/src/igraph/src/misc/conversion.c
Line | Count | Source |
1 | | /* |
2 | | igraph library. |
3 | | Copyright (C) 2005-2012 Gabor Csardi <csardi.gabor@gmail.com> |
4 | | 334 Harvard street, Cambridge, MA 02139 USA |
5 | | |
6 | | This program is free software; you can redistribute it and/or modify |
7 | | it under the terms of the GNU General Public License as published by |
8 | | the Free Software Foundation; either version 2 of the License, or |
9 | | (at your option) any later version. |
10 | | |
11 | | This program is distributed in the hope that it will be useful, |
12 | | but WITHOUT ANY WARRANTY; without even the implied warranty of |
13 | | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
14 | | GNU General Public License for more details. |
15 | | |
16 | | You should have received a copy of the GNU General Public License |
17 | | along with this program; if not, write to the Free Software |
18 | | Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA |
19 | | 02110-1301 USA |
20 | | |
21 | | */ |
22 | | |
23 | | #include "igraph_conversion.h" |
24 | | |
25 | | #include "igraph_iterators.h" |
26 | | #include "igraph_interface.h" |
27 | | #include "igraph_attributes.h" |
28 | | #include "igraph_constructors.h" |
29 | | #include "igraph_structural.h" |
30 | | #include "igraph_sparsemat.h" |
31 | | #include "igraph_random.h" |
32 | | |
33 | | #include "core/fixed_vectorlist.h" |
34 | | #include "graph/attributes.h" |
35 | | #include "math/safe_intop.h" |
36 | | |
37 | 0 | #define WEIGHT_OF(eid) (weights ? VECTOR(*weights)[eid] : 1) |
38 | | |
39 | | /** |
40 | | * \ingroup conversion |
41 | | * \function igraph_get_adjacency |
42 | | * \brief The adjacency matrix of a graph. |
43 | | * |
44 | | * </para><para> |
45 | | * The result is an adjacency matrix. Entry i, j of the matrix |
46 | | * contains the number of edges connecting vertex i to vertex j in the unweighted |
47 | | * case, or the total weight of edges connecting vertex i to vertex j in the |
48 | | * weighted case. |
49 | | * |
50 | | * \param graph Pointer to the graph to convert |
51 | | * \param res Pointer to an initialized matrix object, it will be |
52 | | * resized if needed. |
53 | | * \param type Constant specifying the type of the adjacency matrix to |
54 | | * create for undirected graphs. It is ignored for directed |
55 | | * graphs. Possible values: |
56 | | * \clist |
57 | | * \cli IGRAPH_GET_ADJACENCY_UPPER |
58 | | * the upper right triangle of the matrix is used. |
59 | | * \cli IGRAPH_GET_ADJACENCY_LOWER |
60 | | * the lower left triangle of the matrix is used. |
61 | | * \cli IGRAPH_GET_ADJACENCY_BOTH |
62 | | * the whole matrix is used, a symmetric matrix is returned |
63 | | * if the graph is undirected. |
64 | | * \endclist |
65 | | * \param weights An optional vector containing the weight of each edge |
66 | | * in the graph. Supply a null pointer here to make all edges have |
67 | | * the same weight of 1. |
68 | | * \param loops Constant specifying how loop edges should be handled. |
69 | | * Possible values: |
70 | | * \clist |
71 | | * \cli IGRAPH_NO_LOOPS |
72 | | * loop edges are ignored and the diagonal of the matrix will contain |
73 | | * zeros only |
74 | | * \cli IGRAPH_LOOPS_ONCE |
75 | | * loop edges are counted once, i.e. a vertex with a single unweighted |
76 | | * loop edge will have 1 in the corresponding diagonal entry |
77 | | * \cli IGRAPH_LOOPS_TWICE |
78 | | * loop edges are counted twice in \em undirected graphs, i.e. a vertex |
79 | | * with a single unweighted loop edge in an undirected graph will have |
80 | | * 2 in the corresponding diagonal entry. Loop edges in directed graphs |
81 | | * are still counted as 1. Essentially, this means that the function is |
82 | | * counting the incident edge \em stems , which makes more sense when |
83 | | * using the adjacency matrix in linear algebra. |
84 | | * \endclist |
85 | | * \return Error code: |
86 | | * \c IGRAPH_EINVAL invalid type argument. |
87 | | * |
88 | | * \sa \ref igraph_get_adjacency_sparse() if you want a sparse matrix representation |
89 | | * |
90 | | * Time complexity: O(|V||V|), |V| is the number of vertices in the graph. |
91 | | */ |
92 | | |
93 | | igraph_error_t igraph_get_adjacency( |
94 | | const igraph_t *graph, igraph_matrix_t *res, igraph_get_adjacency_t type, |
95 | | const igraph_vector_t *weights, igraph_loops_t loops |
96 | 0 | ) { |
97 | 0 | igraph_int_t no_of_nodes = igraph_vcount(graph); |
98 | 0 | igraph_int_t no_of_edges = igraph_ecount(graph); |
99 | 0 | igraph_bool_t directed = igraph_is_directed(graph); |
100 | 0 | igraph_int_t i, from, to; |
101 | |
|
102 | 0 | IGRAPH_CHECK(igraph_matrix_resize(res, no_of_nodes, no_of_nodes)); |
103 | 0 | igraph_matrix_null(res); |
104 | |
|
105 | 0 | if (directed) { |
106 | 0 | for (i = 0; i < no_of_edges; i++) { |
107 | 0 | from = IGRAPH_FROM(graph, i); |
108 | 0 | to = IGRAPH_TO(graph, i); |
109 | 0 | if (from != to || loops != IGRAPH_NO_LOOPS) { |
110 | 0 | MATRIX(*res, from, to) += WEIGHT_OF(i); |
111 | 0 | } |
112 | 0 | } |
113 | 0 | } else if (type == IGRAPH_GET_ADJACENCY_UPPER) { |
114 | 0 | for (i = 0; i < no_of_edges; i++) { |
115 | 0 | from = IGRAPH_FROM(graph, i); |
116 | 0 | to = IGRAPH_TO(graph, i); |
117 | 0 | if (to < from) { |
118 | 0 | MATRIX(*res, to, from) += WEIGHT_OF(i); |
119 | 0 | } else { |
120 | 0 | MATRIX(*res, from, to) += WEIGHT_OF(i); |
121 | 0 | } |
122 | 0 | if (to == from && loops == IGRAPH_LOOPS_TWICE) { |
123 | 0 | MATRIX(*res, to, to) += WEIGHT_OF(i); |
124 | 0 | } |
125 | 0 | } |
126 | 0 | } else if (type == IGRAPH_GET_ADJACENCY_LOWER) { |
127 | 0 | for (i = 0; i < no_of_edges; i++) { |
128 | 0 | from = IGRAPH_FROM(graph, i); |
129 | 0 | to = IGRAPH_TO(graph, i); |
130 | 0 | if (to < from) { |
131 | 0 | MATRIX(*res, from, to) += WEIGHT_OF(i); |
132 | 0 | } else { |
133 | 0 | MATRIX(*res, to, from) += WEIGHT_OF(i); |
134 | 0 | } |
135 | 0 | if (to == from && loops == IGRAPH_LOOPS_TWICE) { |
136 | 0 | MATRIX(*res, to, to) += WEIGHT_OF(i); |
137 | 0 | } |
138 | 0 | } |
139 | 0 | } else if (type == IGRAPH_GET_ADJACENCY_BOTH) { |
140 | 0 | for (i = 0; i < no_of_edges; i++) { |
141 | 0 | from = IGRAPH_FROM(graph, i); |
142 | 0 | to = IGRAPH_TO(graph, i); |
143 | 0 | MATRIX(*res, from, to) += WEIGHT_OF(i); |
144 | 0 | if (from != to || loops == IGRAPH_LOOPS_TWICE) { |
145 | 0 | MATRIX(*res, to, from) += WEIGHT_OF(i); |
146 | 0 | } |
147 | 0 | } |
148 | 0 | } else { |
149 | 0 | IGRAPH_ERROR("Invalid type argument", IGRAPH_EINVAL); |
150 | 0 | } |
151 | | |
152 | | /* Erase the diagonal if we don't need loop edges */ |
153 | 0 | if (loops == IGRAPH_NO_LOOPS) { |
154 | 0 | for (i = 0; i < no_of_nodes; i++) { |
155 | 0 | MATRIX(*res, i, i) = 0; |
156 | 0 | } |
157 | 0 | } |
158 | |
|
159 | 0 | return IGRAPH_SUCCESS; |
160 | 0 | } |
161 | | |
162 | | /** |
163 | | * \function igraph_get_adjacency_sparse |
164 | | * \brief Returns the adjacency matrix of a graph in a sparse matrix format. |
165 | | * |
166 | | * \param graph The input graph. |
167 | | * \param res Pointer to an \em initialized sparse matrix. The result |
168 | | * will be stored here. The matrix will be resized as needed. |
169 | | * \param type Constant specifying the type of the adjacency matrix to |
170 | | * create for undirected graphs. It is ignored for directed |
171 | | * graphs. Possible values: |
172 | | * \clist |
173 | | * \cli IGRAPH_GET_ADJACENCY_UPPER |
174 | | * the upper right triangle of the matrix is used. |
175 | | * \cli IGRAPH_GET_ADJACENCY_LOWER |
176 | | * the lower left triangle of the matrix is used. |
177 | | * \cli IGRAPH_GET_ADJACENCY_BOTH |
178 | | * the whole matrix is used, a symmetric matrix is returned |
179 | | * if the graph is undirected. |
180 | | * \endclist |
181 | | * \param weights An optional vector containing the weight of each edge |
182 | | * in the graph. Supply a null pointer here to make all edges have |
183 | | * the same weight of 1. |
184 | | * \param loops Constant specifying how loop edges should be handled. |
185 | | * Possible values: |
186 | | * \clist |
187 | | * \cli IGRAPH_NO_LOOPS |
188 | | * loop edges are ignored and the diagonal of the matrix will contain |
189 | | * zeros only |
190 | | * \cli IGRAPH_LOOPS_ONCE |
191 | | * loop edges are counted once, i.e. a vertex with a single unweighted |
192 | | * loop edge will have 1 in the corresponding diagonal entry |
193 | | * \cli IGRAPH_LOOPS_TWICE |
194 | | * loop edges are counted twice in \em undirected graphs, i.e. a vertex |
195 | | * with a single unweighted loop edge in an undirected graph will have |
196 | | * 2 in the corresponding diagonal entry. Loop edges in directed graphs |
197 | | * are still counted as 1. Essentially, this means that the function is |
198 | | * counting the incident edge \em stems , which makes more sense when |
199 | | * using the adjacency matrix in linear algebra. |
200 | | * \endclist |
201 | | * \return Error code: |
202 | | * \c IGRAPH_EINVAL invalid type argument. |
203 | | * |
204 | | * \sa \ref igraph_get_adjacency(), the dense version of this function. |
205 | | * |
206 | | * Time complexity: TODO. |
207 | | */ |
208 | | |
209 | | igraph_error_t igraph_get_adjacency_sparse( |
210 | | const igraph_t *graph, igraph_sparsemat_t *res, igraph_get_adjacency_t type, |
211 | | const igraph_vector_t *weights, igraph_loops_t loops |
212 | 0 | ) { |
213 | |
|
214 | 0 | igraph_int_t no_of_nodes = igraph_vcount(graph); |
215 | 0 | igraph_int_t no_of_edges = igraph_ecount(graph); |
216 | 0 | igraph_bool_t directed = igraph_is_directed(graph); |
217 | 0 | igraph_int_t nzmax = directed ? no_of_edges : no_of_edges * 2; |
218 | 0 | igraph_int_t i, from, to; |
219 | |
|
220 | 0 | IGRAPH_CHECK(igraph_sparsemat_resize(res, no_of_nodes, no_of_nodes, nzmax)); |
221 | | |
222 | 0 | if (directed) { |
223 | 0 | for (i = 0; i < no_of_edges; i++) { |
224 | 0 | from = IGRAPH_FROM(graph, i); |
225 | 0 | to = IGRAPH_TO(graph, i); |
226 | 0 | if (from != to || loops != IGRAPH_NO_LOOPS) { |
227 | 0 | IGRAPH_CHECK(igraph_sparsemat_entry(res, from, to, WEIGHT_OF(i))); |
228 | 0 | } |
229 | 0 | } |
230 | 0 | } else if (type == IGRAPH_GET_ADJACENCY_UPPER) { |
231 | 0 | for (i = 0; i < no_of_edges; i++) { |
232 | 0 | from = IGRAPH_FROM(graph, i); |
233 | 0 | to = IGRAPH_TO(graph, i); |
234 | 0 | if (to < from) { |
235 | 0 | IGRAPH_CHECK(igraph_sparsemat_entry(res, to, from, WEIGHT_OF(i))); |
236 | 0 | } else if (to == from) { |
237 | 0 | switch (loops) { |
238 | 0 | case IGRAPH_LOOPS_ONCE: |
239 | 0 | IGRAPH_CHECK(igraph_sparsemat_entry(res, to, to, WEIGHT_OF(i))); |
240 | 0 | break; |
241 | 0 | case IGRAPH_LOOPS_TWICE: |
242 | 0 | IGRAPH_CHECK(igraph_sparsemat_entry(res, to, to, 2 * WEIGHT_OF(i))); |
243 | 0 | break; |
244 | 0 | case IGRAPH_NO_LOOPS: |
245 | 0 | default: |
246 | 0 | break; |
247 | 0 | } |
248 | 0 | } else { |
249 | 0 | IGRAPH_CHECK(igraph_sparsemat_entry(res, from, to, WEIGHT_OF(i))); |
250 | 0 | } |
251 | 0 | } |
252 | 0 | } else if (type == IGRAPH_GET_ADJACENCY_LOWER) { |
253 | 0 | for (i = 0; i < no_of_edges; i++) { |
254 | 0 | from = IGRAPH_FROM(graph, i); |
255 | 0 | to = IGRAPH_TO(graph, i); |
256 | 0 | if (to < from) { |
257 | 0 | IGRAPH_CHECK(igraph_sparsemat_entry(res, from, to, WEIGHT_OF(i))); |
258 | 0 | } else if (to == from) { |
259 | 0 | switch (loops) { |
260 | 0 | case IGRAPH_LOOPS_ONCE: |
261 | 0 | IGRAPH_CHECK(igraph_sparsemat_entry(res, to, to, WEIGHT_OF(i))); |
262 | 0 | break; |
263 | 0 | case IGRAPH_LOOPS_TWICE: |
264 | 0 | IGRAPH_CHECK(igraph_sparsemat_entry(res, to, to, 2 * WEIGHT_OF(i))); |
265 | 0 | break; |
266 | 0 | case IGRAPH_NO_LOOPS: |
267 | 0 | default: |
268 | 0 | break; |
269 | 0 | } |
270 | 0 | } else { |
271 | 0 | IGRAPH_CHECK(igraph_sparsemat_entry(res, to, from, WEIGHT_OF(i))); |
272 | 0 | } |
273 | 0 | } |
274 | 0 | } else if (type == IGRAPH_GET_ADJACENCY_BOTH) { |
275 | 0 | for (i = 0; i < no_of_edges; i++) { |
276 | 0 | from = IGRAPH_FROM(graph, i); |
277 | 0 | to = IGRAPH_TO(graph, i); |
278 | 0 | if (to == from) { |
279 | 0 | switch (loops) { |
280 | 0 | case IGRAPH_LOOPS_ONCE: |
281 | 0 | IGRAPH_CHECK(igraph_sparsemat_entry(res, to, to, WEIGHT_OF(i))); |
282 | 0 | break; |
283 | 0 | case IGRAPH_LOOPS_TWICE: |
284 | 0 | IGRAPH_CHECK(igraph_sparsemat_entry(res, to, to, 2 * WEIGHT_OF(i))); |
285 | 0 | break; |
286 | 0 | case IGRAPH_NO_LOOPS: |
287 | 0 | default: |
288 | 0 | break; |
289 | 0 | } |
290 | 0 | } else { |
291 | 0 | IGRAPH_CHECK(igraph_sparsemat_entry(res, from, to, WEIGHT_OF(i))); |
292 | 0 | IGRAPH_CHECK(igraph_sparsemat_entry(res, to, from, WEIGHT_OF(i))); |
293 | 0 | } |
294 | 0 | } |
295 | 0 | } else { |
296 | 0 | IGRAPH_ERROR("Invalid type argument", IGRAPH_EINVAL); |
297 | 0 | } |
298 | | |
299 | 0 | return IGRAPH_SUCCESS; |
300 | 0 | } |
301 | | |
302 | | #undef WEIGHT_OF |
303 | | |
304 | | |
305 | | /** |
306 | | * \ingroup conversion |
307 | | * \function igraph_get_edgelist |
308 | | * \brief The list of edges in a graph. |
309 | | * |
310 | | * The order of the edges is given by the edge IDs. |
311 | | * |
312 | | * \param graph Pointer to the graph object |
313 | | * \param res Pointer to an initialized vector object, it will be |
314 | | * resized. |
315 | | * \param bycol Boolean constant. If true, the edges will be returned |
316 | | * columnwise, e.g. the first edge is |
317 | | * <code>res[0]->res[|E|]</code>, the second is |
318 | | * <code>res[1]->res[|E|+1]</code>, etc. Supply false to get |
319 | | * the edge list in a format compatible with \ref igraph_add_edges(). |
320 | | * \return Error code. |
321 | | * |
322 | | * \sa \ref igraph_edges() to return the result only for some edge IDs. |
323 | | * |
324 | | * Time complexity: O(|E|), the number of edges in the graph. |
325 | | */ |
326 | | |
327 | 7.68k | igraph_error_t igraph_get_edgelist(const igraph_t *graph, igraph_vector_int_t *res, igraph_bool_t bycol) { |
328 | 7.68k | return igraph_edges(graph, igraph_ess_all(IGRAPH_EDGEORDER_ID), res, bycol); |
329 | 7.68k | } |
330 | | |
331 | | /** |
332 | | * \function igraph_to_directed |
333 | | * \brief Convert an undirected graph to a directed one. |
334 | | * |
335 | | * If the supplied graph is directed, this function does nothing. |
336 | | * |
337 | | * \param graph The graph object to convert. |
338 | | * \param mode Constant, specifies the details of how exactly the |
339 | | * conversion is done. Possible values: |
340 | | * \clist |
341 | | * \cli IGRAPH_TO_DIRECTED_ARBITRARY |
342 | | * The number of edges in the |
343 | | * graph stays the same, an arbitrarily directed edge is |
344 | | * created for each undirected edge. |
345 | | * \cli IGRAPH_TO_DIRECTED_MUTUAL |
346 | | * Two directed edges are |
347 | | * created for each undirected edge, one in each direction. |
348 | | * \cli IGRAPH_TO_DIRECTED_RANDOM |
349 | | * Each undirected edge is converted to a randomly oriented |
350 | | * directed one. |
351 | | * \cli IGRAPH_TO_DIRECTED_ACYCLIC |
352 | | * Each undirected edge is converted to a directed edge oriented |
353 | | * from a lower index vertex to a higher index one. If no self-loops |
354 | | * were present, then the result is a directed acyclic graph. |
355 | | * \endclist |
356 | | * \return Error code. |
357 | | * |
358 | | * Time complexity: O(|V|+|E|), the number of vertices plus the number |
359 | | * of edges. |
360 | | */ |
361 | | |
362 | | igraph_error_t igraph_to_directed(igraph_t *graph, |
363 | 0 | igraph_to_directed_t mode) { |
364 | 0 | igraph_int_t no_of_edges = igraph_ecount(graph); |
365 | 0 | igraph_int_t no_of_nodes = igraph_vcount(graph); |
366 | |
|
367 | 0 | if (igraph_is_directed(graph)) { |
368 | 0 | return IGRAPH_SUCCESS; |
369 | 0 | } |
370 | | |
371 | 0 | switch (mode) { |
372 | 0 | case IGRAPH_TO_DIRECTED_ARBITRARY: |
373 | 0 | case IGRAPH_TO_DIRECTED_RANDOM: |
374 | 0 | case IGRAPH_TO_DIRECTED_ACYCLIC: |
375 | 0 | { |
376 | 0 | igraph_t newgraph; |
377 | 0 | igraph_vector_int_t edges; |
378 | 0 | igraph_int_t size = no_of_edges * 2; |
379 | |
|
380 | 0 | IGRAPH_VECTOR_INT_INIT_FINALLY(&edges, size); |
381 | 0 | IGRAPH_CHECK(igraph_get_edgelist(graph, &edges, 0)); |
382 | | |
383 | 0 | if (mode == IGRAPH_TO_DIRECTED_RANDOM) { |
384 | 0 | for (igraph_int_t i=0; i < no_of_edges; ++i) { |
385 | 0 | if (RNG_INTEGER(0,1)) { |
386 | 0 | igraph_int_t temp = VECTOR(edges)[2*i]; |
387 | 0 | VECTOR(edges)[2*i] = VECTOR(edges)[2*i+1]; |
388 | 0 | VECTOR(edges)[2*i+1] = temp; |
389 | 0 | } |
390 | 0 | } |
391 | 0 | } else if (mode == IGRAPH_TO_DIRECTED_ACYCLIC) { |
392 | | /* Currently, the endpoints of undirected edges are ordered in the |
393 | | internal graph datastructure, i.e. it is always true that from < to. |
394 | | However, it is not guaranteed that this will not be changed in |
395 | | the future, and this ordering should not be relied on outside of |
396 | | the implementation of the minimal API in type_indexededgelist.c. |
397 | | |
398 | | Therefore, we order the edge endpoints anyway in the following loop: */ |
399 | 0 | for (igraph_int_t i=0; i < no_of_edges; ++i) { |
400 | 0 | if (VECTOR(edges)[2*i] > VECTOR(edges)[2*i+1]) { |
401 | 0 | igraph_int_t temp = VECTOR(edges)[2*i]; |
402 | 0 | VECTOR(edges)[2*i] = VECTOR(edges)[2*i+1]; |
403 | 0 | VECTOR(edges)[2*i+1] = temp; |
404 | 0 | } |
405 | 0 | } |
406 | 0 | } |
407 | |
|
408 | 0 | IGRAPH_CHECK(igraph_create(&newgraph, &edges, |
409 | 0 | no_of_nodes, |
410 | 0 | IGRAPH_DIRECTED)); |
411 | 0 | IGRAPH_FINALLY(igraph_destroy, &newgraph); |
412 | 0 | IGRAPH_CHECK(igraph_i_attribute_copy(&newgraph, graph, true, true, true)); |
413 | 0 | igraph_vector_int_destroy(&edges); |
414 | 0 | IGRAPH_FINALLY_CLEAN(2); |
415 | |
|
416 | 0 | igraph_destroy(graph); |
417 | 0 | *graph = newgraph; |
418 | |
|
419 | 0 | break; |
420 | 0 | } |
421 | 0 | case IGRAPH_TO_DIRECTED_MUTUAL: |
422 | 0 | { |
423 | 0 | igraph_t newgraph; |
424 | 0 | igraph_vector_int_t edges; |
425 | 0 | igraph_vector_int_t index; |
426 | 0 | igraph_int_t size; |
427 | |
|
428 | 0 | IGRAPH_SAFE_MULT(no_of_edges, 4, &size); |
429 | 0 | IGRAPH_VECTOR_INT_INIT_FINALLY(&edges, 0); |
430 | 0 | IGRAPH_CHECK(igraph_vector_int_reserve(&edges, size)); |
431 | 0 | IGRAPH_CHECK(igraph_get_edgelist(graph, &edges, 0)); |
432 | 0 | IGRAPH_CHECK(igraph_vector_int_resize(&edges, size)); |
433 | 0 | IGRAPH_VECTOR_INT_INIT_FINALLY(&index, no_of_edges * 2); |
434 | 0 | for (igraph_int_t i = 0; i < no_of_edges; i++) { |
435 | 0 | VECTOR(edges)[no_of_edges * 2 + i * 2] = VECTOR(edges)[i * 2 + 1]; |
436 | 0 | VECTOR(edges)[no_of_edges * 2 + i * 2 + 1] = VECTOR(edges)[i * 2]; |
437 | 0 | VECTOR(index)[i] = VECTOR(index)[no_of_edges + i] = i; |
438 | 0 | } |
439 | |
|
440 | 0 | IGRAPH_CHECK(igraph_create(&newgraph, &edges, |
441 | 0 | no_of_nodes, |
442 | 0 | IGRAPH_DIRECTED)); |
443 | 0 | IGRAPH_FINALLY(igraph_destroy, &newgraph); |
444 | 0 | IGRAPH_CHECK(igraph_i_attribute_copy(&newgraph, graph, true, true, /* edges= */ false)); |
445 | 0 | IGRAPH_CHECK(igraph_i_attribute_permute_edges(graph, &newgraph, &index)); |
446 | | |
447 | 0 | igraph_vector_int_destroy(&index); |
448 | 0 | igraph_vector_int_destroy(&edges); |
449 | 0 | IGRAPH_FINALLY_CLEAN(3); |
450 | |
|
451 | 0 | igraph_destroy(graph); |
452 | 0 | *graph = newgraph; |
453 | |
|
454 | 0 | break; |
455 | 0 | } |
456 | 0 | default: |
457 | 0 | IGRAPH_ERROR("Cannot direct graph, invalid mode.", IGRAPH_EINVAL); |
458 | 0 | } |
459 | | |
460 | 0 | return IGRAPH_SUCCESS; |
461 | 0 | } |
462 | | |
463 | | /** |
464 | | * \function igraph_to_undirected |
465 | | * \brief Convert a directed graph to an undirected one. |
466 | | * |
467 | | * </para><para> |
468 | | * If the supplied graph is undirected, this function does nothing. |
469 | | * |
470 | | * \param graph The graph object to convert. |
471 | | * \param mode Constant, specifies the details of how exactly the |
472 | | * conversion is done. Possible values: \c |
473 | | * IGRAPH_TO_UNDIRECTED_EACH: the number of edges remains |
474 | | * constant, an undirected edge is created for each directed |
475 | | * one, this version might create graphs with multiple edges; |
476 | | * \c IGRAPH_TO_UNDIRECTED_COLLAPSE: one undirected edge will |
477 | | * be created for each pair of vertices that are connected |
478 | | * with at least one directed edge, no multiple edges will be |
479 | | * created. \c IGRAPH_TO_UNDIRECTED_MUTUAL creates an undirected |
480 | | * edge for each pair of mutual edges in the directed graph. |
481 | | * Non-mutual edges are lost; loop edges are kept unconditionally. |
482 | | * This mode might create multiple edges. |
483 | | * \param edge_comb What to do with the edge attributes. See the igraph |
484 | | * manual section about attributes for details. \c NULL means that |
485 | | * the edge attributes are lost during the conversion, \em except |
486 | | * when \c mode is \c IGRAPH_TO_UNDIRECTED_EACH, in which case the |
487 | | * edge attributes are kept intact. |
488 | | * \return Error code. |
489 | | * |
490 | | * Time complexity: O(|V|+|E|), the number of vertices plus the number |
491 | | * of edges. |
492 | | * |
493 | | * \example examples/simple/igraph_to_undirected.c |
494 | | */ |
495 | | |
496 | | igraph_error_t igraph_to_undirected(igraph_t *graph, |
497 | | igraph_to_undirected_t mode, |
498 | 3.23k | const igraph_attribute_combination_t *edge_comb) { |
499 | | |
500 | 3.23k | igraph_int_t no_of_nodes = igraph_vcount(graph); |
501 | 3.23k | igraph_int_t no_of_edges = igraph_ecount(graph); |
502 | 3.23k | igraph_vector_int_t edges; |
503 | 3.23k | igraph_t newgraph; |
504 | 3.23k | igraph_bool_t attr = edge_comb && igraph_has_attribute_table(); |
505 | | |
506 | 3.23k | if (mode != IGRAPH_TO_UNDIRECTED_EACH && |
507 | 3.23k | mode != IGRAPH_TO_UNDIRECTED_COLLAPSE && |
508 | 0 | mode != IGRAPH_TO_UNDIRECTED_MUTUAL) { |
509 | 0 | IGRAPH_ERROR("Cannot undirect graph, invalid mode", IGRAPH_EINVAL); |
510 | 0 | } |
511 | | |
512 | 3.23k | if (!igraph_is_directed(graph)) { |
513 | 0 | return IGRAPH_SUCCESS; |
514 | 0 | } |
515 | | |
516 | 3.23k | IGRAPH_VECTOR_INT_INIT_FINALLY(&edges, 0); |
517 | | |
518 | 3.23k | if (mode == IGRAPH_TO_UNDIRECTED_EACH) { |
519 | 0 | igraph_es_t es; |
520 | 0 | igraph_eit_t eit; |
521 | |
|
522 | 0 | IGRAPH_CHECK(igraph_vector_int_reserve(&edges, no_of_edges * 2)); |
523 | 0 | IGRAPH_CHECK(igraph_es_all(&es, IGRAPH_EDGEORDER_ID)); |
524 | 0 | IGRAPH_FINALLY(igraph_es_destroy, &es); |
525 | 0 | IGRAPH_CHECK(igraph_eit_create(graph, es, &eit)); |
526 | 0 | IGRAPH_FINALLY(igraph_eit_destroy, &eit); |
527 | |
|
528 | 0 | while (!IGRAPH_EIT_END(eit)) { |
529 | 0 | igraph_int_t edge = IGRAPH_EIT_GET(eit); |
530 | 0 | IGRAPH_CHECK(igraph_vector_int_push_back(&edges, IGRAPH_FROM(graph, edge))); |
531 | 0 | IGRAPH_CHECK(igraph_vector_int_push_back(&edges, IGRAPH_TO(graph, edge))); |
532 | 0 | IGRAPH_EIT_NEXT(eit); |
533 | 0 | } |
534 | | |
535 | 0 | igraph_eit_destroy(&eit); |
536 | 0 | igraph_es_destroy(&es); |
537 | 0 | IGRAPH_FINALLY_CLEAN(2); |
538 | |
|
539 | 0 | IGRAPH_CHECK(igraph_create(&newgraph, &edges, |
540 | 0 | no_of_nodes, |
541 | 0 | IGRAPH_UNDIRECTED)); |
542 | 0 | IGRAPH_FINALLY(igraph_destroy, &newgraph); |
543 | 0 | igraph_vector_int_destroy(&edges); |
544 | 0 | IGRAPH_CHECK(igraph_i_attribute_copy(&newgraph, graph, true, true, true)); |
545 | 0 | IGRAPH_FINALLY_CLEAN(2); |
546 | 0 | igraph_destroy(graph); |
547 | 0 | *graph = newgraph; |
548 | |
|
549 | 3.23k | } else if (mode == IGRAPH_TO_UNDIRECTED_COLLAPSE) { |
550 | 3.23k | igraph_vector_int_t inadj, outadj; |
551 | 3.23k | igraph_vector_int_t mergeinto; |
552 | 3.23k | igraph_int_t actedge = 0; |
553 | | |
554 | 3.23k | if (attr) { |
555 | 0 | IGRAPH_VECTOR_INT_INIT_FINALLY(&mergeinto, no_of_edges); |
556 | 0 | } |
557 | | |
558 | 3.23k | IGRAPH_CHECK(igraph_vector_int_reserve(&edges, no_of_edges * 2)); |
559 | 3.23k | IGRAPH_VECTOR_INT_INIT_FINALLY(&inadj, 0); |
560 | 3.23k | IGRAPH_VECTOR_INT_INIT_FINALLY(&outadj, 0); |
561 | | |
562 | 157k | for (igraph_int_t i = 0; i < no_of_nodes; i++) { |
563 | 154k | igraph_int_t n_out, n_in; |
564 | 154k | igraph_int_t p1 = -1, p2 = -1; |
565 | 154k | igraph_int_t e1 = 0, e2 = 0, n1 = 0, n2 = 0, last; |
566 | 154k | IGRAPH_CHECK(igraph_incident(graph, &outadj, i, IGRAPH_OUT, IGRAPH_LOOPS)); |
567 | 154k | IGRAPH_CHECK(igraph_incident(graph, &inadj, i, IGRAPH_IN, IGRAPH_LOOPS)); |
568 | 154k | n_out = igraph_vector_int_size(&outadj); |
569 | 154k | n_in = igraph_vector_int_size(&inadj); |
570 | | |
571 | 186k | #define STEPOUT() if ( (++p1) < n_out) { \ |
572 | 48.7k | e1 = VECTOR(outadj)[p1]; \ |
573 | 48.7k | n1 = IGRAPH_TO(graph, e1); \ |
574 | 48.7k | } |
575 | 187k | #define STEPIN() if ( (++p2) < n_in) { \ |
576 | 49.1k | e2 = VECTOR(inadj )[p2]; \ |
577 | 49.1k | n2 = IGRAPH_FROM(graph, e2); \ |
578 | 49.1k | } |
579 | 154k | #define ADD_NEW_EDGE() { \ |
580 | 62.3k | IGRAPH_CHECK(igraph_vector_int_push_back(&edges, i)); \ |
581 | 62.3k | IGRAPH_CHECK(igraph_vector_int_push_back(&edges, last)); \ |
582 | 62.3k | } |
583 | 154k | #define MERGE_INTO_CURRENT_EDGE(which) { \ |
584 | 65.2k | if (attr) { \ |
585 | 0 | VECTOR(mergeinto)[which] = actedge; \ |
586 | 0 | } \ |
587 | 65.2k | } |
588 | | |
589 | 154k | STEPOUT(); |
590 | 154k | STEPIN(); |
591 | | |
592 | 172k | while (p1 < n_out && n1 <= i && p2 < n_in && n2 <= i) { |
593 | 17.8k | last = (n1 <= n2) ? n1 : n2; |
594 | 17.8k | ADD_NEW_EDGE(); |
595 | 28.0k | while (p1 < n_out && last == n1) { |
596 | 10.1k | MERGE_INTO_CURRENT_EDGE(e1); |
597 | 10.1k | STEPOUT(); |
598 | 10.1k | } |
599 | 28.3k | while (p2 < n_in && last == n2) { |
600 | 10.5k | MERGE_INTO_CURRENT_EDGE(e2); |
601 | 10.5k | STEPIN(); |
602 | 10.5k | } |
603 | 17.8k | actedge++; |
604 | 17.8k | } |
605 | | |
606 | 176k | while (p1 < n_out && n1 <= i) { |
607 | 21.9k | last = n1; |
608 | 21.9k | ADD_NEW_EDGE(); |
609 | 43.9k | while (p1 < n_out && last == n1) { |
610 | 21.9k | MERGE_INTO_CURRENT_EDGE(e1); |
611 | 21.9k | STEPOUT(); |
612 | 21.9k | } |
613 | 21.9k | actedge++; |
614 | 21.9k | } |
615 | | |
616 | 176k | while (p2 < n_in && n2 <= i) { |
617 | 22.5k | last = n2; |
618 | 22.5k | ADD_NEW_EDGE(); |
619 | 45.0k | while (p2 < n_in && last == n2) { |
620 | 22.5k | MERGE_INTO_CURRENT_EDGE(e2); |
621 | 22.5k | STEPIN(); |
622 | 22.5k | } |
623 | 22.5k | actedge++; |
624 | 22.5k | } |
625 | 154k | } |
626 | | |
627 | 3.23k | #undef MERGE_INTO_CURRENT_EDGE |
628 | 3.23k | #undef ADD_NEW_EDGE |
629 | 3.23k | #undef STEPOUT |
630 | 3.23k | #undef STEPIN |
631 | | |
632 | 3.23k | igraph_vector_int_destroy(&outadj); |
633 | 3.23k | igraph_vector_int_destroy(&inadj); |
634 | 3.23k | IGRAPH_FINALLY_CLEAN(2); |
635 | | |
636 | 3.23k | IGRAPH_CHECK(igraph_create(&newgraph, &edges, |
637 | 3.23k | no_of_nodes, |
638 | 3.23k | IGRAPH_UNDIRECTED)); |
639 | 3.23k | IGRAPH_FINALLY(igraph_destroy, &newgraph); |
640 | 3.23k | igraph_vector_int_destroy(&edges); |
641 | 3.23k | IGRAPH_CHECK(igraph_i_attribute_copy(&newgraph, graph, true, true, /* edges= */ false)); |
642 | | |
643 | 3.23k | if (attr) { |
644 | 0 | igraph_fixed_vectorlist_t vl; |
645 | 0 | IGRAPH_CHECK(igraph_fixed_vectorlist_convert(&vl, &mergeinto, actedge)); |
646 | 0 | IGRAPH_FINALLY(igraph_fixed_vectorlist_destroy, &vl); |
647 | |
|
648 | 0 | IGRAPH_CHECK(igraph_i_attribute_combine_edges(graph, &newgraph, &vl.vecs, edge_comb)); |
649 | | |
650 | 0 | igraph_fixed_vectorlist_destroy(&vl); |
651 | 0 | IGRAPH_FINALLY_CLEAN(1); |
652 | 0 | } |
653 | | |
654 | 3.23k | IGRAPH_FINALLY_CLEAN(2); |
655 | 3.23k | igraph_destroy(graph); |
656 | 3.23k | *graph = newgraph; |
657 | | |
658 | 3.23k | if (attr) { |
659 | 0 | igraph_vector_int_destroy(&mergeinto); |
660 | 0 | IGRAPH_FINALLY_CLEAN(1); |
661 | 0 | } |
662 | 3.23k | } else if (mode == IGRAPH_TO_UNDIRECTED_MUTUAL) { |
663 | 0 | igraph_vector_int_t inadj, outadj; |
664 | 0 | igraph_vector_int_t mergeinto; |
665 | 0 | igraph_int_t actedge = 0; |
666 | |
|
667 | 0 | if (attr) { |
668 | 0 | IGRAPH_VECTOR_INT_INIT_FINALLY(&mergeinto, no_of_edges); |
669 | 0 | igraph_vector_int_fill(&mergeinto, -1); |
670 | 0 | } |
671 | | |
672 | 0 | IGRAPH_CHECK(igraph_vector_int_reserve(&edges, no_of_edges * 2)); |
673 | 0 | IGRAPH_VECTOR_INT_INIT_FINALLY(&inadj, 0); |
674 | 0 | IGRAPH_VECTOR_INT_INIT_FINALLY(&outadj, 0); |
675 | | |
676 | 0 | for (igraph_int_t i = 0; i < no_of_nodes; i++) { |
677 | 0 | igraph_int_t n_out, n_in; |
678 | 0 | igraph_int_t p1 = -1, p2 = -1; |
679 | 0 | igraph_int_t e1 = 0, e2 = 0, n1 = 0, n2 = 0; |
680 | 0 | IGRAPH_CHECK(igraph_incident(graph, &outadj, i, IGRAPH_OUT, IGRAPH_LOOPS)); |
681 | 0 | IGRAPH_CHECK(igraph_incident(graph, &inadj, i, IGRAPH_IN, IGRAPH_LOOPS)); |
682 | 0 | n_out = igraph_vector_int_size(&outadj); |
683 | 0 | n_in = igraph_vector_int_size(&inadj); |
684 | |
|
685 | 0 | #define STEPOUT() if ( (++p1) < n_out) { \ |
686 | 0 | e1 = VECTOR(outadj)[p1]; \ |
687 | 0 | n1 = IGRAPH_TO(graph, e1); \ |
688 | 0 | } |
689 | 0 | #define STEPIN() if ( (++p2) < n_in) { \ |
690 | 0 | e2 = VECTOR(inadj )[p2]; \ |
691 | 0 | n2 = IGRAPH_FROM(graph, e2); \ |
692 | 0 | } |
693 | |
|
694 | 0 | STEPOUT(); |
695 | 0 | STEPIN(); |
696 | |
|
697 | 0 | while (p1 < n_out && n1 <= i && p2 < n_in && n2 <= i) { |
698 | 0 | if (n1 == n2) { |
699 | 0 | IGRAPH_CHECK(igraph_vector_int_push_back(&edges, i)); |
700 | 0 | IGRAPH_CHECK(igraph_vector_int_push_back(&edges, n1)); |
701 | 0 | if (attr) { |
702 | 0 | VECTOR(mergeinto)[e1] = actedge; |
703 | 0 | VECTOR(mergeinto)[e2] = actedge; |
704 | 0 | actedge++; |
705 | 0 | } |
706 | 0 | STEPOUT(); |
707 | 0 | STEPIN(); |
708 | 0 | } else if (n1 < n2) { |
709 | 0 | STEPOUT(); |
710 | 0 | } else { /* n2<n1 */ |
711 | 0 | STEPIN(); |
712 | 0 | } |
713 | 0 | } |
714 | 0 | } |
715 | | |
716 | 0 | #undef STEPOUT |
717 | 0 | #undef STEPIN |
718 | | |
719 | 0 | igraph_vector_int_destroy(&outadj); |
720 | 0 | igraph_vector_int_destroy(&inadj); |
721 | 0 | IGRAPH_FINALLY_CLEAN(2); |
722 | |
|
723 | 0 | IGRAPH_CHECK(igraph_create(&newgraph, &edges, |
724 | 0 | no_of_nodes, |
725 | 0 | IGRAPH_UNDIRECTED)); |
726 | 0 | IGRAPH_FINALLY(igraph_destroy, &newgraph); |
727 | 0 | igraph_vector_int_destroy(&edges); |
728 | 0 | IGRAPH_CHECK(igraph_i_attribute_copy(&newgraph, graph, true, true, /* edges= */ false)); |
729 | | |
730 | 0 | if (attr) { |
731 | 0 | igraph_fixed_vectorlist_t vl; |
732 | 0 | IGRAPH_CHECK(igraph_fixed_vectorlist_convert(&vl, &mergeinto, actedge)); |
733 | 0 | IGRAPH_FINALLY(igraph_fixed_vectorlist_destroy, &vl); |
734 | |
|
735 | 0 | IGRAPH_CHECK(igraph_i_attribute_combine_edges(graph, &newgraph, &vl.vecs, edge_comb)); |
736 | | |
737 | 0 | igraph_fixed_vectorlist_destroy(&vl); |
738 | 0 | IGRAPH_FINALLY_CLEAN(1); |
739 | 0 | } |
740 | | |
741 | 0 | IGRAPH_FINALLY_CLEAN(2); |
742 | 0 | igraph_destroy(graph); |
743 | 0 | *graph = newgraph; |
744 | |
|
745 | 0 | if (attr) { |
746 | 0 | igraph_vector_int_destroy(&mergeinto); |
747 | 0 | IGRAPH_FINALLY_CLEAN(1); |
748 | 0 | } |
749 | 0 | } |
750 | | |
751 | 3.23k | return IGRAPH_SUCCESS; |
752 | 3.23k | } |
753 | | |
754 | 0 | #define WEIGHT_OF(eid) (weights ? VECTOR(*weights)[eid] : 1) |
755 | | |
756 | | /** |
757 | | * \function igraph_get_stochastic |
758 | | * \brief Stochastic adjacency matrix of a graph. |
759 | | * |
760 | | * Stochastic matrix of a graph. The stochastic matrix of a graph is |
761 | | * its adjacency matrix, normalized row-wise (or column-wise), such that |
762 | | * the sum of each row (or column) is one. The row-wise normalized matrix |
763 | | * is also called a \em right-stochastic and contains the transition |
764 | | * probabilities of a random walk that follows edge directions in a directed |
765 | | * graph. The column-wise normalized matrix is called \em left-stochastic and |
766 | | * is related to random walks moving against edge directions. |
767 | | * |
768 | | * </para><para> |
769 | | * When the out-degree (or in-degree) of a vertex is zero, the corresponding |
770 | | * row (or column) of the row-wise (or column-wise) normalized stochastic |
771 | | * matrix will be zero. |
772 | | * |
773 | | * \param graph The input graph. |
774 | | * \param res Pointer to an initialized matrix, the result is stored here. |
775 | | * It will be resized as needed. |
776 | | * \param column_wise If \c false, row-wise normalization is used. |
777 | | * If \c true, column-wise normalization is used. |
778 | | * \param weights An optional vector containing the weight of each edge |
779 | | * in the graph. Supply a null pointer here to make all edges have |
780 | | * the same weight of 1. |
781 | | * \return Error code. |
782 | | * |
783 | | * Time complexity: O(|V|^2), |V| is the number of vertices in the graph. |
784 | | * |
785 | | * \sa \ref igraph_get_stochastic_sparse(), the sparse version of this |
786 | | * function. |
787 | | */ |
788 | | |
789 | | igraph_error_t igraph_get_stochastic( |
790 | | const igraph_t *graph, igraph_matrix_t *res, igraph_bool_t column_wise, |
791 | | const igraph_vector_t *weights |
792 | 0 | ) { |
793 | 0 | igraph_int_t no_of_nodes = igraph_vcount(graph); |
794 | 0 | igraph_int_t no_of_edges = igraph_ecount(graph); |
795 | 0 | igraph_bool_t directed = igraph_is_directed(graph); |
796 | 0 | igraph_int_t from, to; |
797 | 0 | igraph_vector_t sums; |
798 | 0 | igraph_real_t sum; |
799 | |
|
800 | 0 | IGRAPH_CHECK(igraph_matrix_resize(res, no_of_nodes, no_of_nodes)); |
801 | 0 | igraph_matrix_null(res); |
802 | |
|
803 | 0 | IGRAPH_VECTOR_INIT_FINALLY(&sums, no_of_nodes); |
804 | | |
805 | 0 | if (directed) { |
806 | | /* Directed */ |
807 | |
|
808 | 0 | IGRAPH_CHECK(igraph_strength( |
809 | 0 | graph, &sums, igraph_vss_all(), |
810 | 0 | column_wise ? IGRAPH_IN : IGRAPH_OUT, |
811 | 0 | IGRAPH_LOOPS, weights |
812 | 0 | )); |
813 | | |
814 | 0 | for (igraph_int_t i = 0; i < no_of_edges; i++) { |
815 | 0 | from = IGRAPH_FROM(graph, i); |
816 | 0 | to = IGRAPH_TO(graph, i); |
817 | 0 | sum = VECTOR(sums)[column_wise ? to : from]; |
818 | 0 | MATRIX(*res, from, to) += WEIGHT_OF(i) / sum; |
819 | 0 | } |
820 | 0 | } else { |
821 | | /* Undirected */ |
822 | |
|
823 | 0 | IGRAPH_CHECK(igraph_strength( |
824 | 0 | graph, &sums, igraph_vss_all(), IGRAPH_ALL, |
825 | 0 | IGRAPH_LOOPS, weights |
826 | 0 | )); |
827 | | |
828 | 0 | for (igraph_int_t i = 0; i < no_of_edges; i++) { |
829 | 0 | from = IGRAPH_FROM(graph, i); |
830 | 0 | to = IGRAPH_TO(graph, i); |
831 | 0 | MATRIX(*res, from, to) += WEIGHT_OF(i) / VECTOR(sums)[column_wise ? to : from]; |
832 | 0 | MATRIX(*res, to, from) += WEIGHT_OF(i) / VECTOR(sums)[column_wise ? from: to]; |
833 | 0 | } |
834 | 0 | } |
835 | | |
836 | 0 | igraph_vector_destroy(&sums); |
837 | 0 | IGRAPH_FINALLY_CLEAN(1); |
838 | |
|
839 | 0 | return IGRAPH_SUCCESS; |
840 | 0 | } |
841 | | |
842 | | #undef WEIGHT_OF |
843 | | |
844 | | /** |
845 | | * \function igraph_get_stochastic_sparse |
846 | | * \brief The stochastic adjacency matrix of a graph. |
847 | | * |
848 | | * Stochastic matrix of a graph in sparse format. See \ref igraph_get_stochastic() |
849 | | * for the information on stochastic matrices. |
850 | | * |
851 | | * \param graph The input graph. |
852 | | * \param res Pointer to an \em initialized sparse matrix, the |
853 | | * result is stored here. The matrix will be resized as needed. |
854 | | * \param column_wise If \c false, row-wise normalization is used. |
855 | | * If \c true, column-wise normalization is used. |
856 | | * \param weights An optional vector containing the weight of each edge |
857 | | * in the graph. Supply a null pointer here to make all edges have |
858 | | * the same weight of 1. |
859 | | * \return Error code. |
860 | | * |
861 | | * Time complexity: O(|V|+|E|), linear in the number of vertices and |
862 | | * edges. |
863 | | * |
864 | | * \sa \ref igraph_get_stochastic(), the dense version of this function. |
865 | | */ |
866 | | |
867 | | igraph_error_t igraph_get_stochastic_sparse( |
868 | | const igraph_t *graph, igraph_sparsemat_t *res, igraph_bool_t column_wise, |
869 | | const igraph_vector_t *weights |
870 | 0 | ) { |
871 | 0 | IGRAPH_CHECK(igraph_get_adjacency_sparse(graph, res, IGRAPH_GET_ADJACENCY_BOTH, weights, IGRAPH_LOOPS_TWICE)); |
872 | | |
873 | 0 | if (column_wise) { |
874 | 0 | IGRAPH_CHECK(igraph_sparsemat_normalize_cols(res, /* allow_zeros = */ true)); |
875 | 0 | } else { |
876 | 0 | IGRAPH_CHECK(igraph_sparsemat_normalize_rows(res, /* allow_zeros = */ true)); |
877 | 0 | } |
878 | | |
879 | 0 | return IGRAPH_SUCCESS; |
880 | 0 | } |
881 | | |
882 | | |
883 | | /** |
884 | | * \ingroup conversion |
885 | | * \function igraph_to_prufer |
886 | | * \brief Converts a tree to its Prüfer sequence. |
887 | | * |
888 | | * A Prüfer sequence is a unique sequence of integers associated |
889 | | * with a labelled tree. A tree on n >= 2 vertices can be represented by a |
890 | | * sequence of n-2 integers, each between 0 and n-1 (inclusive). |
891 | | * |
892 | | * \param graph Pointer to an initialized graph object which |
893 | | must be a tree on n >= 2 vertices. |
894 | | * \param prufer A pointer to the integer vector that should hold the Prüfer sequence; |
895 | | the vector must be initialized and will be resized to n - 2. |
896 | | * \return Error code: |
897 | | * \clist |
898 | | * \cli IGRAPH_ENOMEM |
899 | | * there is not enough memory to perform the operation. |
900 | | * \cli IGRAPH_EINVAL |
901 | | * the graph is not a tree or it is has less than vertices |
902 | | * \endclist |
903 | | * |
904 | | * \sa \ref igraph_from_prufer() |
905 | | * |
906 | | */ |
907 | 0 | igraph_error_t igraph_to_prufer(const igraph_t *graph, igraph_vector_int_t* prufer) { |
908 | | /* For generating the Prüfer sequence, we enumerate the vertices u of the tree. |
909 | | We keep track of the degrees of all vertices, treating vertices |
910 | | of degree 0 as removed. We maintain the invariant that all leafs |
911 | | that are still contained in the tree are >= u. |
912 | | If u is a leaf, we remove it and add its unique neighbor to the Prüfer |
913 | | sequence. If the removal of u turns the neighbor into a leaf which is < u, |
914 | | we repeat the procedure for the new leaf and so on. */ |
915 | 0 | igraph_int_t u; |
916 | 0 | igraph_vector_int_t degrees; |
917 | 0 | igraph_vector_int_t neighbors; |
918 | 0 | igraph_int_t prufer_index = 0; |
919 | 0 | igraph_int_t n = igraph_vcount(graph); |
920 | 0 | igraph_bool_t is_tree = false; |
921 | |
|
922 | 0 | IGRAPH_CHECK(igraph_is_tree(graph, &is_tree, NULL, IGRAPH_ALL)); |
923 | | |
924 | 0 | if (!is_tree) { |
925 | 0 | IGRAPH_ERROR("The graph must be a tree", IGRAPH_EINVAL); |
926 | 0 | } |
927 | | |
928 | 0 | if (n < 2) { |
929 | 0 | IGRAPH_ERROR("The tree must have at least 2 vertices", IGRAPH_EINVAL); |
930 | 0 | } |
931 | | |
932 | 0 | IGRAPH_CHECK(igraph_vector_int_resize(prufer, n - 2)); |
933 | 0 | IGRAPH_VECTOR_INT_INIT_FINALLY(°rees, n); |
934 | 0 | IGRAPH_VECTOR_INT_INIT_FINALLY(&neighbors, 1); |
935 | | |
936 | 0 | IGRAPH_CHECK(igraph_degree(graph, °rees, igraph_vss_all(), IGRAPH_ALL, IGRAPH_NO_LOOPS)); |
937 | | |
938 | 0 | for (u = 0; u < n; ++u) { |
939 | 0 | igraph_int_t degree = VECTOR(degrees)[u]; |
940 | 0 | igraph_int_t leaf = u; |
941 | |
|
942 | 0 | while (degree == 1 && leaf <= u) { |
943 | 0 | igraph_int_t neighbor = 0; |
944 | 0 | igraph_int_t neighbor_count = 0; |
945 | |
|
946 | 0 | VECTOR(degrees)[leaf] = 0; /* mark leaf v as deleted */ |
947 | |
|
948 | 0 | IGRAPH_CHECK(igraph_neighbors( |
949 | 0 | graph, &neighbors, leaf, IGRAPH_ALL, IGRAPH_LOOPS, IGRAPH_MULTIPLE |
950 | 0 | )); |
951 | | |
952 | | /* Find the unique remaining neighbor of the leaf */ |
953 | 0 | neighbor_count = igraph_vector_int_size(&neighbors); |
954 | 0 | for (igraph_int_t i = 0; i < neighbor_count; i++) { |
955 | 0 | neighbor = VECTOR(neighbors)[i]; |
956 | 0 | if (VECTOR(degrees)[neighbor] > 0) { |
957 | 0 | break; |
958 | 0 | } |
959 | 0 | } |
960 | | |
961 | | /* remember that we have removed the leaf */ |
962 | 0 | VECTOR(degrees)[neighbor]--; |
963 | 0 | degree = VECTOR(degrees)[neighbor]; |
964 | | |
965 | | /* Add the neighbor to the prufer sequence unless it is the last vertex |
966 | | (i.e. degree == 0) */ |
967 | 0 | if (degree > 0) { |
968 | 0 | VECTOR(*prufer)[prufer_index] = neighbor; |
969 | 0 | prufer_index++; |
970 | 0 | } |
971 | 0 | leaf = neighbor; |
972 | 0 | } |
973 | 0 | } |
974 | | |
975 | 0 | igraph_vector_int_destroy(°rees); |
976 | 0 | igraph_vector_int_destroy(&neighbors); |
977 | 0 | IGRAPH_FINALLY_CLEAN(2); |
978 | |
|
979 | 0 | return IGRAPH_SUCCESS; |
980 | 0 | } |