 | 0 | degrees2 = tmp; |
843 | |
|
844 | 0 | n = n1; |
845 | 0 | n1 = n2; |
846 | 0 | n2 = n; |
847 | 0 | } |
848 | | |
849 | | /* Counting sort the degrees. */ |
850 | | /* Since the graph is simple, a vertex's degree can be at most the size of the other partition. */ |
851 | 0 | IGRAPH_VECTOR_INT_INIT_FINALLY(°_freq1, n2+1); |
852 | 0 | IGRAPH_VECTOR_INT_INIT_FINALLY(°_freq2, n1+1); |
853 | | |
854 | 0 | for (igraph_int_t i = 0; i < n1; ++i) { |
855 | 0 | igraph_int_t degree = VECTOR(*degrees1)[i]; |
856 | 0 | if (degree > n2) { |
857 | 0 | *res = false; |
858 | 0 | goto bigraphical_simple_done; |
859 | 0 | } |
860 | 0 | ++VECTOR(deg_freq1)[degree]; |
861 | 0 | } |
862 | 0 | for (igraph_int_t i = 0; i < n2; ++i) { |
863 | 0 | igraph_int_t degree = VECTOR(*degrees2)[i]; |
864 | 0 | if (degree > n1) { |
865 | 0 | *res = false; |
866 | 0 | goto bigraphical_simple_done; |
867 | 0 | } |
868 | 0 | ++VECTOR(deg_freq2)[degree]; |
869 | 0 | } |
870 | | |
871 | | /* |
872 | | * We follow the description of the Gale-Ryser theorem in: |
873 | | * |
874 | | * A. Berger, A note on the characterization of digraphic sequences, Discrete Math. 314, 38 (2014). |
875 | | * https://doi.org/10.1016/j.disc.2013.09.010 |
876 | | * |
877 | | * Gale-Ryser condition with 0-based indexing: |
878 | | * |
879 | | * a_i and b_i denote the degree sequences of the two partitions. |
880 | | * |
881 | | * Assuming that a_0 >= a_1 >= ... >= a_{n_1 - 1}, |
882 | | * |
883 | | * \sum_{i=0}^k a_i <= \sum_{j=0}^{n_2} min(b_i, k+1) |
884 | | * |
885 | | * for all 0 <= k < n_1. |
886 | | * |
887 | | * Additionally, based on Theorem 3 in [Berger 2014], it is sufficient to do the check |
888 | | * for k such that a_k > a_{k+1} and for k=(n_1-1). |
889 | | */ |
890 | | |
891 | | /* While this formulation does not require sorting degree2, |
892 | | * doing so allows for a linear-time incremental computation |
893 | | * of the inequality's right-hand-side. |
894 | | */ |
895 | | |
896 | 0 | *res = true; /* be optimistic */ |
897 | 0 | lhs_sum = 0; |
898 | 0 | partial_rhs_sum = 0; /* the sum of those elements in the rhs which are <= (k+1) */ |
899 | 0 | partial_rhs_count = 0; /* number of elements in the rhs which are <= (k+1) */ |
900 | 0 | b = 0; /* index in deg_freq2 */ |
901 | 0 | k = -1; |
902 | 0 | for (a = n2; a >= 0; --a) { |
903 | 0 | igraph_int_t acount = VECTOR(deg_freq1)[a]; |
904 | 0 | lhs_sum += a * acount; |
905 | 0 | k += acount; |
906 | |
|
907 | 0 | while (b <= k + 1) { |
908 | 0 | igraph_int_t bcount = VECTOR(deg_freq2)[b]; |
909 | 0 | partial_rhs_sum += b * bcount; |
910 | 0 | partial_rhs_count += bcount; |
911 | |
|
912 | 0 | ++b; |
913 | 0 | } |
914 | | |
915 | | /* rhs_sum for a given k is partial_rhs_sum + (n2 - partial_rhs_count) * (k+1) */ |
916 | 0 | if (lhs_sum > partial_rhs_sum + (n2 - partial_rhs_count) * (k+1) ) { |
917 | 0 | *res = false; |
918 | 0 | break; |
919 | 0 | } |
920 | 0 | } |
921 | |
|
922 | 0 | bigraphical_simple_done: |
923 | 0 | igraph_vector_int_destroy(°_freq1); |
924 | 0 | igraph_vector_int_destroy(°_freq2); |
925 | 0 | IGRAPH_FINALLY_CLEAN(2); |
926 | |
|
927 | 0 | return IGRAPH_SUCCESS; |
928 | 0 | } |