/src/igraph/vendor/pcg/pcg_variants.h
Line | Count | Source (jump to first uncovered line) |
1 | | /* |
2 | | * PCG Random Number Generation for C. |
3 | | * |
4 | | * Copyright 2014-2019 Melissa O'Neill <oneill@pcg-random.org>, |
5 | | * and the PCG Project contributors. |
6 | | * |
7 | | * SPDX-License-Identifier: (Apache-2.0 OR MIT) |
8 | | * |
9 | | * Licensed under the Apache License, Version 2.0 (provided in |
10 | | * LICENSE-APACHE.txt and at http://www.apache.org/licenses/LICENSE-2.0) |
11 | | * or under the MIT license (provided in LICENSE-MIT.txt and at |
12 | | * http://opensource.org/licenses/MIT), at your option. This file may not |
13 | | * be copied, modified, or distributed except according to those terms. |
14 | | * |
15 | | * Distributed on an "AS IS" BASIS, WITHOUT WARRANTY OF ANY KIND, either |
16 | | * express or implied. See your chosen license for details. |
17 | | * |
18 | | * For additional information about the PCG random number generation scheme, |
19 | | * visit http://www.pcg-random.org/. |
20 | | */ |
21 | | |
22 | | /* |
23 | | * This code is derived from the canonical C++ PCG implementation, which |
24 | | * has many additional features and is preferable if you can use C++ in |
25 | | * your project. |
26 | | * |
27 | | * Much of the derivation was performed mechanically. In particular, the |
28 | | * output functions were generated by compiling the C++ output functions |
29 | | * into LLVM bitcode and then transforming that using the LLVM C backend |
30 | | * (from https://github.com/draperlaboratory/llvm-cbe), and then |
31 | | * postprocessing and hand editing the output. |
32 | | * |
33 | | * Much of the remaining code was generated by C-preprocessor metaprogramming. |
34 | | */ |
35 | | |
36 | | #ifndef PCG_VARIANTS_H_INCLUDED |
37 | | #define PCG_VARIANTS_H_INCLUDED 1 |
38 | | |
39 | | #include <inttypes.h> |
40 | | |
41 | | #ifdef _MSC_VER |
42 | | #pragma warning(push) |
43 | | #pragma warning(disable:4146) /* "unary minus operator applied to unsigned type, result still unsigned" */ |
44 | | #endif |
45 | | |
46 | | #if __SIZEOF_INT128__ |
47 | | typedef __uint128_t pcg128_t; |
48 | | #define PCG_128BIT_CONSTANT(high,low) \ |
49 | | ((((pcg128_t)high) << 64) + low) |
50 | | #define PCG_HAS_128BIT_OPS 1 |
51 | | #endif |
52 | | |
53 | | /* Checking for !__GNUC_STDC_INLINE__ is a hack to work around a bug in the |
54 | | * Intel compiler where it defined both __GNUC_GNU_INLINE__ and __GNUC_STDC_INLINE__ |
55 | | * to 1 when using -std=gnu99. igraph is always compiled with -std=gnu99. |
56 | | * |
57 | | * Tested with icc (ICC) 2021.3.0 20210609 on Linux */ |
58 | | #if __GNUC_GNU_INLINE__ && !__GNUC_STDC_INLINE__ && !defined(__cplusplus) |
59 | | #error Nonstandard GNU inlining semantics. Compile with -std=c99 or better. |
60 | | /* We could instead use macros PCG_INLINE and PCG_EXTERN_INLINE |
61 | | but better to just reject ancient C code. */ |
62 | | #endif |
63 | | |
64 | | #if __cplusplus |
65 | | extern "C" { |
66 | | #endif |
67 | | |
68 | | /* |
69 | | * Rotate helper functions. |
70 | | */ |
71 | | |
72 | | inline uint8_t pcg_rotr_8(uint8_t value, unsigned int rot) |
73 | 0 | { |
74 | 0 | /* Unfortunately, clang is kinda pathetic when it comes to properly |
75 | 0 | * recognizing idiomatic rotate code, so for clang we actually provide |
76 | 0 | * assembler directives (enabled with PCG_USE_INLINE_ASM). Boo, hiss. |
77 | 0 | */ |
78 | 0 | #if PCG_USE_INLINE_ASM && __clang__ && (__x86_64__ || __i386__) |
79 | 0 | asm ("rorb %%cl, %0" : "=r" (value) : "0" (value), "c" (rot)); |
80 | 0 | return value; |
81 | 0 | #else |
82 | 0 | return (value >> rot) | (value << ((- rot) & 7)); |
83 | 0 | #endif |
84 | 0 | } |
85 | | |
86 | | inline uint16_t pcg_rotr_16(uint16_t value, unsigned int rot) |
87 | 0 | { |
88 | 0 | #if PCG_USE_INLINE_ASM && __clang__ && (__x86_64__ || __i386__) |
89 | 0 | asm ("rorw %%cl, %0" : "=r" (value) : "0" (value), "c" (rot)); |
90 | 0 | return value; |
91 | 0 | #else |
92 | 0 | return (value >> rot) | (value << ((- rot) & 15)); |
93 | 0 | #endif |
94 | 0 | } |
95 | | |
96 | | inline uint32_t pcg_rotr_32(uint32_t value, unsigned int rot) |
97 | 0 | { |
98 | | #if PCG_USE_INLINE_ASM && __clang__ && (__x86_64__ || __i386__) |
99 | | asm ("rorl %%cl, %0" : "=r" (value) : "0" (value), "c" (rot)); |
100 | | return value; |
101 | | #else |
102 | 0 | return (value >> rot) | (value << ((- rot) & 31)); |
103 | 0 | #endif |
104 | 0 | } |
105 | | |
106 | | inline uint64_t pcg_rotr_64(uint64_t value, unsigned int rot) |
107 | 0 | { |
108 | 0 | #if 0 && PCG_USE_INLINE_ASM && __clang__ && __x86_64__ |
109 | 0 | /* For whatever reason, clang actually *does* generate rotq by |
110 | 0 | itself, so we don't need this code. */ |
111 | 0 | asm ("rorq %%cl, %0" : "=r" (value) : "0" (value), "c" (rot)); |
112 | 0 | return value; |
113 | 0 | #else |
114 | 0 | return (value >> rot) | (value << ((- rot) & 63)); |
115 | 0 | #endif |
116 | 0 | } |
117 | | |
118 | | #if PCG_HAS_128BIT_OPS |
119 | | inline pcg128_t pcg_rotr_128(pcg128_t value, unsigned int rot) |
120 | 0 | { |
121 | 0 | return (value >> rot) | (value << ((- rot) & 127)); |
122 | 0 | } |
123 | | #endif |
124 | | |
125 | | /* |
126 | | * Output functions. These are the core of the PCG generation scheme. |
127 | | */ |
128 | | |
129 | | /* XSH RS */ |
130 | | |
131 | | inline uint8_t pcg_output_xsh_rs_16_8(uint16_t state) |
132 | 0 | { |
133 | 0 | return (uint8_t)(((state >> 7u) ^ state) >> ((state >> 14u) + 3u)); |
134 | 0 | } |
135 | | |
136 | | inline uint16_t pcg_output_xsh_rs_32_16(uint32_t state) |
137 | 0 | { |
138 | 0 | return (uint16_t)(((state >> 11u) ^ state) >> ((state >> 30u) + 11u)); |
139 | 0 | } |
140 | | |
141 | | inline uint32_t pcg_output_xsh_rs_64_32(uint64_t state) |
142 | 0 | { |
143 | 0 |
|
144 | 0 | return (uint32_t)(((state >> 22u) ^ state) >> ((state >> 61u) + 22u)); |
145 | 0 | } |
146 | | |
147 | | #if PCG_HAS_128BIT_OPS |
148 | | inline uint64_t pcg_output_xsh_rs_128_64(pcg128_t state) |
149 | 0 | { |
150 | 0 | return (uint64_t)(((state >> 43u) ^ state) >> ((state >> 124u) + 45u)); |
151 | 0 | } |
152 | | #endif |
153 | | |
154 | | /* XSH RR */ |
155 | | |
156 | | inline uint8_t pcg_output_xsh_rr_16_8(uint16_t state) |
157 | 0 | { |
158 | 0 | return pcg_rotr_8(((state >> 5u) ^ state) >> 5u, state >> 13u); |
159 | 0 | } |
160 | | |
161 | | inline uint16_t pcg_output_xsh_rr_32_16(uint32_t state) |
162 | 0 | { |
163 | 0 | return pcg_rotr_16(((state >> 10u) ^ state) >> 12u, state >> 28u); |
164 | 0 | } |
165 | | |
166 | | inline uint32_t pcg_output_xsh_rr_64_32(uint64_t state) |
167 | 0 | { |
168 | 0 | return pcg_rotr_32(((state >> 18u) ^ state) >> 27u, state >> 59u); |
169 | 0 | } |
170 | | |
171 | | #if PCG_HAS_128BIT_OPS |
172 | | inline uint64_t pcg_output_xsh_rr_128_64(pcg128_t state) |
173 | 0 | { |
174 | 0 | return pcg_rotr_64(((state >> 35u) ^ state) >> 58u, state >> 122u); |
175 | 0 | } |
176 | | #endif |
177 | | |
178 | | /* RXS M XS */ |
179 | | |
180 | | inline uint8_t pcg_output_rxs_m_xs_8_8(uint8_t state) |
181 | 0 | { |
182 | 0 | uint8_t word = ((state >> ((state >> 6u) + 2u)) ^ state) * 217u; |
183 | 0 | return (word >> 6u) ^ word; |
184 | 0 | } |
185 | | |
186 | | inline uint16_t pcg_output_rxs_m_xs_16_16(uint16_t state) |
187 | 0 | { |
188 | 0 | uint16_t word = ((state >> ((state >> 13u) + 3u)) ^ state) * 62169u; |
189 | 0 | return (word >> 11u) ^ word; |
190 | 0 | } |
191 | | |
192 | | inline uint32_t pcg_output_rxs_m_xs_32_32(uint32_t state) |
193 | 0 | { |
194 | 0 | uint32_t word = ((state >> ((state >> 28u) + 4u)) ^ state) * 277803737u; |
195 | 0 | return (word >> 22u) ^ word; |
196 | 0 | } |
197 | | |
198 | | inline uint64_t pcg_output_rxs_m_xs_64_64(uint64_t state) |
199 | 0 | { |
200 | 0 | uint64_t word = ((state >> ((state >> 59u) + 5u)) ^ state) |
201 | 0 | * 12605985483714917081ull; |
202 | 0 | return (word >> 43u) ^ word; |
203 | 0 | } |
204 | | |
205 | | #if PCG_HAS_128BIT_OPS |
206 | | inline pcg128_t pcg_output_rxs_m_xs_128_128(pcg128_t state) |
207 | 0 | { |
208 | 0 | pcg128_t word = ((state >> ((state >> 122u) + 6u)) ^ state) |
209 | 0 | * (PCG_128BIT_CONSTANT(17766728186571221404ULL, |
210 | 0 | 12605985483714917081ULL)); |
211 | 0 | /* 327738287884841127335028083622016905945 */ |
212 | 0 | return (word >> 86u) ^ word; |
213 | 0 | } |
214 | | #endif |
215 | | |
216 | | /* RXS M */ |
217 | | |
218 | | inline uint8_t pcg_output_rxs_m_16_8(uint16_t state) |
219 | 0 | { |
220 | 0 | return (((state >> ((state >> 13u) + 3u)) ^ state) * 62169u) >> 8u; |
221 | 0 | } |
222 | | |
223 | | inline uint16_t pcg_output_rxs_m_32_16(uint32_t state) |
224 | 0 | { |
225 | 0 | return (((state >> ((state >> 28u) + 4u)) ^ state) * 277803737u) >> 16u; |
226 | 0 | } |
227 | | |
228 | | inline uint32_t pcg_output_rxs_m_64_32(uint64_t state) |
229 | 0 | { |
230 | 0 | return (((state >> ((state >> 59u) + 5u)) ^ state) |
231 | 0 | * 12605985483714917081ull) >> 32u; |
232 | 0 | } |
233 | | |
234 | | #if PCG_HAS_128BIT_OPS |
235 | | inline uint64_t pcg_output_rxs_m_128_64(pcg128_t state) |
236 | 0 | { |
237 | 0 | return (((state >> ((state >> 122u) + 6u)) ^ state) |
238 | 0 | * (PCG_128BIT_CONSTANT(17766728186571221404ULL, |
239 | 0 | 12605985483714917081ULL))) >> 64u; |
240 | 0 | /* 327738287884841127335028083622016905945 */ |
241 | 0 | } |
242 | | #endif |
243 | | |
244 | | /* XSL RR (only defined for >= 64 bits) */ |
245 | | |
246 | | inline uint32_t pcg_output_xsl_rr_64_32(uint64_t state) |
247 | 0 | { |
248 | 0 | return pcg_rotr_32(((uint32_t)(state >> 32u)) ^ (uint32_t)state, |
249 | 0 | state >> 59u); |
250 | 0 | } |
251 | | |
252 | | #if PCG_HAS_128BIT_OPS |
253 | | inline uint64_t pcg_output_xsl_rr_128_64(pcg128_t state) |
254 | 0 | { |
255 | 0 | return pcg_rotr_64(((uint64_t)(state >> 64u)) ^ (uint64_t)state, |
256 | 0 | state >> 122u); |
257 | 0 | } |
258 | | #endif |
259 | | |
260 | | /* XSL RR RR (only defined for >= 64 bits) */ |
261 | | |
262 | | inline uint64_t pcg_output_xsl_rr_rr_64_64(uint64_t state) |
263 | 0 | { |
264 | 0 | uint32_t rot1 = (uint32_t)(state >> 59u); |
265 | 0 | uint32_t high = (uint32_t)(state >> 32u); |
266 | 0 | uint32_t low = (uint32_t)state; |
267 | 0 | uint32_t xored = high ^ low; |
268 | 0 | uint32_t newlow = pcg_rotr_32(xored, rot1); |
269 | 0 | uint32_t newhigh = pcg_rotr_32(high, newlow & 31u); |
270 | 0 | return (((uint64_t)newhigh) << 32u) | newlow; |
271 | 0 | } |
272 | | |
273 | | #if PCG_HAS_128BIT_OPS |
274 | | inline pcg128_t pcg_output_xsl_rr_rr_128_128(pcg128_t state) |
275 | 0 | { |
276 | 0 | uint32_t rot1 = (uint32_t)(state >> 122u); |
277 | 0 | uint64_t high = (uint64_t)(state >> 64u); |
278 | 0 | uint64_t low = (uint64_t)state; |
279 | 0 | uint64_t xored = high ^ low; |
280 | 0 | uint64_t newlow = pcg_rotr_64(xored, rot1); |
281 | 0 | uint64_t newhigh = pcg_rotr_64(high, newlow & 63u); |
282 | 0 | return (((pcg128_t)newhigh) << 64u) | newlow; |
283 | 0 | } |
284 | | #endif |
285 | | |
286 | | #define PCG_DEFAULT_MULTIPLIER_8 141U |
287 | | #define PCG_DEFAULT_MULTIPLIER_16 12829U |
288 | | #define PCG_DEFAULT_MULTIPLIER_32 747796405U |
289 | 0 | #define PCG_DEFAULT_MULTIPLIER_64 6364136223846793005ULL |
290 | | |
291 | | #define PCG_DEFAULT_INCREMENT_8 77U |
292 | | #define PCG_DEFAULT_INCREMENT_16 47989U |
293 | | #define PCG_DEFAULT_INCREMENT_32 2891336453U |
294 | | #define PCG_DEFAULT_INCREMENT_64 1442695040888963407ULL |
295 | | |
296 | | #if PCG_HAS_128BIT_OPS |
297 | | #define PCG_DEFAULT_MULTIPLIER_128 \ |
298 | | PCG_128BIT_CONSTANT(2549297995355413924ULL,4865540595714422341ULL) |
299 | | #define PCG_DEFAULT_INCREMENT_128 \ |
300 | | PCG_128BIT_CONSTANT(6364136223846793005ULL,1442695040888963407ULL) |
301 | | #endif |
302 | | |
303 | | /* |
304 | | * Static initialization constants (if you can't call srandom for some |
305 | | * bizarre reason). |
306 | | */ |
307 | | |
308 | | #define PCG_STATE_ONESEQ_8_INITIALIZER { 0xd7U } |
309 | | #define PCG_STATE_ONESEQ_16_INITIALIZER { 0x20dfU } |
310 | | #define PCG_STATE_ONESEQ_32_INITIALIZER { 0x46b56677U } |
311 | | #define PCG_STATE_ONESEQ_64_INITIALIZER { 0x4d595df4d0f33173ULL } |
312 | | #if PCG_HAS_128BIT_OPS |
313 | | #define PCG_STATE_ONESEQ_128_INITIALIZER \ |
314 | | { PCG_128BIT_CONSTANT(0xb8dc10e158a92392ULL, 0x98046df007ec0a53ULL) } |
315 | | #endif |
316 | | |
317 | | #define PCG_STATE_UNIQUE_8_INITIALIZER PCG_STATE_ONESEQ_8_INITIALIZER |
318 | | #define PCG_STATE_UNIQUE_16_INITIALIZER PCG_STATE_ONESEQ_16_INITIALIZER |
319 | | #define PCG_STATE_UNIQUE_32_INITIALIZER PCG_STATE_ONESEQ_32_INITIALIZER |
320 | | #define PCG_STATE_UNIQUE_64_INITIALIZER PCG_STATE_ONESEQ_64_INITIALIZER |
321 | | #if PCG_HAS_128BIT_OPS |
322 | | #define PCG_STATE_UNIQUE_128_INITIALIZER PCG_STATE_ONESEQ_128_INITIALIZER |
323 | | #endif |
324 | | |
325 | | #define PCG_STATE_MCG_8_INITIALIZER { 0xe5U } |
326 | | #define PCG_STATE_MCG_16_INITIALIZER { 0xa5e5U } |
327 | | #define PCG_STATE_MCG_32_INITIALIZER { 0xd15ea5e5U } |
328 | | #define PCG_STATE_MCG_64_INITIALIZER { 0xcafef00dd15ea5e5ULL } |
329 | | #if PCG_HAS_128BIT_OPS |
330 | | #define PCG_STATE_MCG_128_INITIALIZER \ |
331 | | { PCG_128BIT_CONSTANT(0x0000000000000000ULL, 0xcafef00dd15ea5e5ULL) } |
332 | | #endif |
333 | | |
334 | | #define PCG_STATE_SETSEQ_8_INITIALIZER { 0x9bU, 0xdbU } |
335 | | #define PCG_STATE_SETSEQ_16_INITIALIZER { 0xe39bU, 0x5bdbU } |
336 | | #define PCG_STATE_SETSEQ_32_INITIALIZER { 0xec02d89bU, 0x94b95bdbU } |
337 | | #define PCG_STATE_SETSEQ_64_INITIALIZER \ |
338 | | { 0x853c49e6748fea9bULL, 0xda3e39cb94b95bdbULL } |
339 | | #if PCG_HAS_128BIT_OPS |
340 | | #define PCG_STATE_SETSEQ_128_INITIALIZER \ |
341 | | { PCG_128BIT_CONSTANT(0x979c9a98d8462005ULL, 0x7d3e9cb6cfe0549bULL), \ |
342 | | PCG_128BIT_CONSTANT(0x0000000000000001ULL, 0xda3e39cb94b95bdbULL) } |
343 | | #endif |
344 | | |
345 | | /* Representations for the oneseq, mcg, and unique variants */ |
346 | | |
347 | | struct pcg_state_8 { |
348 | | uint8_t state; |
349 | | }; |
350 | | |
351 | | struct pcg_state_16 { |
352 | | uint16_t state; |
353 | | }; |
354 | | |
355 | | struct pcg_state_32 { |
356 | | uint32_t state; |
357 | | }; |
358 | | |
359 | | struct pcg_state_64 { |
360 | | uint64_t state; |
361 | | }; |
362 | | |
363 | | #if PCG_HAS_128BIT_OPS |
364 | | struct pcg_state_128 { |
365 | | pcg128_t state; |
366 | | }; |
367 | | #endif |
368 | | |
369 | | /* Representations setseq variants */ |
370 | | |
371 | | struct pcg_state_setseq_8 { |
372 | | uint8_t state; |
373 | | uint8_t inc; |
374 | | }; |
375 | | |
376 | | struct pcg_state_setseq_16 { |
377 | | uint16_t state; |
378 | | uint16_t inc; |
379 | | }; |
380 | | |
381 | | struct pcg_state_setseq_32 { |
382 | | uint32_t state; |
383 | | uint32_t inc; |
384 | | }; |
385 | | |
386 | | struct pcg_state_setseq_64 { |
387 | | uint64_t state; |
388 | | uint64_t inc; |
389 | | }; |
390 | | |
391 | | #if PCG_HAS_128BIT_OPS |
392 | | struct pcg_state_setseq_128 { |
393 | | pcg128_t state; |
394 | | pcg128_t inc; |
395 | | }; |
396 | | #endif |
397 | | |
398 | | /* Multi-step advance functions (jump-ahead, jump-back) */ |
399 | | |
400 | | extern uint8_t pcg_advance_lcg_8(uint8_t state, uint8_t delta, uint8_t cur_mult, |
401 | | uint8_t cur_plus); |
402 | | extern uint16_t pcg_advance_lcg_16(uint16_t state, uint16_t delta, |
403 | | uint16_t cur_mult, uint16_t cur_plus); |
404 | | extern uint32_t pcg_advance_lcg_32(uint32_t state, uint32_t delta, |
405 | | uint32_t cur_mult, uint32_t cur_plus); |
406 | | extern uint64_t pcg_advance_lcg_64(uint64_t state, uint64_t delta, |
407 | | uint64_t cur_mult, uint64_t cur_plus); |
408 | | |
409 | | #if PCG_HAS_128BIT_OPS |
410 | | extern pcg128_t pcg_advance_lcg_128(pcg128_t state, pcg128_t delta, |
411 | | pcg128_t cur_mult, pcg128_t cur_plus); |
412 | | #endif |
413 | | |
414 | | /* Functions to advance the underlying LCG, one version for each size and |
415 | | * each style. These functions are considered semi-private. There is rarely |
416 | | * a good reason to call them directly. |
417 | | */ |
418 | | |
419 | | inline void pcg_oneseq_8_step_r(struct pcg_state_8* rng) |
420 | 0 | { |
421 | 0 | rng->state = rng->state * PCG_DEFAULT_MULTIPLIER_8 |
422 | 0 | + PCG_DEFAULT_INCREMENT_8; |
423 | 0 | } |
424 | | |
425 | | inline void pcg_oneseq_8_advance_r(struct pcg_state_8* rng, uint8_t delta) |
426 | 0 | { |
427 | 0 | rng->state = pcg_advance_lcg_8(rng->state, delta, PCG_DEFAULT_MULTIPLIER_8, |
428 | 0 | PCG_DEFAULT_INCREMENT_8); |
429 | 0 | } |
430 | | |
431 | | inline void pcg_mcg_8_step_r(struct pcg_state_8* rng) |
432 | 0 | { |
433 | 0 | rng->state = rng->state * PCG_DEFAULT_MULTIPLIER_8; |
434 | 0 | } |
435 | | |
436 | | inline void pcg_mcg_8_advance_r(struct pcg_state_8* rng, uint8_t delta) |
437 | 0 | { |
438 | 0 | rng->state |
439 | 0 | = pcg_advance_lcg_8(rng->state, delta, PCG_DEFAULT_MULTIPLIER_8, 0u); |
440 | 0 | } |
441 | | |
442 | | inline void pcg_unique_8_step_r(struct pcg_state_8* rng) |
443 | 0 | { |
444 | 0 | rng->state = rng->state * PCG_DEFAULT_MULTIPLIER_8 |
445 | 0 | + (uint8_t)(((intptr_t)rng) | 1u); |
446 | 0 | } |
447 | | |
448 | | inline void pcg_unique_8_advance_r(struct pcg_state_8* rng, uint8_t delta) |
449 | 0 | { |
450 | 0 | rng->state = pcg_advance_lcg_8(rng->state, delta, PCG_DEFAULT_MULTIPLIER_8, |
451 | 0 | (uint8_t)(((intptr_t)rng) | 1u)); |
452 | 0 | } |
453 | | |
454 | | inline void pcg_setseq_8_step_r(struct pcg_state_setseq_8* rng) |
455 | 0 | { |
456 | 0 | rng->state = rng->state * PCG_DEFAULT_MULTIPLIER_8 + rng->inc; |
457 | 0 | } |
458 | | |
459 | | inline void pcg_setseq_8_advance_r(struct pcg_state_setseq_8* rng, |
460 | | uint8_t delta) |
461 | 0 | { |
462 | 0 | rng->state = pcg_advance_lcg_8(rng->state, delta, PCG_DEFAULT_MULTIPLIER_8, |
463 | 0 | rng->inc); |
464 | 0 | } |
465 | | |
466 | | inline void pcg_oneseq_16_step_r(struct pcg_state_16* rng) |
467 | 0 | { |
468 | 0 | rng->state = rng->state * PCG_DEFAULT_MULTIPLIER_16 |
469 | 0 | + PCG_DEFAULT_INCREMENT_16; |
470 | 0 | } |
471 | | |
472 | | inline void pcg_oneseq_16_advance_r(struct pcg_state_16* rng, uint16_t delta) |
473 | 0 | { |
474 | 0 | rng->state = pcg_advance_lcg_16( |
475 | 0 | rng->state, delta, PCG_DEFAULT_MULTIPLIER_16, PCG_DEFAULT_INCREMENT_16); |
476 | 0 | } |
477 | | |
478 | | inline void pcg_mcg_16_step_r(struct pcg_state_16* rng) |
479 | 0 | { |
480 | 0 | rng->state = rng->state * PCG_DEFAULT_MULTIPLIER_16; |
481 | 0 | } |
482 | | |
483 | | inline void pcg_mcg_16_advance_r(struct pcg_state_16* rng, uint16_t delta) |
484 | 0 | { |
485 | 0 | rng->state |
486 | 0 | = pcg_advance_lcg_16(rng->state, delta, PCG_DEFAULT_MULTIPLIER_16, 0u); |
487 | 0 | } |
488 | | |
489 | | inline void pcg_unique_16_step_r(struct pcg_state_16* rng) |
490 | 0 | { |
491 | 0 | rng->state = rng->state * PCG_DEFAULT_MULTIPLIER_16 |
492 | 0 | + (uint16_t)(((intptr_t)rng) | 1u); |
493 | 0 | } |
494 | | |
495 | | inline void pcg_unique_16_advance_r(struct pcg_state_16* rng, uint16_t delta) |
496 | 0 | { |
497 | 0 | rng->state |
498 | 0 | = pcg_advance_lcg_16(rng->state, delta, PCG_DEFAULT_MULTIPLIER_16, |
499 | 0 | (uint16_t)(((intptr_t)rng) | 1u)); |
500 | 0 | } |
501 | | |
502 | | inline void pcg_setseq_16_step_r(struct pcg_state_setseq_16* rng) |
503 | 0 | { |
504 | 0 | rng->state = rng->state * PCG_DEFAULT_MULTIPLIER_16 + rng->inc; |
505 | 0 | } |
506 | | |
507 | | inline void pcg_setseq_16_advance_r(struct pcg_state_setseq_16* rng, |
508 | | uint16_t delta) |
509 | 0 | { |
510 | 0 | rng->state = pcg_advance_lcg_16(rng->state, delta, |
511 | 0 | PCG_DEFAULT_MULTIPLIER_16, rng->inc); |
512 | 0 | } |
513 | | |
514 | | inline void pcg_oneseq_32_step_r(struct pcg_state_32* rng) |
515 | 0 | { |
516 | 0 | rng->state = rng->state * PCG_DEFAULT_MULTIPLIER_32 |
517 | 0 | + PCG_DEFAULT_INCREMENT_32; |
518 | 0 | } |
519 | | |
520 | | inline void pcg_oneseq_32_advance_r(struct pcg_state_32* rng, uint32_t delta) |
521 | 0 | { |
522 | 0 | rng->state = pcg_advance_lcg_32( |
523 | 0 | rng->state, delta, PCG_DEFAULT_MULTIPLIER_32, PCG_DEFAULT_INCREMENT_32); |
524 | 0 | } |
525 | | |
526 | | inline void pcg_mcg_32_step_r(struct pcg_state_32* rng) |
527 | 0 | { |
528 | 0 | rng->state = rng->state * PCG_DEFAULT_MULTIPLIER_32; |
529 | 0 | } |
530 | | |
531 | | inline void pcg_mcg_32_advance_r(struct pcg_state_32* rng, uint32_t delta) |
532 | 0 | { |
533 | 0 | rng->state |
534 | 0 | = pcg_advance_lcg_32(rng->state, delta, PCG_DEFAULT_MULTIPLIER_32, 0u); |
535 | 0 | } |
536 | | |
537 | | inline void pcg_unique_32_step_r(struct pcg_state_32* rng) |
538 | 0 | { |
539 | 0 | rng->state = rng->state * PCG_DEFAULT_MULTIPLIER_32 |
540 | 0 | + (uint32_t)(((intptr_t)rng) | 1u); |
541 | 0 | } |
542 | | |
543 | | inline void pcg_unique_32_advance_r(struct pcg_state_32* rng, uint32_t delta) |
544 | 0 | { |
545 | 0 | rng->state |
546 | 0 | = pcg_advance_lcg_32(rng->state, delta, PCG_DEFAULT_MULTIPLIER_32, |
547 | 0 | (uint32_t)(((intptr_t)rng) | 1u)); |
548 | 0 | } |
549 | | |
550 | | inline void pcg_setseq_32_step_r(struct pcg_state_setseq_32* rng) |
551 | 0 | { |
552 | 0 | rng->state = rng->state * PCG_DEFAULT_MULTIPLIER_32 + rng->inc; |
553 | 0 | } |
554 | | |
555 | | inline void pcg_setseq_32_advance_r(struct pcg_state_setseq_32* rng, |
556 | | uint32_t delta) |
557 | 0 | { |
558 | 0 | rng->state = pcg_advance_lcg_32(rng->state, delta, |
559 | 0 | PCG_DEFAULT_MULTIPLIER_32, rng->inc); |
560 | 0 | } |
561 | | |
562 | | inline void pcg_oneseq_64_step_r(struct pcg_state_64* rng) |
563 | 0 | { |
564 | 0 | rng->state = rng->state * PCG_DEFAULT_MULTIPLIER_64 |
565 | 0 | + PCG_DEFAULT_INCREMENT_64; |
566 | 0 | } |
567 | | |
568 | | inline void pcg_oneseq_64_advance_r(struct pcg_state_64* rng, uint64_t delta) |
569 | 0 | { |
570 | 0 | rng->state = pcg_advance_lcg_64( |
571 | 0 | rng->state, delta, PCG_DEFAULT_MULTIPLIER_64, PCG_DEFAULT_INCREMENT_64); |
572 | 0 | } |
573 | | |
574 | | inline void pcg_mcg_64_step_r(struct pcg_state_64* rng) |
575 | 0 | { |
576 | 0 | rng->state = rng->state * PCG_DEFAULT_MULTIPLIER_64; |
577 | 0 | } |
578 | | |
579 | | inline void pcg_mcg_64_advance_r(struct pcg_state_64* rng, uint64_t delta) |
580 | 0 | { |
581 | 0 | rng->state |
582 | 0 | = pcg_advance_lcg_64(rng->state, delta, PCG_DEFAULT_MULTIPLIER_64, 0u); |
583 | 0 | } |
584 | | |
585 | | inline void pcg_unique_64_step_r(struct pcg_state_64* rng) |
586 | 0 | { |
587 | 0 | rng->state = rng->state * PCG_DEFAULT_MULTIPLIER_64 |
588 | 0 | + (uint64_t)(((intptr_t)rng) | 1u); |
589 | 0 | } |
590 | | |
591 | | inline void pcg_unique_64_advance_r(struct pcg_state_64* rng, uint64_t delta) |
592 | 0 | { |
593 | 0 | rng->state |
594 | 0 | = pcg_advance_lcg_64(rng->state, delta, PCG_DEFAULT_MULTIPLIER_64, |
595 | 0 | (uint64_t)(((intptr_t)rng) | 1u)); |
596 | 0 | } |
597 | | |
598 | | inline void pcg_setseq_64_step_r(struct pcg_state_setseq_64* rng) |
599 | 0 | { |
600 | 0 | rng->state = rng->state * PCG_DEFAULT_MULTIPLIER_64 + rng->inc; |
601 | 0 | } |
602 | | |
603 | | inline void pcg_setseq_64_advance_r(struct pcg_state_setseq_64* rng, |
604 | | uint64_t delta) |
605 | 0 | { |
606 | 0 | rng->state = pcg_advance_lcg_64(rng->state, delta, |
607 | 0 | PCG_DEFAULT_MULTIPLIER_64, rng->inc); |
608 | 0 | } |
609 | | |
610 | | #if PCG_HAS_128BIT_OPS |
611 | | inline void pcg_oneseq_128_step_r(struct pcg_state_128* rng) |
612 | 0 | { |
613 | 0 | rng->state = rng->state * PCG_DEFAULT_MULTIPLIER_128 |
614 | 0 | + PCG_DEFAULT_INCREMENT_128; |
615 | 0 | } |
616 | | #endif |
617 | | |
618 | | #if PCG_HAS_128BIT_OPS |
619 | | inline void pcg_oneseq_128_advance_r(struct pcg_state_128* rng, pcg128_t delta) |
620 | 0 | { |
621 | 0 | rng->state |
622 | 0 | = pcg_advance_lcg_128(rng->state, delta, PCG_DEFAULT_MULTIPLIER_128, |
623 | 0 | PCG_DEFAULT_INCREMENT_128); |
624 | 0 | } |
625 | | #endif |
626 | | |
627 | | #if PCG_HAS_128BIT_OPS |
628 | | inline void pcg_mcg_128_step_r(struct pcg_state_128* rng) |
629 | 0 | { |
630 | 0 | rng->state = rng->state * PCG_DEFAULT_MULTIPLIER_128; |
631 | 0 | } |
632 | | #endif |
633 | | |
634 | | #if PCG_HAS_128BIT_OPS |
635 | | inline void pcg_mcg_128_advance_r(struct pcg_state_128* rng, pcg128_t delta) |
636 | 0 | { |
637 | 0 | rng->state = pcg_advance_lcg_128(rng->state, delta, |
638 | 0 | PCG_DEFAULT_MULTIPLIER_128, 0u); |
639 | 0 | } |
640 | | #endif |
641 | | |
642 | | #if PCG_HAS_128BIT_OPS |
643 | | inline void pcg_unique_128_step_r(struct pcg_state_128* rng) |
644 | 0 | { |
645 | 0 | rng->state = rng->state * PCG_DEFAULT_MULTIPLIER_128 |
646 | 0 | + (pcg128_t)(((intptr_t)rng) | 1u); |
647 | 0 | } |
648 | | #endif |
649 | | |
650 | | #if PCG_HAS_128BIT_OPS |
651 | | inline void pcg_unique_128_advance_r(struct pcg_state_128* rng, pcg128_t delta) |
652 | 0 | { |
653 | 0 | rng->state |
654 | 0 | = pcg_advance_lcg_128(rng->state, delta, PCG_DEFAULT_MULTIPLIER_128, |
655 | 0 | (pcg128_t)(((intptr_t)rng) | 1u)); |
656 | 0 | } |
657 | | #endif |
658 | | |
659 | | #if PCG_HAS_128BIT_OPS |
660 | | inline void pcg_setseq_128_step_r(struct pcg_state_setseq_128* rng) |
661 | 0 | { |
662 | 0 | rng->state = rng->state * PCG_DEFAULT_MULTIPLIER_128 + rng->inc; |
663 | 0 | } |
664 | | #endif |
665 | | |
666 | | #if PCG_HAS_128BIT_OPS |
667 | | inline void pcg_setseq_128_advance_r(struct pcg_state_setseq_128* rng, |
668 | | pcg128_t delta) |
669 | 0 | { |
670 | 0 | rng->state = pcg_advance_lcg_128(rng->state, delta, |
671 | 0 | PCG_DEFAULT_MULTIPLIER_128, rng->inc); |
672 | 0 | } |
673 | | #endif |
674 | | |
675 | | /* Functions to seed the RNG state, one version for each size and each |
676 | | * style. Unlike the step functions, regular users can and should call |
677 | | * these functions. |
678 | | */ |
679 | | |
680 | | inline void pcg_oneseq_8_srandom_r(struct pcg_state_8* rng, uint8_t initstate) |
681 | 0 | { |
682 | 0 | rng->state = 0U; |
683 | 0 | pcg_oneseq_8_step_r(rng); |
684 | 0 | rng->state += initstate; |
685 | 0 | pcg_oneseq_8_step_r(rng); |
686 | 0 | } |
687 | | |
688 | | inline void pcg_mcg_8_srandom_r(struct pcg_state_8* rng, uint8_t initstate) |
689 | 0 | { |
690 | 0 | rng->state = initstate | 1u; |
691 | 0 | } |
692 | | |
693 | | inline void pcg_unique_8_srandom_r(struct pcg_state_8* rng, uint8_t initstate) |
694 | 0 | { |
695 | 0 | rng->state = 0U; |
696 | 0 | pcg_unique_8_step_r(rng); |
697 | 0 | rng->state += initstate; |
698 | 0 | pcg_unique_8_step_r(rng); |
699 | 0 | } |
700 | | |
701 | | inline void pcg_setseq_8_srandom_r(struct pcg_state_setseq_8* rng, |
702 | | uint8_t initstate, uint8_t initseq) |
703 | 0 | { |
704 | 0 | rng->state = 0U; |
705 | 0 | rng->inc = (initseq << 1u) | 1u; |
706 | 0 | pcg_setseq_8_step_r(rng); |
707 | 0 | rng->state += initstate; |
708 | 0 | pcg_setseq_8_step_r(rng); |
709 | 0 | } |
710 | | |
711 | | inline void pcg_oneseq_16_srandom_r(struct pcg_state_16* rng, |
712 | | uint16_t initstate) |
713 | 0 | { |
714 | 0 | rng->state = 0U; |
715 | 0 | pcg_oneseq_16_step_r(rng); |
716 | 0 | rng->state += initstate; |
717 | 0 | pcg_oneseq_16_step_r(rng); |
718 | 0 | } |
719 | | |
720 | | inline void pcg_mcg_16_srandom_r(struct pcg_state_16* rng, uint16_t initstate) |
721 | 0 | { |
722 | 0 | rng->state = initstate | 1u; |
723 | 0 | } |
724 | | |
725 | | inline void pcg_unique_16_srandom_r(struct pcg_state_16* rng, |
726 | | uint16_t initstate) |
727 | 0 | { |
728 | 0 | rng->state = 0U; |
729 | 0 | pcg_unique_16_step_r(rng); |
730 | 0 | rng->state += initstate; |
731 | 0 | pcg_unique_16_step_r(rng); |
732 | 0 | } |
733 | | |
734 | | inline void pcg_setseq_16_srandom_r(struct pcg_state_setseq_16* rng, |
735 | | uint16_t initstate, uint16_t initseq) |
736 | 0 | { |
737 | 0 | rng->state = 0U; |
738 | 0 | rng->inc = (initseq << 1u) | 1u; |
739 | 0 | pcg_setseq_16_step_r(rng); |
740 | 0 | rng->state += initstate; |
741 | 0 | pcg_setseq_16_step_r(rng); |
742 | 0 | } |
743 | | |
744 | | inline void pcg_oneseq_32_srandom_r(struct pcg_state_32* rng, |
745 | | uint32_t initstate) |
746 | 0 | { |
747 | 0 | rng->state = 0U; |
748 | 0 | pcg_oneseq_32_step_r(rng); |
749 | 0 | rng->state += initstate; |
750 | 0 | pcg_oneseq_32_step_r(rng); |
751 | 0 | } |
752 | | |
753 | | inline void pcg_mcg_32_srandom_r(struct pcg_state_32* rng, uint32_t initstate) |
754 | 0 | { |
755 | 0 | rng->state = initstate | 1u; |
756 | 0 | } |
757 | | |
758 | | inline void pcg_unique_32_srandom_r(struct pcg_state_32* rng, |
759 | | uint32_t initstate) |
760 | 0 | { |
761 | 0 | rng->state = 0U; |
762 | 0 | pcg_unique_32_step_r(rng); |
763 | 0 | rng->state += initstate; |
764 | 0 | pcg_unique_32_step_r(rng); |
765 | 0 | } |
766 | | |
767 | | inline void pcg_setseq_32_srandom_r(struct pcg_state_setseq_32* rng, |
768 | | uint32_t initstate, uint32_t initseq) |
769 | 0 | { |
770 | 0 | rng->state = 0U; |
771 | 0 | rng->inc = (initseq << 1u) | 1u; |
772 | 0 | pcg_setseq_32_step_r(rng); |
773 | 0 | rng->state += initstate; |
774 | 0 | pcg_setseq_32_step_r(rng); |
775 | 0 | } |
776 | | |
777 | | inline void pcg_oneseq_64_srandom_r(struct pcg_state_64* rng, |
778 | | uint64_t initstate) |
779 | 0 | { |
780 | 0 | rng->state = 0U; |
781 | 0 | pcg_oneseq_64_step_r(rng); |
782 | 0 | rng->state += initstate; |
783 | 0 | pcg_oneseq_64_step_r(rng); |
784 | 0 | } |
785 | | |
786 | | inline void pcg_mcg_64_srandom_r(struct pcg_state_64* rng, uint64_t initstate) |
787 | 0 | { |
788 | 0 | rng->state = initstate | 1u; |
789 | 0 | } |
790 | | |
791 | | inline void pcg_unique_64_srandom_r(struct pcg_state_64* rng, |
792 | | uint64_t initstate) |
793 | 0 | { |
794 | 0 | rng->state = 0U; |
795 | 0 | pcg_unique_64_step_r(rng); |
796 | 0 | rng->state += initstate; |
797 | 0 | pcg_unique_64_step_r(rng); |
798 | 0 | } |
799 | | |
800 | | inline void pcg_setseq_64_srandom_r(struct pcg_state_setseq_64* rng, |
801 | | uint64_t initstate, uint64_t initseq) |
802 | 0 | { |
803 | 0 | rng->state = 0U; |
804 | 0 | rng->inc = (initseq << 1u) | 1u; |
805 | 0 | pcg_setseq_64_step_r(rng); |
806 | 0 | rng->state += initstate; |
807 | 0 | pcg_setseq_64_step_r(rng); |
808 | 0 | } |
809 | | |
810 | | #if PCG_HAS_128BIT_OPS |
811 | | inline void pcg_oneseq_128_srandom_r(struct pcg_state_128* rng, |
812 | | pcg128_t initstate) |
813 | 0 | { |
814 | 0 | rng->state = 0U; |
815 | 0 | pcg_oneseq_128_step_r(rng); |
816 | 0 | rng->state += initstate; |
817 | 0 | pcg_oneseq_128_step_r(rng); |
818 | 0 | } |
819 | | #endif |
820 | | |
821 | | #if PCG_HAS_128BIT_OPS |
822 | | inline void pcg_mcg_128_srandom_r(struct pcg_state_128* rng, pcg128_t initstate) |
823 | 0 | { |
824 | 0 | rng->state = initstate | 1u; |
825 | 0 | } |
826 | | #endif |
827 | | |
828 | | #if PCG_HAS_128BIT_OPS |
829 | | inline void pcg_unique_128_srandom_r(struct pcg_state_128* rng, |
830 | | pcg128_t initstate) |
831 | 0 | { |
832 | 0 | rng->state = 0U; |
833 | 0 | pcg_unique_128_step_r(rng); |
834 | 0 | rng->state += initstate; |
835 | 0 | pcg_unique_128_step_r(rng); |
836 | 0 | } |
837 | | #endif |
838 | | |
839 | | #if PCG_HAS_128BIT_OPS |
840 | | inline void pcg_setseq_128_srandom_r(struct pcg_state_setseq_128* rng, |
841 | | pcg128_t initstate, pcg128_t initseq) |
842 | 0 | { |
843 | 0 | rng->state = 0U; |
844 | 0 | rng->inc = (initseq << 1u) | 1u; |
845 | 0 | pcg_setseq_128_step_r(rng); |
846 | 0 | rng->state += initstate; |
847 | 0 | pcg_setseq_128_step_r(rng); |
848 | 0 | } |
849 | | #endif |
850 | | |
851 | | /* Now, finally we create each of the individual generators. We provide |
852 | | * a random_r function that provides a random number of the appropriate |
853 | | * type (using the full range of the type) and a boundedrand_r version |
854 | | * that provides |
855 | | * |
856 | | * Implementation notes for boundedrand_r: |
857 | | * |
858 | | * To avoid bias, we need to make the range of the RNG a multiple of |
859 | | * bound, which we do by dropping output less than a threshold. |
860 | | * Let's consider a 32-bit case... A naive scheme to calculate the |
861 | | * threshold would be to do |
862 | | * |
863 | | * uint32_t threshold = 0x100000000ull % bound; |
864 | | * |
865 | | * but 64-bit div/mod is slower than 32-bit div/mod (especially on |
866 | | * 32-bit platforms). In essence, we do |
867 | | * |
868 | | * uint32_t threshold = (0x100000000ull-bound) % bound; |
869 | | * |
870 | | * because this version will calculate the same modulus, but the LHS |
871 | | * value is less than 2^32. |
872 | | * |
873 | | * (Note that using modulo is only wise for good RNGs, poorer RNGs |
874 | | * such as raw LCGs do better using a technique based on division.) |
875 | | * Empricical tests show that division is preferable to modulus for |
876 | | * reducting the range of an RNG. It's faster, and sometimes it can |
877 | | * even be statistically prefereable. |
878 | | */ |
879 | | |
880 | | /* Generation functions for XSH RS */ |
881 | | |
882 | | inline uint8_t pcg_oneseq_16_xsh_rs_8_random_r(struct pcg_state_16* rng) |
883 | 0 | { |
884 | 0 | uint16_t oldstate = rng->state; |
885 | 0 | pcg_oneseq_16_step_r(rng); |
886 | 0 | return pcg_output_xsh_rs_16_8(oldstate); |
887 | 0 | } |
888 | | |
889 | | inline uint8_t pcg_oneseq_16_xsh_rs_8_boundedrand_r(struct pcg_state_16* rng, |
890 | | uint8_t bound) |
891 | 0 | { |
892 | 0 | uint8_t threshold = ((uint8_t)(-bound)) % bound; |
893 | 0 | for (;;) { |
894 | 0 | uint8_t r = pcg_oneseq_16_xsh_rs_8_random_r(rng); |
895 | 0 | if (r >= threshold) |
896 | 0 | return r % bound; |
897 | 0 | } |
898 | 0 | } |
899 | | |
900 | | inline uint16_t pcg_oneseq_32_xsh_rs_16_random_r(struct pcg_state_32* rng) |
901 | 0 | { |
902 | 0 | uint32_t oldstate = rng->state; |
903 | 0 | pcg_oneseq_32_step_r(rng); |
904 | 0 | return pcg_output_xsh_rs_32_16(oldstate); |
905 | 0 | } |
906 | | |
907 | | inline uint16_t pcg_oneseq_32_xsh_rs_16_boundedrand_r(struct pcg_state_32* rng, |
908 | | uint16_t bound) |
909 | 0 | { |
910 | 0 | uint16_t threshold = ((uint16_t)(-bound)) % bound; |
911 | 0 | for (;;) { |
912 | 0 | uint16_t r = pcg_oneseq_32_xsh_rs_16_random_r(rng); |
913 | 0 | if (r >= threshold) |
914 | 0 | return r % bound; |
915 | 0 | } |
916 | 0 | } |
917 | | |
918 | | inline uint32_t pcg_oneseq_64_xsh_rs_32_random_r(struct pcg_state_64* rng) |
919 | 0 | { |
920 | 0 | uint64_t oldstate = rng->state; |
921 | 0 | pcg_oneseq_64_step_r(rng); |
922 | 0 | return pcg_output_xsh_rs_64_32(oldstate); |
923 | 0 | } |
924 | | |
925 | | inline uint32_t pcg_oneseq_64_xsh_rs_32_boundedrand_r(struct pcg_state_64* rng, |
926 | | uint32_t bound) |
927 | 0 | { |
928 | 0 | uint32_t threshold = -bound % bound; |
929 | 0 | for (;;) { |
930 | 0 | uint32_t r = pcg_oneseq_64_xsh_rs_32_random_r(rng); |
931 | 0 | if (r >= threshold) |
932 | 0 | return r % bound; |
933 | 0 | } |
934 | 0 | } |
935 | | |
936 | | #if PCG_HAS_128BIT_OPS |
937 | | inline uint64_t pcg_oneseq_128_xsh_rs_64_random_r(struct pcg_state_128* rng) |
938 | 0 | { |
939 | 0 | pcg_oneseq_128_step_r(rng); |
940 | 0 | return pcg_output_xsh_rs_128_64(rng->state); |
941 | 0 | } |
942 | | #endif |
943 | | |
944 | | #if PCG_HAS_128BIT_OPS |
945 | | inline uint64_t |
946 | | pcg_oneseq_128_xsh_rs_64_boundedrand_r(struct pcg_state_128* rng, |
947 | | uint64_t bound) |
948 | 0 | { |
949 | 0 | uint64_t threshold = -bound % bound; |
950 | 0 | for (;;) { |
951 | 0 | uint64_t r = pcg_oneseq_128_xsh_rs_64_random_r(rng); |
952 | 0 | if (r >= threshold) |
953 | 0 | return r % bound; |
954 | 0 | } |
955 | 0 | } |
956 | | #endif |
957 | | |
958 | | inline uint8_t pcg_unique_16_xsh_rs_8_random_r(struct pcg_state_16* rng) |
959 | 0 | { |
960 | 0 | uint16_t oldstate = rng->state; |
961 | 0 | pcg_unique_16_step_r(rng); |
962 | 0 | return pcg_output_xsh_rs_16_8(oldstate); |
963 | 0 | } |
964 | | |
965 | | inline uint8_t pcg_unique_16_xsh_rs_8_boundedrand_r(struct pcg_state_16* rng, |
966 | | uint8_t bound) |
967 | 0 | { |
968 | 0 | uint8_t threshold = ((uint8_t)(-bound)) % bound; |
969 | 0 | for (;;) { |
970 | 0 | uint8_t r = pcg_unique_16_xsh_rs_8_random_r(rng); |
971 | 0 | if (r >= threshold) |
972 | 0 | return r % bound; |
973 | 0 | } |
974 | 0 | } |
975 | | |
976 | | inline uint16_t pcg_unique_32_xsh_rs_16_random_r(struct pcg_state_32* rng) |
977 | 0 | { |
978 | 0 | uint32_t oldstate = rng->state; |
979 | 0 | pcg_unique_32_step_r(rng); |
980 | 0 | return pcg_output_xsh_rs_32_16(oldstate); |
981 | 0 | } |
982 | | |
983 | | inline uint16_t pcg_unique_32_xsh_rs_16_boundedrand_r(struct pcg_state_32* rng, |
984 | | uint16_t bound) |
985 | 0 | { |
986 | 0 | uint16_t threshold = ((uint16_t)(-bound)) % bound; |
987 | 0 | for (;;) { |
988 | 0 | uint16_t r = pcg_unique_32_xsh_rs_16_random_r(rng); |
989 | 0 | if (r >= threshold) |
990 | 0 | return r % bound; |
991 | 0 | } |
992 | 0 | } |
993 | | |
994 | | inline uint32_t pcg_unique_64_xsh_rs_32_random_r(struct pcg_state_64* rng) |
995 | 0 | { |
996 | 0 | uint64_t oldstate = rng->state; |
997 | 0 | pcg_unique_64_step_r(rng); |
998 | 0 | return pcg_output_xsh_rs_64_32(oldstate); |
999 | 0 | } |
1000 | | |
1001 | | inline uint32_t pcg_unique_64_xsh_rs_32_boundedrand_r(struct pcg_state_64* rng, |
1002 | | uint32_t bound) |
1003 | 0 | { |
1004 | 0 | uint32_t threshold = -bound % bound; |
1005 | 0 | for (;;) { |
1006 | 0 | uint32_t r = pcg_unique_64_xsh_rs_32_random_r(rng); |
1007 | 0 | if (r >= threshold) |
1008 | 0 | return r % bound; |
1009 | 0 | } |
1010 | 0 | } |
1011 | | |
1012 | | #if PCG_HAS_128BIT_OPS |
1013 | | inline uint64_t pcg_unique_128_xsh_rs_64_random_r(struct pcg_state_128* rng) |
1014 | 0 | { |
1015 | 0 | pcg_unique_128_step_r(rng); |
1016 | 0 | return pcg_output_xsh_rs_128_64(rng->state); |
1017 | 0 | } |
1018 | | #endif |
1019 | | |
1020 | | #if PCG_HAS_128BIT_OPS |
1021 | | inline uint64_t |
1022 | | pcg_unique_128_xsh_rs_64_boundedrand_r(struct pcg_state_128* rng, |
1023 | | uint64_t bound) |
1024 | 0 | { |
1025 | 0 | uint64_t threshold = -bound % bound; |
1026 | 0 | for (;;) { |
1027 | 0 | uint64_t r = pcg_unique_128_xsh_rs_64_random_r(rng); |
1028 | 0 | if (r >= threshold) |
1029 | 0 | return r % bound; |
1030 | 0 | } |
1031 | 0 | } |
1032 | | #endif |
1033 | | |
1034 | | inline uint8_t pcg_setseq_16_xsh_rs_8_random_r(struct pcg_state_setseq_16* rng) |
1035 | 0 | { |
1036 | 0 | uint16_t oldstate = rng->state; |
1037 | 0 | pcg_setseq_16_step_r(rng); |
1038 | 0 | return pcg_output_xsh_rs_16_8(oldstate); |
1039 | 0 | } |
1040 | | |
1041 | | inline uint8_t |
1042 | | pcg_setseq_16_xsh_rs_8_boundedrand_r(struct pcg_state_setseq_16* rng, |
1043 | | uint8_t bound) |
1044 | 0 | { |
1045 | 0 | uint8_t threshold = ((uint8_t)(-bound)) % bound; |
1046 | 0 | for (;;) { |
1047 | 0 | uint8_t r = pcg_setseq_16_xsh_rs_8_random_r(rng); |
1048 | 0 | if (r >= threshold) |
1049 | 0 | return r % bound; |
1050 | 0 | } |
1051 | 0 | } |
1052 | | |
1053 | | inline uint16_t |
1054 | | pcg_setseq_32_xsh_rs_16_random_r(struct pcg_state_setseq_32* rng) |
1055 | 0 | { |
1056 | 0 | uint32_t oldstate = rng->state; |
1057 | 0 | pcg_setseq_32_step_r(rng); |
1058 | 0 | return pcg_output_xsh_rs_32_16(oldstate); |
1059 | 0 | } |
1060 | | |
1061 | | inline uint16_t |
1062 | | pcg_setseq_32_xsh_rs_16_boundedrand_r(struct pcg_state_setseq_32* rng, |
1063 | | uint16_t bound) |
1064 | 0 | { |
1065 | 0 | uint16_t threshold = ((uint16_t)(-bound)) % bound; |
1066 | 0 | for (;;) { |
1067 | 0 | uint16_t r = pcg_setseq_32_xsh_rs_16_random_r(rng); |
1068 | 0 | if (r >= threshold) |
1069 | 0 | return r % bound; |
1070 | 0 | } |
1071 | 0 | } |
1072 | | |
1073 | | inline uint32_t |
1074 | | pcg_setseq_64_xsh_rs_32_random_r(struct pcg_state_setseq_64* rng) |
1075 | 0 | { |
1076 | 0 | uint64_t oldstate = rng->state; |
1077 | 0 | pcg_setseq_64_step_r(rng); |
1078 | 0 | return pcg_output_xsh_rs_64_32(oldstate); |
1079 | 0 | } |
1080 | | |
1081 | | inline uint32_t |
1082 | | pcg_setseq_64_xsh_rs_32_boundedrand_r(struct pcg_state_setseq_64* rng, |
1083 | | uint32_t bound) |
1084 | 0 | { |
1085 | 0 | uint32_t threshold = -bound % bound; |
1086 | 0 | for (;;) { |
1087 | 0 | uint32_t r = pcg_setseq_64_xsh_rs_32_random_r(rng); |
1088 | 0 | if (r >= threshold) |
1089 | 0 | return r % bound; |
1090 | 0 | } |
1091 | 0 | } |
1092 | | |
1093 | | #if PCG_HAS_128BIT_OPS |
1094 | | inline uint64_t |
1095 | | pcg_setseq_128_xsh_rs_64_random_r(struct pcg_state_setseq_128* rng) |
1096 | 0 | { |
1097 | 0 | pcg_setseq_128_step_r(rng); |
1098 | 0 | return pcg_output_xsh_rs_128_64(rng->state); |
1099 | 0 | } |
1100 | | #endif |
1101 | | |
1102 | | #if PCG_HAS_128BIT_OPS |
1103 | | inline uint64_t |
1104 | | pcg_setseq_128_xsh_rs_64_boundedrand_r(struct pcg_state_setseq_128* rng, |
1105 | | uint64_t bound) |
1106 | 0 | { |
1107 | 0 | uint64_t threshold = -bound % bound; |
1108 | 0 | for (;;) { |
1109 | 0 | uint64_t r = pcg_setseq_128_xsh_rs_64_random_r(rng); |
1110 | 0 | if (r >= threshold) |
1111 | 0 | return r % bound; |
1112 | 0 | } |
1113 | 0 | } |
1114 | | #endif |
1115 | | |
1116 | | inline uint8_t pcg_mcg_16_xsh_rs_8_random_r(struct pcg_state_16* rng) |
1117 | 0 | { |
1118 | 0 | uint16_t oldstate = rng->state; |
1119 | 0 | pcg_mcg_16_step_r(rng); |
1120 | 0 | return pcg_output_xsh_rs_16_8(oldstate); |
1121 | 0 | } |
1122 | | |
1123 | | inline uint8_t pcg_mcg_16_xsh_rs_8_boundedrand_r(struct pcg_state_16* rng, |
1124 | | uint8_t bound) |
1125 | 0 | { |
1126 | 0 | uint8_t threshold = ((uint8_t)(-bound)) % bound; |
1127 | 0 | for (;;) { |
1128 | 0 | uint8_t r = pcg_mcg_16_xsh_rs_8_random_r(rng); |
1129 | 0 | if (r >= threshold) |
1130 | 0 | return r % bound; |
1131 | 0 | } |
1132 | 0 | } |
1133 | | |
1134 | | inline uint16_t pcg_mcg_32_xsh_rs_16_random_r(struct pcg_state_32* rng) |
1135 | 0 | { |
1136 | 0 | uint32_t oldstate = rng->state; |
1137 | 0 | pcg_mcg_32_step_r(rng); |
1138 | 0 | return pcg_output_xsh_rs_32_16(oldstate); |
1139 | 0 | } |
1140 | | |
1141 | | inline uint16_t pcg_mcg_32_xsh_rs_16_boundedrand_r(struct pcg_state_32* rng, |
1142 | | uint16_t bound) |
1143 | 0 | { |
1144 | 0 | uint16_t threshold = ((uint16_t)(-bound)) % bound; |
1145 | 0 | for (;;) { |
1146 | 0 | uint16_t r = pcg_mcg_32_xsh_rs_16_random_r(rng); |
1147 | 0 | if (r >= threshold) |
1148 | 0 | return r % bound; |
1149 | 0 | } |
1150 | 0 | } |
1151 | | |
1152 | | inline uint32_t pcg_mcg_64_xsh_rs_32_random_r(struct pcg_state_64* rng) |
1153 | 0 | { |
1154 | 0 | uint64_t oldstate = rng->state; |
1155 | 0 | pcg_mcg_64_step_r(rng); |
1156 | 0 | return pcg_output_xsh_rs_64_32(oldstate); |
1157 | 0 | } |
1158 | | |
1159 | | inline uint32_t pcg_mcg_64_xsh_rs_32_boundedrand_r(struct pcg_state_64* rng, |
1160 | | uint32_t bound) |
1161 | 0 | { |
1162 | 0 | uint32_t threshold = -bound % bound; |
1163 | 0 | for (;;) { |
1164 | 0 | uint32_t r = pcg_mcg_64_xsh_rs_32_random_r(rng); |
1165 | 0 | if (r >= threshold) |
1166 | 0 | return r % bound; |
1167 | 0 | } |
1168 | 0 | } |
1169 | | |
1170 | | #if PCG_HAS_128BIT_OPS |
1171 | | inline uint64_t pcg_mcg_128_xsh_rs_64_random_r(struct pcg_state_128* rng) |
1172 | 0 | { |
1173 | 0 | pcg_mcg_128_step_r(rng); |
1174 | 0 | return pcg_output_xsh_rs_128_64(rng->state); |
1175 | 0 | } |
1176 | | #endif |
1177 | | |
1178 | | #if PCG_HAS_128BIT_OPS |
1179 | | inline uint64_t pcg_mcg_128_xsh_rs_64_boundedrand_r(struct pcg_state_128* rng, |
1180 | | uint64_t bound) |
1181 | 0 | { |
1182 | 0 | uint64_t threshold = -bound % bound; |
1183 | 0 | for (;;) { |
1184 | 0 | uint64_t r = pcg_mcg_128_xsh_rs_64_random_r(rng); |
1185 | 0 | if (r >= threshold) |
1186 | 0 | return r % bound; |
1187 | 0 | } |
1188 | 0 | } |
1189 | | #endif |
1190 | | |
1191 | | /* Generation functions for XSH RR */ |
1192 | | |
1193 | | inline uint8_t pcg_oneseq_16_xsh_rr_8_random_r(struct pcg_state_16* rng) |
1194 | 0 | { |
1195 | 0 | uint16_t oldstate = rng->state; |
1196 | 0 | pcg_oneseq_16_step_r(rng); |
1197 | 0 | return pcg_output_xsh_rr_16_8(oldstate); |
1198 | 0 | } |
1199 | | |
1200 | | inline uint8_t pcg_oneseq_16_xsh_rr_8_boundedrand_r(struct pcg_state_16* rng, |
1201 | | uint8_t bound) |
1202 | 0 | { |
1203 | 0 | uint8_t threshold = ((uint8_t)(-bound)) % bound; |
1204 | 0 | for (;;) { |
1205 | 0 | uint8_t r = pcg_oneseq_16_xsh_rr_8_random_r(rng); |
1206 | 0 | if (r >= threshold) |
1207 | 0 | return r % bound; |
1208 | 0 | } |
1209 | 0 | } |
1210 | | |
1211 | | inline uint16_t pcg_oneseq_32_xsh_rr_16_random_r(struct pcg_state_32* rng) |
1212 | 0 | { |
1213 | 0 | uint32_t oldstate = rng->state; |
1214 | 0 | pcg_oneseq_32_step_r(rng); |
1215 | 0 | return pcg_output_xsh_rr_32_16(oldstate); |
1216 | 0 | } |
1217 | | |
1218 | | inline uint16_t pcg_oneseq_32_xsh_rr_16_boundedrand_r(struct pcg_state_32* rng, |
1219 | | uint16_t bound) |
1220 | 0 | { |
1221 | 0 | uint16_t threshold = ((uint16_t)(-bound)) % bound; |
1222 | 0 | for (;;) { |
1223 | 0 | uint16_t r = pcg_oneseq_32_xsh_rr_16_random_r(rng); |
1224 | 0 | if (r >= threshold) |
1225 | 0 | return r % bound; |
1226 | 0 | } |
1227 | 0 | } |
1228 | | |
1229 | | inline uint32_t pcg_oneseq_64_xsh_rr_32_random_r(struct pcg_state_64* rng) |
1230 | 0 | { |
1231 | 0 | uint64_t oldstate = rng->state; |
1232 | 0 | pcg_oneseq_64_step_r(rng); |
1233 | 0 | return pcg_output_xsh_rr_64_32(oldstate); |
1234 | 0 | } |
1235 | | |
1236 | | inline uint32_t pcg_oneseq_64_xsh_rr_32_boundedrand_r(struct pcg_state_64* rng, |
1237 | | uint32_t bound) |
1238 | 0 | { |
1239 | 0 | uint32_t threshold = -bound % bound; |
1240 | 0 | for (;;) { |
1241 | 0 | uint32_t r = pcg_oneseq_64_xsh_rr_32_random_r(rng); |
1242 | 0 | if (r >= threshold) |
1243 | 0 | return r % bound; |
1244 | 0 | } |
1245 | 0 | } |
1246 | | |
1247 | | #if PCG_HAS_128BIT_OPS |
1248 | | inline uint64_t pcg_oneseq_128_xsh_rr_64_random_r(struct pcg_state_128* rng) |
1249 | 0 | { |
1250 | 0 | pcg_oneseq_128_step_r(rng); |
1251 | 0 | return pcg_output_xsh_rr_128_64(rng->state); |
1252 | 0 | } |
1253 | | #endif |
1254 | | |
1255 | | #if PCG_HAS_128BIT_OPS |
1256 | | inline uint64_t |
1257 | | pcg_oneseq_128_xsh_rr_64_boundedrand_r(struct pcg_state_128* rng, |
1258 | | uint64_t bound) |
1259 | 0 | { |
1260 | 0 | uint64_t threshold = -bound % bound; |
1261 | 0 | for (;;) { |
1262 | 0 | uint64_t r = pcg_oneseq_128_xsh_rr_64_random_r(rng); |
1263 | 0 | if (r >= threshold) |
1264 | 0 | return r % bound; |
1265 | 0 | } |
1266 | 0 | } |
1267 | | #endif |
1268 | | |
1269 | | inline uint8_t pcg_unique_16_xsh_rr_8_random_r(struct pcg_state_16* rng) |
1270 | 0 | { |
1271 | 0 | uint16_t oldstate = rng->state; |
1272 | 0 | pcg_unique_16_step_r(rng); |
1273 | 0 | return pcg_output_xsh_rr_16_8(oldstate); |
1274 | 0 | } |
1275 | | |
1276 | | inline uint8_t pcg_unique_16_xsh_rr_8_boundedrand_r(struct pcg_state_16* rng, |
1277 | | uint8_t bound) |
1278 | 0 | { |
1279 | 0 | uint8_t threshold = ((uint8_t)(-bound)) % bound; |
1280 | 0 | for (;;) { |
1281 | 0 | uint8_t r = pcg_unique_16_xsh_rr_8_random_r(rng); |
1282 | 0 | if (r >= threshold) |
1283 | 0 | return r % bound; |
1284 | 0 | } |
1285 | 0 | } |
1286 | | |
1287 | | inline uint16_t pcg_unique_32_xsh_rr_16_random_r(struct pcg_state_32* rng) |
1288 | 0 | { |
1289 | 0 | uint32_t oldstate = rng->state; |
1290 | 0 | pcg_unique_32_step_r(rng); |
1291 | 0 | return pcg_output_xsh_rr_32_16(oldstate); |
1292 | 0 | } |
1293 | | |
1294 | | inline uint16_t pcg_unique_32_xsh_rr_16_boundedrand_r(struct pcg_state_32* rng, |
1295 | | uint16_t bound) |
1296 | 0 | { |
1297 | 0 | uint16_t threshold = ((uint16_t)(-bound)) % bound; |
1298 | 0 | for (;;) { |
1299 | 0 | uint16_t r = pcg_unique_32_xsh_rr_16_random_r(rng); |
1300 | 0 | if (r >= threshold) |
1301 | 0 | return r % bound; |
1302 | 0 | } |
1303 | 0 | } |
1304 | | |
1305 | | inline uint32_t pcg_unique_64_xsh_rr_32_random_r(struct pcg_state_64* rng) |
1306 | 0 | { |
1307 | 0 | uint64_t oldstate = rng->state; |
1308 | 0 | pcg_unique_64_step_r(rng); |
1309 | 0 | return pcg_output_xsh_rr_64_32(oldstate); |
1310 | 0 | } |
1311 | | |
1312 | | inline uint32_t pcg_unique_64_xsh_rr_32_boundedrand_r(struct pcg_state_64* rng, |
1313 | | uint32_t bound) |
1314 | 0 | { |
1315 | 0 | uint32_t threshold = -bound % bound; |
1316 | 0 | for (;;) { |
1317 | 0 | uint32_t r = pcg_unique_64_xsh_rr_32_random_r(rng); |
1318 | 0 | if (r >= threshold) |
1319 | 0 | return r % bound; |
1320 | 0 | } |
1321 | 0 | } |
1322 | | |
1323 | | #if PCG_HAS_128BIT_OPS |
1324 | | inline uint64_t pcg_unique_128_xsh_rr_64_random_r(struct pcg_state_128* rng) |
1325 | 0 | { |
1326 | 0 | pcg_unique_128_step_r(rng); |
1327 | 0 | return pcg_output_xsh_rr_128_64(rng->state); |
1328 | 0 | } |
1329 | | #endif |
1330 | | |
1331 | | #if PCG_HAS_128BIT_OPS |
1332 | | inline uint64_t |
1333 | | pcg_unique_128_xsh_rr_64_boundedrand_r(struct pcg_state_128* rng, |
1334 | | uint64_t bound) |
1335 | 0 | { |
1336 | 0 | uint64_t threshold = -bound % bound; |
1337 | 0 | for (;;) { |
1338 | 0 | uint64_t r = pcg_unique_128_xsh_rr_64_random_r(rng); |
1339 | 0 | if (r >= threshold) |
1340 | 0 | return r % bound; |
1341 | 0 | } |
1342 | 0 | } |
1343 | | #endif |
1344 | | |
1345 | | inline uint8_t pcg_setseq_16_xsh_rr_8_random_r(struct pcg_state_setseq_16* rng) |
1346 | 0 | { |
1347 | 0 | uint16_t oldstate = rng->state; |
1348 | 0 | pcg_setseq_16_step_r(rng); |
1349 | 0 | return pcg_output_xsh_rr_16_8(oldstate); |
1350 | 0 | } |
1351 | | |
1352 | | inline uint8_t |
1353 | | pcg_setseq_16_xsh_rr_8_boundedrand_r(struct pcg_state_setseq_16* rng, |
1354 | | uint8_t bound) |
1355 | 0 | { |
1356 | 0 | uint8_t threshold = ((uint8_t)(-bound)) % bound; |
1357 | 0 | for (;;) { |
1358 | 0 | uint8_t r = pcg_setseq_16_xsh_rr_8_random_r(rng); |
1359 | 0 | if (r >= threshold) |
1360 | 0 | return r % bound; |
1361 | 0 | } |
1362 | 0 | } |
1363 | | |
1364 | | inline uint16_t |
1365 | | pcg_setseq_32_xsh_rr_16_random_r(struct pcg_state_setseq_32* rng) |
1366 | 0 | { |
1367 | 0 | uint32_t oldstate = rng->state; |
1368 | 0 | pcg_setseq_32_step_r(rng); |
1369 | 0 | return pcg_output_xsh_rr_32_16(oldstate); |
1370 | 0 | } |
1371 | | |
1372 | | inline uint16_t |
1373 | | pcg_setseq_32_xsh_rr_16_boundedrand_r(struct pcg_state_setseq_32* rng, |
1374 | | uint16_t bound) |
1375 | 0 | { |
1376 | 0 | uint16_t threshold = ((uint16_t)(-bound)) % bound; |
1377 | 0 | for (;;) { |
1378 | 0 | uint16_t r = pcg_setseq_32_xsh_rr_16_random_r(rng); |
1379 | 0 | if (r >= threshold) |
1380 | 0 | return r % bound; |
1381 | 0 | } |
1382 | 0 | } |
1383 | | |
1384 | | inline uint32_t |
1385 | | pcg_setseq_64_xsh_rr_32_random_r(struct pcg_state_setseq_64* rng) |
1386 | 0 | { |
1387 | 0 | uint64_t oldstate = rng->state; |
1388 | 0 | pcg_setseq_64_step_r(rng); |
1389 | 0 | return pcg_output_xsh_rr_64_32(oldstate); |
1390 | 0 | } |
1391 | | |
1392 | | inline uint32_t |
1393 | | pcg_setseq_64_xsh_rr_32_boundedrand_r(struct pcg_state_setseq_64* rng, |
1394 | | uint32_t bound) |
1395 | 0 | { |
1396 | 0 | uint32_t threshold = -bound % bound; |
1397 | 0 | for (;;) { |
1398 | 0 | uint32_t r = pcg_setseq_64_xsh_rr_32_random_r(rng); |
1399 | 0 | if (r >= threshold) |
1400 | 0 | return r % bound; |
1401 | 0 | } |
1402 | 0 | } |
1403 | | |
1404 | | #if PCG_HAS_128BIT_OPS |
1405 | | inline uint64_t |
1406 | | pcg_setseq_128_xsh_rr_64_random_r(struct pcg_state_setseq_128* rng) |
1407 | 0 | { |
1408 | 0 | pcg_setseq_128_step_r(rng); |
1409 | 0 | return pcg_output_xsh_rr_128_64(rng->state); |
1410 | 0 | } |
1411 | | #endif |
1412 | | |
1413 | | #if PCG_HAS_128BIT_OPS |
1414 | | inline uint64_t |
1415 | | pcg_setseq_128_xsh_rr_64_boundedrand_r(struct pcg_state_setseq_128* rng, |
1416 | | uint64_t bound) |
1417 | 0 | { |
1418 | 0 | uint64_t threshold = -bound % bound; |
1419 | 0 | for (;;) { |
1420 | 0 | uint64_t r = pcg_setseq_128_xsh_rr_64_random_r(rng); |
1421 | 0 | if (r >= threshold) |
1422 | 0 | return r % bound; |
1423 | 0 | } |
1424 | 0 | } |
1425 | | #endif |
1426 | | |
1427 | | inline uint8_t pcg_mcg_16_xsh_rr_8_random_r(struct pcg_state_16* rng) |
1428 | 0 | { |
1429 | 0 | uint16_t oldstate = rng->state; |
1430 | 0 | pcg_mcg_16_step_r(rng); |
1431 | 0 | return pcg_output_xsh_rr_16_8(oldstate); |
1432 | 0 | } |
1433 | | |
1434 | | inline uint8_t pcg_mcg_16_xsh_rr_8_boundedrand_r(struct pcg_state_16* rng, |
1435 | | uint8_t bound) |
1436 | 0 | { |
1437 | 0 | uint8_t threshold = ((uint8_t)(-bound)) % bound; |
1438 | 0 | for (;;) { |
1439 | 0 | uint8_t r = pcg_mcg_16_xsh_rr_8_random_r(rng); |
1440 | 0 | if (r >= threshold) |
1441 | 0 | return r % bound; |
1442 | 0 | } |
1443 | 0 | } |
1444 | | |
1445 | | inline uint16_t pcg_mcg_32_xsh_rr_16_random_r(struct pcg_state_32* rng) |
1446 | 0 | { |
1447 | 0 | uint32_t oldstate = rng->state; |
1448 | 0 | pcg_mcg_32_step_r(rng); |
1449 | 0 | return pcg_output_xsh_rr_32_16(oldstate); |
1450 | 0 | } |
1451 | | |
1452 | | inline uint16_t pcg_mcg_32_xsh_rr_16_boundedrand_r(struct pcg_state_32* rng, |
1453 | | uint16_t bound) |
1454 | 0 | { |
1455 | 0 | uint16_t threshold = ((uint16_t)(-bound)) % bound; |
1456 | 0 | for (;;) { |
1457 | 0 | uint16_t r = pcg_mcg_32_xsh_rr_16_random_r(rng); |
1458 | 0 | if (r >= threshold) |
1459 | 0 | return r % bound; |
1460 | 0 | } |
1461 | 0 | } |
1462 | | |
1463 | | inline uint32_t pcg_mcg_64_xsh_rr_32_random_r(struct pcg_state_64* rng) |
1464 | 0 | { |
1465 | 0 | uint64_t oldstate = rng->state; |
1466 | 0 | pcg_mcg_64_step_r(rng); |
1467 | 0 | return pcg_output_xsh_rr_64_32(oldstate); |
1468 | 0 | } |
1469 | | |
1470 | | inline uint32_t pcg_mcg_64_xsh_rr_32_boundedrand_r(struct pcg_state_64* rng, |
1471 | | uint32_t bound) |
1472 | 0 | { |
1473 | 0 | uint32_t threshold = -bound % bound; |
1474 | 0 | for (;;) { |
1475 | 0 | uint32_t r = pcg_mcg_64_xsh_rr_32_random_r(rng); |
1476 | 0 | if (r >= threshold) |
1477 | 0 | return r % bound; |
1478 | 0 | } |
1479 | 0 | } |
1480 | | |
1481 | | #if PCG_HAS_128BIT_OPS |
1482 | | inline uint64_t pcg_mcg_128_xsh_rr_64_random_r(struct pcg_state_128* rng) |
1483 | 0 | { |
1484 | 0 | pcg_mcg_128_step_r(rng); |
1485 | 0 | return pcg_output_xsh_rr_128_64(rng->state); |
1486 | 0 | } |
1487 | | #endif |
1488 | | |
1489 | | #if PCG_HAS_128BIT_OPS |
1490 | | inline uint64_t pcg_mcg_128_xsh_rr_64_boundedrand_r(struct pcg_state_128* rng, |
1491 | | uint64_t bound) |
1492 | 0 | { |
1493 | 0 | uint64_t threshold = -bound % bound; |
1494 | 0 | for (;;) { |
1495 | 0 | uint64_t r = pcg_mcg_128_xsh_rr_64_random_r(rng); |
1496 | 0 | if (r >= threshold) |
1497 | 0 | return r % bound; |
1498 | 0 | } |
1499 | 0 | } |
1500 | | #endif |
1501 | | |
1502 | | /* Generation functions for RXS M XS (no MCG versions because they |
1503 | | * don't make sense when you want to use the entire state) |
1504 | | */ |
1505 | | |
1506 | | inline uint8_t pcg_oneseq_8_rxs_m_xs_8_random_r(struct pcg_state_8* rng) |
1507 | 0 | { |
1508 | 0 | uint8_t oldstate = rng->state; |
1509 | 0 | pcg_oneseq_8_step_r(rng); |
1510 | 0 | return pcg_output_rxs_m_xs_8_8(oldstate); |
1511 | 0 | } |
1512 | | |
1513 | | inline uint8_t pcg_oneseq_8_rxs_m_xs_8_boundedrand_r(struct pcg_state_8* rng, |
1514 | | uint8_t bound) |
1515 | 0 | { |
1516 | 0 | uint8_t threshold = ((uint8_t)(-bound)) % bound; |
1517 | 0 | for (;;) { |
1518 | 0 | uint8_t r = pcg_oneseq_8_rxs_m_xs_8_random_r(rng); |
1519 | 0 | if (r >= threshold) |
1520 | 0 | return r % bound; |
1521 | 0 | } |
1522 | 0 | } |
1523 | | |
1524 | | inline uint16_t pcg_oneseq_16_rxs_m_xs_16_random_r(struct pcg_state_16* rng) |
1525 | 0 | { |
1526 | 0 | uint16_t oldstate = rng->state; |
1527 | 0 | pcg_oneseq_16_step_r(rng); |
1528 | 0 | return pcg_output_rxs_m_xs_16_16(oldstate); |
1529 | 0 | } |
1530 | | |
1531 | | inline uint16_t |
1532 | | pcg_oneseq_16_rxs_m_xs_16_boundedrand_r(struct pcg_state_16* rng, |
1533 | | uint16_t bound) |
1534 | 0 | { |
1535 | 0 | uint16_t threshold = ((uint16_t)(-bound)) % bound; |
1536 | 0 | for (;;) { |
1537 | 0 | uint16_t r = pcg_oneseq_16_rxs_m_xs_16_random_r(rng); |
1538 | 0 | if (r >= threshold) |
1539 | 0 | return r % bound; |
1540 | 0 | } |
1541 | 0 | } |
1542 | | |
1543 | | inline uint32_t pcg_oneseq_32_rxs_m_xs_32_random_r(struct pcg_state_32* rng) |
1544 | 0 | { |
1545 | 0 | uint32_t oldstate = rng->state; |
1546 | 0 | pcg_oneseq_32_step_r(rng); |
1547 | 0 | return pcg_output_rxs_m_xs_32_32(oldstate); |
1548 | 0 | } |
1549 | | |
1550 | | inline uint32_t |
1551 | | pcg_oneseq_32_rxs_m_xs_32_boundedrand_r(struct pcg_state_32* rng, |
1552 | | uint32_t bound) |
1553 | 0 | { |
1554 | 0 | uint32_t threshold = -bound % bound; |
1555 | 0 | for (;;) { |
1556 | 0 | uint32_t r = pcg_oneseq_32_rxs_m_xs_32_random_r(rng); |
1557 | 0 | if (r >= threshold) |
1558 | 0 | return r % bound; |
1559 | 0 | } |
1560 | 0 | } |
1561 | | |
1562 | | inline uint64_t pcg_oneseq_64_rxs_m_xs_64_random_r(struct pcg_state_64* rng) |
1563 | 0 | { |
1564 | 0 | uint64_t oldstate = rng->state; |
1565 | 0 | pcg_oneseq_64_step_r(rng); |
1566 | 0 | return pcg_output_rxs_m_xs_64_64(oldstate); |
1567 | 0 | } |
1568 | | |
1569 | | inline uint64_t |
1570 | | pcg_oneseq_64_rxs_m_xs_64_boundedrand_r(struct pcg_state_64* rng, |
1571 | | uint64_t bound) |
1572 | 0 | { |
1573 | 0 | uint64_t threshold = -bound % bound; |
1574 | 0 | for (;;) { |
1575 | 0 | uint64_t r = pcg_oneseq_64_rxs_m_xs_64_random_r(rng); |
1576 | 0 | if (r >= threshold) |
1577 | 0 | return r % bound; |
1578 | 0 | } |
1579 | 0 | } |
1580 | | |
1581 | | #if PCG_HAS_128BIT_OPS |
1582 | | inline pcg128_t pcg_oneseq_128_rxs_m_xs_128_random_r(struct pcg_state_128* rng) |
1583 | 0 | { |
1584 | 0 | pcg_oneseq_128_step_r(rng); |
1585 | 0 | return pcg_output_rxs_m_xs_128_128(rng->state); |
1586 | 0 | } |
1587 | | #endif |
1588 | | |
1589 | | #if PCG_HAS_128BIT_OPS |
1590 | | inline pcg128_t |
1591 | | pcg_oneseq_128_rxs_m_xs_128_boundedrand_r(struct pcg_state_128* rng, |
1592 | | pcg128_t bound) |
1593 | 0 | { |
1594 | 0 | pcg128_t threshold = -bound % bound; |
1595 | 0 | for (;;) { |
1596 | 0 | pcg128_t r = pcg_oneseq_128_rxs_m_xs_128_random_r(rng); |
1597 | 0 | if (r >= threshold) |
1598 | 0 | return r % bound; |
1599 | 0 | } |
1600 | 0 | } |
1601 | | #endif |
1602 | | |
1603 | | inline uint16_t pcg_unique_16_rxs_m_xs_16_random_r(struct pcg_state_16* rng) |
1604 | 0 | { |
1605 | 0 | uint16_t oldstate = rng->state; |
1606 | 0 | pcg_unique_16_step_r(rng); |
1607 | 0 | return pcg_output_rxs_m_xs_16_16(oldstate); |
1608 | 0 | } |
1609 | | |
1610 | | inline uint16_t |
1611 | | pcg_unique_16_rxs_m_xs_16_boundedrand_r(struct pcg_state_16* rng, |
1612 | | uint16_t bound) |
1613 | 0 | { |
1614 | 0 | uint16_t threshold = ((uint16_t)(-bound)) % bound; |
1615 | 0 | for (;;) { |
1616 | 0 | uint16_t r = pcg_unique_16_rxs_m_xs_16_random_r(rng); |
1617 | 0 | if (r >= threshold) |
1618 | 0 | return r % bound; |
1619 | 0 | } |
1620 | 0 | } |
1621 | | |
1622 | | inline uint32_t pcg_unique_32_rxs_m_xs_32_random_r(struct pcg_state_32* rng) |
1623 | 0 | { |
1624 | 0 | uint32_t oldstate = rng->state; |
1625 | 0 | pcg_unique_32_step_r(rng); |
1626 | 0 | return pcg_output_rxs_m_xs_32_32(oldstate); |
1627 | 0 | } |
1628 | | |
1629 | | inline uint32_t |
1630 | | pcg_unique_32_rxs_m_xs_32_boundedrand_r(struct pcg_state_32* rng, |
1631 | | uint32_t bound) |
1632 | 0 | { |
1633 | 0 | uint32_t threshold = -bound % bound; |
1634 | 0 | for (;;) { |
1635 | 0 | uint32_t r = pcg_unique_32_rxs_m_xs_32_random_r(rng); |
1636 | 0 | if (r >= threshold) |
1637 | 0 | return r % bound; |
1638 | 0 | } |
1639 | 0 | } |
1640 | | |
1641 | | inline uint64_t pcg_unique_64_rxs_m_xs_64_random_r(struct pcg_state_64* rng) |
1642 | 0 | { |
1643 | 0 | uint64_t oldstate = rng->state; |
1644 | 0 | pcg_unique_64_step_r(rng); |
1645 | 0 | return pcg_output_rxs_m_xs_64_64(oldstate); |
1646 | 0 | } |
1647 | | |
1648 | | inline uint64_t |
1649 | | pcg_unique_64_rxs_m_xs_64_boundedrand_r(struct pcg_state_64* rng, |
1650 | | uint64_t bound) |
1651 | 0 | { |
1652 | 0 | uint64_t threshold = -bound % bound; |
1653 | 0 | for (;;) { |
1654 | 0 | uint64_t r = pcg_unique_64_rxs_m_xs_64_random_r(rng); |
1655 | 0 | if (r >= threshold) |
1656 | 0 | return r % bound; |
1657 | 0 | } |
1658 | 0 | } |
1659 | | |
1660 | | #if PCG_HAS_128BIT_OPS |
1661 | | inline pcg128_t pcg_unique_128_rxs_m_xs_128_random_r(struct pcg_state_128* rng) |
1662 | 0 | { |
1663 | 0 | pcg_unique_128_step_r(rng); |
1664 | 0 | return pcg_output_rxs_m_xs_128_128(rng->state); |
1665 | 0 | } |
1666 | | #endif |
1667 | | |
1668 | | #if PCG_HAS_128BIT_OPS |
1669 | | inline pcg128_t |
1670 | | pcg_unique_128_rxs_m_xs_128_boundedrand_r(struct pcg_state_128* rng, |
1671 | | pcg128_t bound) |
1672 | 0 | { |
1673 | 0 | pcg128_t threshold = -bound % bound; |
1674 | 0 | for (;;) { |
1675 | 0 | pcg128_t r = pcg_unique_128_rxs_m_xs_128_random_r(rng); |
1676 | 0 | if (r >= threshold) |
1677 | 0 | return r % bound; |
1678 | 0 | } |
1679 | 0 | } |
1680 | | #endif |
1681 | | |
1682 | | inline uint8_t pcg_setseq_8_rxs_m_xs_8_random_r(struct pcg_state_setseq_8* rng) |
1683 | 0 | { |
1684 | 0 | uint8_t oldstate = rng->state; |
1685 | 0 | pcg_setseq_8_step_r(rng); |
1686 | 0 | return pcg_output_rxs_m_xs_8_8(oldstate); |
1687 | 0 | } |
1688 | | |
1689 | | inline uint8_t |
1690 | | pcg_setseq_8_rxs_m_xs_8_boundedrand_r(struct pcg_state_setseq_8* rng, |
1691 | | uint8_t bound) |
1692 | 0 | { |
1693 | 0 | uint8_t threshold = ((uint8_t)(-bound)) % bound; |
1694 | 0 | for (;;) { |
1695 | 0 | uint8_t r = pcg_setseq_8_rxs_m_xs_8_random_r(rng); |
1696 | 0 | if (r >= threshold) |
1697 | 0 | return r % bound; |
1698 | 0 | } |
1699 | 0 | } |
1700 | | |
1701 | | inline uint16_t |
1702 | | pcg_setseq_16_rxs_m_xs_16_random_r(struct pcg_state_setseq_16* rng) |
1703 | 0 | { |
1704 | 0 | uint16_t oldstate = rng->state; |
1705 | 0 | pcg_setseq_16_step_r(rng); |
1706 | 0 | return pcg_output_rxs_m_xs_16_16(oldstate); |
1707 | 0 | } |
1708 | | |
1709 | | inline uint16_t |
1710 | | pcg_setseq_16_rxs_m_xs_16_boundedrand_r(struct pcg_state_setseq_16* rng, |
1711 | | uint16_t bound) |
1712 | 0 | { |
1713 | 0 | uint16_t threshold = ((uint16_t)(-bound)) % bound; |
1714 | 0 | for (;;) { |
1715 | 0 | uint16_t r = pcg_setseq_16_rxs_m_xs_16_random_r(rng); |
1716 | 0 | if (r >= threshold) |
1717 | 0 | return r % bound; |
1718 | 0 | } |
1719 | 0 | } |
1720 | | |
1721 | | inline uint32_t |
1722 | | pcg_setseq_32_rxs_m_xs_32_random_r(struct pcg_state_setseq_32* rng) |
1723 | 0 | { |
1724 | 0 | uint32_t oldstate = rng->state; |
1725 | 0 | pcg_setseq_32_step_r(rng); |
1726 | 0 | return pcg_output_rxs_m_xs_32_32(oldstate); |
1727 | 0 | } |
1728 | | |
1729 | | inline uint32_t |
1730 | | pcg_setseq_32_rxs_m_xs_32_boundedrand_r(struct pcg_state_setseq_32* rng, |
1731 | | uint32_t bound) |
1732 | 0 | { |
1733 | 0 | uint32_t threshold = -bound % bound; |
1734 | 0 | for (;;) { |
1735 | 0 | uint32_t r = pcg_setseq_32_rxs_m_xs_32_random_r(rng); |
1736 | 0 | if (r >= threshold) |
1737 | 0 | return r % bound; |
1738 | 0 | } |
1739 | 0 | } |
1740 | | |
1741 | | inline uint64_t |
1742 | | pcg_setseq_64_rxs_m_xs_64_random_r(struct pcg_state_setseq_64* rng) |
1743 | 0 | { |
1744 | 0 | uint64_t oldstate = rng->state; |
1745 | 0 | pcg_setseq_64_step_r(rng); |
1746 | 0 | return pcg_output_rxs_m_xs_64_64(oldstate); |
1747 | 0 | } |
1748 | | |
1749 | | inline uint64_t |
1750 | | pcg_setseq_64_rxs_m_xs_64_boundedrand_r(struct pcg_state_setseq_64* rng, |
1751 | | uint64_t bound) |
1752 | 0 | { |
1753 | 0 | uint64_t threshold = -bound % bound; |
1754 | 0 | for (;;) { |
1755 | 0 | uint64_t r = pcg_setseq_64_rxs_m_xs_64_random_r(rng); |
1756 | 0 | if (r >= threshold) |
1757 | 0 | return r % bound; |
1758 | 0 | } |
1759 | 0 | } |
1760 | | |
1761 | | #if PCG_HAS_128BIT_OPS |
1762 | | inline pcg128_t |
1763 | | pcg_setseq_128_rxs_m_xs_128_random_r(struct pcg_state_setseq_128* rng) |
1764 | 0 | { |
1765 | 0 | pcg_setseq_128_step_r(rng); |
1766 | 0 | return pcg_output_rxs_m_xs_128_128(rng->state); |
1767 | 0 | } |
1768 | | #endif |
1769 | | |
1770 | | #if PCG_HAS_128BIT_OPS |
1771 | | inline pcg128_t |
1772 | | pcg_setseq_128_rxs_m_xs_128_boundedrand_r(struct pcg_state_setseq_128* rng, |
1773 | | pcg128_t bound) |
1774 | 0 | { |
1775 | 0 | pcg128_t threshold = -bound % bound; |
1776 | 0 | for (;;) { |
1777 | 0 | pcg128_t r = pcg_setseq_128_rxs_m_xs_128_random_r(rng); |
1778 | 0 | if (r >= threshold) |
1779 | 0 | return r % bound; |
1780 | 0 | } |
1781 | 0 | } |
1782 | | #endif |
1783 | | |
1784 | | /* Generation functions for RXS M */ |
1785 | | |
1786 | | inline uint8_t pcg_oneseq_16_rxs_m_8_random_r(struct pcg_state_16* rng) |
1787 | 0 | { |
1788 | 0 | uint16_t oldstate = rng->state; |
1789 | 0 | pcg_oneseq_16_step_r(rng); |
1790 | 0 | return pcg_output_rxs_m_16_8(oldstate); |
1791 | 0 | } |
1792 | | |
1793 | | inline uint8_t pcg_oneseq_16_rxs_m_8_boundedrand_r(struct pcg_state_16* rng, |
1794 | | uint8_t bound) |
1795 | 0 | { |
1796 | 0 | uint8_t threshold = ((uint8_t)(-bound)) % bound; |
1797 | 0 | for (;;) { |
1798 | 0 | uint8_t r = pcg_oneseq_16_rxs_m_8_random_r(rng); |
1799 | 0 | if (r >= threshold) |
1800 | 0 | return r % bound; |
1801 | 0 | } |
1802 | 0 | } |
1803 | | |
1804 | | inline uint16_t pcg_oneseq_32_rxs_m_16_random_r(struct pcg_state_32* rng) |
1805 | 0 | { |
1806 | 0 | uint32_t oldstate = rng->state; |
1807 | 0 | pcg_oneseq_32_step_r(rng); |
1808 | 0 | return pcg_output_rxs_m_32_16(oldstate); |
1809 | 0 | } |
1810 | | |
1811 | | inline uint16_t pcg_oneseq_32_rxs_m_16_boundedrand_r(struct pcg_state_32* rng, |
1812 | | uint16_t bound) |
1813 | 0 | { |
1814 | 0 | uint16_t threshold = ((uint16_t)(-bound)) % bound; |
1815 | 0 | for (;;) { |
1816 | 0 | uint16_t r = pcg_oneseq_32_rxs_m_16_random_r(rng); |
1817 | 0 | if (r >= threshold) |
1818 | 0 | return r % bound; |
1819 | 0 | } |
1820 | 0 | } |
1821 | | |
1822 | | inline uint32_t pcg_oneseq_64_rxs_m_32_random_r(struct pcg_state_64* rng) |
1823 | 0 | { |
1824 | 0 | uint64_t oldstate = rng->state; |
1825 | 0 | pcg_oneseq_64_step_r(rng); |
1826 | 0 | return pcg_output_rxs_m_64_32(oldstate); |
1827 | 0 | } |
1828 | | |
1829 | | inline uint32_t pcg_oneseq_64_rxs_m_32_boundedrand_r(struct pcg_state_64* rng, |
1830 | | uint32_t bound) |
1831 | 0 | { |
1832 | 0 | uint32_t threshold = -bound % bound; |
1833 | 0 | for (;;) { |
1834 | 0 | uint32_t r = pcg_oneseq_64_rxs_m_32_random_r(rng); |
1835 | 0 | if (r >= threshold) |
1836 | 0 | return r % bound; |
1837 | 0 | } |
1838 | 0 | } |
1839 | | |
1840 | | #if PCG_HAS_128BIT_OPS |
1841 | | inline uint64_t pcg_oneseq_128_rxs_m_64_random_r(struct pcg_state_128* rng) |
1842 | 0 | { |
1843 | 0 | pcg_oneseq_128_step_r(rng); |
1844 | 0 | return pcg_output_rxs_m_128_64(rng->state); |
1845 | 0 | } |
1846 | | #endif |
1847 | | |
1848 | | #if PCG_HAS_128BIT_OPS |
1849 | | inline uint64_t pcg_oneseq_128_rxs_m_64_boundedrand_r(struct pcg_state_128* rng, |
1850 | | uint64_t bound) |
1851 | 0 | { |
1852 | 0 | uint64_t threshold = -bound % bound; |
1853 | 0 | for (;;) { |
1854 | 0 | uint64_t r = pcg_oneseq_128_rxs_m_64_random_r(rng); |
1855 | 0 | if (r >= threshold) |
1856 | 0 | return r % bound; |
1857 | 0 | } |
1858 | 0 | } |
1859 | | #endif |
1860 | | |
1861 | | inline uint8_t pcg_unique_16_rxs_m_8_random_r(struct pcg_state_16* rng) |
1862 | 0 | { |
1863 | 0 | uint16_t oldstate = rng->state; |
1864 | 0 | pcg_unique_16_step_r(rng); |
1865 | 0 | return pcg_output_rxs_m_16_8(oldstate); |
1866 | 0 | } |
1867 | | |
1868 | | inline uint8_t pcg_unique_16_rxs_m_8_boundedrand_r(struct pcg_state_16* rng, |
1869 | | uint8_t bound) |
1870 | 0 | { |
1871 | 0 | uint8_t threshold = ((uint8_t)(-bound)) % bound; |
1872 | 0 | for (;;) { |
1873 | 0 | uint8_t r = pcg_unique_16_rxs_m_8_random_r(rng); |
1874 | 0 | if (r >= threshold) |
1875 | 0 | return r % bound; |
1876 | 0 | } |
1877 | 0 | } |
1878 | | |
1879 | | inline uint16_t pcg_unique_32_rxs_m_16_random_r(struct pcg_state_32* rng) |
1880 | 0 | { |
1881 | 0 | uint32_t oldstate = rng->state; |
1882 | 0 | pcg_unique_32_step_r(rng); |
1883 | 0 | return pcg_output_rxs_m_32_16(oldstate); |
1884 | 0 | } |
1885 | | |
1886 | | inline uint16_t pcg_unique_32_rxs_m_16_boundedrand_r(struct pcg_state_32* rng, |
1887 | | uint16_t bound) |
1888 | 0 | { |
1889 | 0 | uint16_t threshold = ((uint16_t)(-bound)) % bound; |
1890 | 0 | for (;;) { |
1891 | 0 | uint16_t r = pcg_unique_32_rxs_m_16_random_r(rng); |
1892 | 0 | if (r >= threshold) |
1893 | 0 | return r % bound; |
1894 | 0 | } |
1895 | 0 | } |
1896 | | |
1897 | | inline uint32_t pcg_unique_64_rxs_m_32_random_r(struct pcg_state_64* rng) |
1898 | 0 | { |
1899 | 0 | uint64_t oldstate = rng->state; |
1900 | 0 | pcg_unique_64_step_r(rng); |
1901 | 0 | return pcg_output_rxs_m_64_32(oldstate); |
1902 | 0 | } |
1903 | | |
1904 | | inline uint32_t pcg_unique_64_rxs_m_32_boundedrand_r(struct pcg_state_64* rng, |
1905 | | uint32_t bound) |
1906 | 0 | { |
1907 | 0 | uint32_t threshold = -bound % bound; |
1908 | 0 | for (;;) { |
1909 | 0 | uint32_t r = pcg_unique_64_rxs_m_32_random_r(rng); |
1910 | 0 | if (r >= threshold) |
1911 | 0 | return r % bound; |
1912 | 0 | } |
1913 | 0 | } |
1914 | | |
1915 | | #if PCG_HAS_128BIT_OPS |
1916 | | inline uint64_t pcg_unique_128_rxs_m_64_random_r(struct pcg_state_128* rng) |
1917 | 0 | { |
1918 | 0 | pcg_unique_128_step_r(rng); |
1919 | 0 | return pcg_output_rxs_m_128_64(rng->state); |
1920 | 0 | } |
1921 | | #endif |
1922 | | |
1923 | | #if PCG_HAS_128BIT_OPS |
1924 | | inline uint64_t pcg_unique_128_rxs_m_64_boundedrand_r(struct pcg_state_128* rng, |
1925 | | uint64_t bound) |
1926 | 0 | { |
1927 | 0 | uint64_t threshold = -bound % bound; |
1928 | 0 | for (;;) { |
1929 | 0 | uint64_t r = pcg_unique_128_rxs_m_64_random_r(rng); |
1930 | 0 | if (r >= threshold) |
1931 | 0 | return r % bound; |
1932 | 0 | } |
1933 | 0 | } |
1934 | | #endif |
1935 | | |
1936 | | inline uint8_t pcg_setseq_16_rxs_m_8_random_r(struct pcg_state_setseq_16* rng) |
1937 | 0 | { |
1938 | 0 | uint16_t oldstate = rng->state; |
1939 | 0 | pcg_setseq_16_step_r(rng); |
1940 | 0 | return pcg_output_rxs_m_16_8(oldstate); |
1941 | 0 | } |
1942 | | |
1943 | | inline uint8_t |
1944 | | pcg_setseq_16_rxs_m_8_boundedrand_r(struct pcg_state_setseq_16* rng, |
1945 | | uint8_t bound) |
1946 | 0 | { |
1947 | 0 | uint8_t threshold = ((uint8_t)(-bound)) % bound; |
1948 | 0 | for (;;) { |
1949 | 0 | uint8_t r = pcg_setseq_16_rxs_m_8_random_r(rng); |
1950 | 0 | if (r >= threshold) |
1951 | 0 | return r % bound; |
1952 | 0 | } |
1953 | 0 | } |
1954 | | |
1955 | | inline uint16_t pcg_setseq_32_rxs_m_16_random_r(struct pcg_state_setseq_32* rng) |
1956 | 0 | { |
1957 | 0 | uint32_t oldstate = rng->state; |
1958 | 0 | pcg_setseq_32_step_r(rng); |
1959 | 0 | return pcg_output_rxs_m_32_16(oldstate); |
1960 | 0 | } |
1961 | | |
1962 | | inline uint16_t |
1963 | | pcg_setseq_32_rxs_m_16_boundedrand_r(struct pcg_state_setseq_32* rng, |
1964 | | uint16_t bound) |
1965 | 0 | { |
1966 | 0 | uint16_t threshold = ((uint16_t)(-bound)) % bound; |
1967 | 0 | for (;;) { |
1968 | 0 | uint16_t r = pcg_setseq_32_rxs_m_16_random_r(rng); |
1969 | 0 | if (r >= threshold) |
1970 | 0 | return r % bound; |
1971 | 0 | } |
1972 | 0 | } |
1973 | | |
1974 | | inline uint32_t pcg_setseq_64_rxs_m_32_random_r(struct pcg_state_setseq_64* rng) |
1975 | 0 | { |
1976 | 0 | uint64_t oldstate = rng->state; |
1977 | 0 | pcg_setseq_64_step_r(rng); |
1978 | 0 | return pcg_output_rxs_m_64_32(oldstate); |
1979 | 0 | } |
1980 | | |
1981 | | inline uint32_t |
1982 | | pcg_setseq_64_rxs_m_32_boundedrand_r(struct pcg_state_setseq_64* rng, |
1983 | | uint32_t bound) |
1984 | 0 | { |
1985 | 0 | uint32_t threshold = -bound % bound; |
1986 | 0 | for (;;) { |
1987 | 0 | uint32_t r = pcg_setseq_64_rxs_m_32_random_r(rng); |
1988 | 0 | if (r >= threshold) |
1989 | 0 | return r % bound; |
1990 | 0 | } |
1991 | 0 | } |
1992 | | |
1993 | | #if PCG_HAS_128BIT_OPS |
1994 | | inline uint64_t |
1995 | | pcg_setseq_128_rxs_m_64_random_r(struct pcg_state_setseq_128* rng) |
1996 | 0 | { |
1997 | 0 | pcg_setseq_128_step_r(rng); |
1998 | 0 | return pcg_output_rxs_m_128_64(rng->state); |
1999 | 0 | } |
2000 | | #endif |
2001 | | |
2002 | | #if PCG_HAS_128BIT_OPS |
2003 | | inline uint64_t |
2004 | | pcg_setseq_128_rxs_m_64_boundedrand_r(struct pcg_state_setseq_128* rng, |
2005 | | uint64_t bound) |
2006 | 0 | { |
2007 | 0 | uint64_t threshold = -bound % bound; |
2008 | 0 | for (;;) { |
2009 | 0 | uint64_t r = pcg_setseq_128_rxs_m_64_random_r(rng); |
2010 | 0 | if (r >= threshold) |
2011 | 0 | return r % bound; |
2012 | 0 | } |
2013 | 0 | } |
2014 | | #endif |
2015 | | |
2016 | | inline uint8_t pcg_mcg_16_rxs_m_8_random_r(struct pcg_state_16* rng) |
2017 | 0 | { |
2018 | 0 | uint16_t oldstate = rng->state; |
2019 | 0 | pcg_mcg_16_step_r(rng); |
2020 | 0 | return pcg_output_rxs_m_16_8(oldstate); |
2021 | 0 | } |
2022 | | |
2023 | | inline uint8_t pcg_mcg_16_rxs_m_8_boundedrand_r(struct pcg_state_16* rng, |
2024 | | uint8_t bound) |
2025 | 0 | { |
2026 | 0 | uint8_t threshold = ((uint8_t)(-bound)) % bound; |
2027 | 0 | for (;;) { |
2028 | 0 | uint8_t r = pcg_mcg_16_rxs_m_8_random_r(rng); |
2029 | 0 | if (r >= threshold) |
2030 | 0 | return r % bound; |
2031 | 0 | } |
2032 | 0 | } |
2033 | | |
2034 | | inline uint16_t pcg_mcg_32_rxs_m_16_random_r(struct pcg_state_32* rng) |
2035 | 0 | { |
2036 | 0 | uint32_t oldstate = rng->state; |
2037 | 0 | pcg_mcg_32_step_r(rng); |
2038 | 0 | return pcg_output_rxs_m_32_16(oldstate); |
2039 | 0 | } |
2040 | | |
2041 | | inline uint16_t pcg_mcg_32_rxs_m_16_boundedrand_r(struct pcg_state_32* rng, |
2042 | | uint16_t bound) |
2043 | 0 | { |
2044 | 0 | uint16_t threshold = ((uint16_t)(-bound)) % bound; |
2045 | 0 | for (;;) { |
2046 | 0 | uint16_t r = pcg_mcg_32_rxs_m_16_random_r(rng); |
2047 | 0 | if (r >= threshold) |
2048 | 0 | return r % bound; |
2049 | 0 | } |
2050 | 0 | } |
2051 | | |
2052 | | inline uint32_t pcg_mcg_64_rxs_m_32_random_r(struct pcg_state_64* rng) |
2053 | 0 | { |
2054 | 0 | uint64_t oldstate = rng->state; |
2055 | 0 | pcg_mcg_64_step_r(rng); |
2056 | 0 | return pcg_output_rxs_m_64_32(oldstate); |
2057 | 0 | } |
2058 | | |
2059 | | inline uint32_t pcg_mcg_64_rxs_m_32_boundedrand_r(struct pcg_state_64* rng, |
2060 | | uint32_t bound) |
2061 | 0 | { |
2062 | 0 | uint32_t threshold = -bound % bound; |
2063 | 0 | for (;;) { |
2064 | 0 | uint32_t r = pcg_mcg_64_rxs_m_32_random_r(rng); |
2065 | 0 | if (r >= threshold) |
2066 | 0 | return r % bound; |
2067 | 0 | } |
2068 | 0 | } |
2069 | | |
2070 | | #if PCG_HAS_128BIT_OPS |
2071 | | inline uint64_t pcg_mcg_128_rxs_m_64_random_r(struct pcg_state_128* rng) |
2072 | 0 | { |
2073 | 0 | pcg_mcg_128_step_r(rng); |
2074 | 0 | return pcg_output_rxs_m_128_64(rng->state); |
2075 | 0 | } |
2076 | | #endif |
2077 | | |
2078 | | #if PCG_HAS_128BIT_OPS |
2079 | | inline uint64_t pcg_mcg_128_rxs_m_64_boundedrand_r(struct pcg_state_128* rng, |
2080 | | uint64_t bound) |
2081 | 0 | { |
2082 | 0 | uint64_t threshold = -bound % bound; |
2083 | 0 | for (;;) { |
2084 | 0 | uint64_t r = pcg_mcg_128_rxs_m_64_random_r(rng); |
2085 | 0 | if (r >= threshold) |
2086 | 0 | return r % bound; |
2087 | 0 | } |
2088 | 0 | } |
2089 | | #endif |
2090 | | |
2091 | | /* Generation functions for XSL RR (only defined for "large" types) */ |
2092 | | |
2093 | | inline uint32_t pcg_oneseq_64_xsl_rr_32_random_r(struct pcg_state_64* rng) |
2094 | 0 | { |
2095 | 0 | uint64_t oldstate = rng->state; |
2096 | 0 | pcg_oneseq_64_step_r(rng); |
2097 | 0 | return pcg_output_xsl_rr_64_32(oldstate); |
2098 | 0 | } |
2099 | | |
2100 | | inline uint32_t pcg_oneseq_64_xsl_rr_32_boundedrand_r(struct pcg_state_64* rng, |
2101 | | uint32_t bound) |
2102 | 0 | { |
2103 | 0 | uint32_t threshold = -bound % bound; |
2104 | 0 | for (;;) { |
2105 | 0 | uint32_t r = pcg_oneseq_64_xsl_rr_32_random_r(rng); |
2106 | 0 | if (r >= threshold) |
2107 | 0 | return r % bound; |
2108 | 0 | } |
2109 | 0 | } |
2110 | | |
2111 | | #if PCG_HAS_128BIT_OPS |
2112 | | inline uint64_t pcg_oneseq_128_xsl_rr_64_random_r(struct pcg_state_128* rng) |
2113 | 0 | { |
2114 | 0 | pcg_oneseq_128_step_r(rng); |
2115 | 0 | return pcg_output_xsl_rr_128_64(rng->state); |
2116 | 0 | } |
2117 | | #endif |
2118 | | |
2119 | | #if PCG_HAS_128BIT_OPS |
2120 | | inline uint64_t |
2121 | | pcg_oneseq_128_xsl_rr_64_boundedrand_r(struct pcg_state_128* rng, |
2122 | | uint64_t bound) |
2123 | 0 | { |
2124 | 0 | uint64_t threshold = -bound % bound; |
2125 | 0 | for (;;) { |
2126 | 0 | uint64_t r = pcg_oneseq_128_xsl_rr_64_random_r(rng); |
2127 | 0 | if (r >= threshold) |
2128 | 0 | return r % bound; |
2129 | 0 | } |
2130 | 0 | } |
2131 | | #endif |
2132 | | |
2133 | | inline uint32_t pcg_unique_64_xsl_rr_32_random_r(struct pcg_state_64* rng) |
2134 | 0 | { |
2135 | 0 | uint64_t oldstate = rng->state; |
2136 | 0 | pcg_unique_64_step_r(rng); |
2137 | 0 | return pcg_output_xsl_rr_64_32(oldstate); |
2138 | 0 | } |
2139 | | |
2140 | | inline uint32_t pcg_unique_64_xsl_rr_32_boundedrand_r(struct pcg_state_64* rng, |
2141 | | uint32_t bound) |
2142 | 0 | { |
2143 | 0 | uint32_t threshold = -bound % bound; |
2144 | 0 | for (;;) { |
2145 | 0 | uint32_t r = pcg_unique_64_xsl_rr_32_random_r(rng); |
2146 | 0 | if (r >= threshold) |
2147 | 0 | return r % bound; |
2148 | 0 | } |
2149 | 0 | } |
2150 | | |
2151 | | #if PCG_HAS_128BIT_OPS |
2152 | | inline uint64_t pcg_unique_128_xsl_rr_64_random_r(struct pcg_state_128* rng) |
2153 | 0 | { |
2154 | 0 | pcg_unique_128_step_r(rng); |
2155 | 0 | return pcg_output_xsl_rr_128_64(rng->state); |
2156 | 0 | } |
2157 | | #endif |
2158 | | |
2159 | | #if PCG_HAS_128BIT_OPS |
2160 | | inline uint64_t |
2161 | | pcg_unique_128_xsl_rr_64_boundedrand_r(struct pcg_state_128* rng, |
2162 | | uint64_t bound) |
2163 | 0 | { |
2164 | 0 | uint64_t threshold = -bound % bound; |
2165 | 0 | for (;;) { |
2166 | 0 | uint64_t r = pcg_unique_128_xsl_rr_64_random_r(rng); |
2167 | 0 | if (r >= threshold) |
2168 | 0 | return r % bound; |
2169 | 0 | } |
2170 | 0 | } |
2171 | | #endif |
2172 | | |
2173 | | inline uint32_t |
2174 | | pcg_setseq_64_xsl_rr_32_random_r(struct pcg_state_setseq_64* rng) |
2175 | 0 | { |
2176 | 0 | uint64_t oldstate = rng->state; |
2177 | 0 | pcg_setseq_64_step_r(rng); |
2178 | 0 | return pcg_output_xsl_rr_64_32(oldstate); |
2179 | 0 | } |
2180 | | |
2181 | | inline uint32_t |
2182 | | pcg_setseq_64_xsl_rr_32_boundedrand_r(struct pcg_state_setseq_64* rng, |
2183 | | uint32_t bound) |
2184 | 0 | { |
2185 | 0 | uint32_t threshold = -bound % bound; |
2186 | 0 | for (;;) { |
2187 | 0 | uint32_t r = pcg_setseq_64_xsl_rr_32_random_r(rng); |
2188 | 0 | if (r >= threshold) |
2189 | 0 | return r % bound; |
2190 | 0 | } |
2191 | 0 | } |
2192 | | |
2193 | | #if PCG_HAS_128BIT_OPS |
2194 | | inline uint64_t |
2195 | | pcg_setseq_128_xsl_rr_64_random_r(struct pcg_state_setseq_128* rng) |
2196 | 0 | { |
2197 | 0 | pcg_setseq_128_step_r(rng); |
2198 | 0 | return pcg_output_xsl_rr_128_64(rng->state); |
2199 | 0 | } |
2200 | | #endif |
2201 | | |
2202 | | #if PCG_HAS_128BIT_OPS |
2203 | | inline uint64_t |
2204 | | pcg_setseq_128_xsl_rr_64_boundedrand_r(struct pcg_state_setseq_128* rng, |
2205 | | uint64_t bound) |
2206 | 0 | { |
2207 | 0 | uint64_t threshold = -bound % bound; |
2208 | 0 | for (;;) { |
2209 | 0 | uint64_t r = pcg_setseq_128_xsl_rr_64_random_r(rng); |
2210 | 0 | if (r >= threshold) |
2211 | 0 | return r % bound; |
2212 | 0 | } |
2213 | 0 | } |
2214 | | #endif |
2215 | | |
2216 | | inline uint32_t pcg_mcg_64_xsl_rr_32_random_r(struct pcg_state_64* rng) |
2217 | 0 | { |
2218 | 0 | uint64_t oldstate = rng->state; |
2219 | 0 | pcg_mcg_64_step_r(rng); |
2220 | 0 | return pcg_output_xsl_rr_64_32(oldstate); |
2221 | 0 | } |
2222 | | |
2223 | | inline uint32_t pcg_mcg_64_xsl_rr_32_boundedrand_r(struct pcg_state_64* rng, |
2224 | | uint32_t bound) |
2225 | 0 | { |
2226 | 0 | uint32_t threshold = -bound % bound; |
2227 | 0 | for (;;) { |
2228 | 0 | uint32_t r = pcg_mcg_64_xsl_rr_32_random_r(rng); |
2229 | 0 | if (r >= threshold) |
2230 | 0 | return r % bound; |
2231 | 0 | } |
2232 | 0 | } |
2233 | | |
2234 | | #if PCG_HAS_128BIT_OPS |
2235 | | inline uint64_t pcg_mcg_128_xsl_rr_64_random_r(struct pcg_state_128* rng) |
2236 | 0 | { |
2237 | 0 | pcg_mcg_128_step_r(rng); |
2238 | 0 | return pcg_output_xsl_rr_128_64(rng->state); |
2239 | 0 | } |
2240 | | #endif |
2241 | | |
2242 | | #if PCG_HAS_128BIT_OPS |
2243 | | inline uint64_t pcg_mcg_128_xsl_rr_64_boundedrand_r(struct pcg_state_128* rng, |
2244 | | uint64_t bound) |
2245 | 0 | { |
2246 | 0 | uint64_t threshold = -bound % bound; |
2247 | 0 | for (;;) { |
2248 | 0 | uint64_t r = pcg_mcg_128_xsl_rr_64_random_r(rng); |
2249 | 0 | if (r >= threshold) |
2250 | 0 | return r % bound; |
2251 | 0 | } |
2252 | 0 | } |
2253 | | #endif |
2254 | | |
2255 | | /* Generation functions for XSL RR RR (only defined for "large" types) */ |
2256 | | |
2257 | | inline uint64_t pcg_oneseq_64_xsl_rr_rr_64_random_r(struct pcg_state_64* rng) |
2258 | 0 | { |
2259 | 0 | uint64_t oldstate = rng->state; |
2260 | 0 | pcg_oneseq_64_step_r(rng); |
2261 | 0 | return pcg_output_xsl_rr_rr_64_64(oldstate); |
2262 | 0 | } |
2263 | | |
2264 | | inline uint64_t |
2265 | | pcg_oneseq_64_xsl_rr_rr_64_boundedrand_r(struct pcg_state_64* rng, |
2266 | | uint64_t bound) |
2267 | 0 | { |
2268 | 0 | uint64_t threshold = -bound % bound; |
2269 | 0 | for (;;) { |
2270 | 0 | uint64_t r = pcg_oneseq_64_xsl_rr_rr_64_random_r(rng); |
2271 | 0 | if (r >= threshold) |
2272 | 0 | return r % bound; |
2273 | 0 | } |
2274 | 0 | } |
2275 | | |
2276 | | #if PCG_HAS_128BIT_OPS |
2277 | | inline pcg128_t pcg_oneseq_128_xsl_rr_rr_128_random_r(struct pcg_state_128* rng) |
2278 | 0 | { |
2279 | 0 | pcg_oneseq_128_step_r(rng); |
2280 | 0 | return pcg_output_xsl_rr_rr_128_128(rng->state); |
2281 | 0 | } |
2282 | | #endif |
2283 | | |
2284 | | #if PCG_HAS_128BIT_OPS |
2285 | | inline pcg128_t |
2286 | | pcg_oneseq_128_xsl_rr_rr_128_boundedrand_r(struct pcg_state_128* rng, |
2287 | | pcg128_t bound) |
2288 | 0 | { |
2289 | 0 | pcg128_t threshold = -bound % bound; |
2290 | 0 | for (;;) { |
2291 | 0 | pcg128_t r = pcg_oneseq_128_xsl_rr_rr_128_random_r(rng); |
2292 | 0 | if (r >= threshold) |
2293 | 0 | return r % bound; |
2294 | 0 | } |
2295 | 0 | } |
2296 | | #endif |
2297 | | |
2298 | | inline uint64_t pcg_unique_64_xsl_rr_rr_64_random_r(struct pcg_state_64* rng) |
2299 | 0 | { |
2300 | 0 | uint64_t oldstate = rng->state; |
2301 | 0 | pcg_unique_64_step_r(rng); |
2302 | 0 | return pcg_output_xsl_rr_rr_64_64(oldstate); |
2303 | 0 | } |
2304 | | |
2305 | | inline uint64_t |
2306 | | pcg_unique_64_xsl_rr_rr_64_boundedrand_r(struct pcg_state_64* rng, |
2307 | | uint64_t bound) |
2308 | 0 | { |
2309 | 0 | uint64_t threshold = -bound % bound; |
2310 | 0 | for (;;) { |
2311 | 0 | uint64_t r = pcg_unique_64_xsl_rr_rr_64_random_r(rng); |
2312 | 0 | if (r >= threshold) |
2313 | 0 | return r % bound; |
2314 | 0 | } |
2315 | 0 | } |
2316 | | |
2317 | | #if PCG_HAS_128BIT_OPS |
2318 | | inline pcg128_t pcg_unique_128_xsl_rr_rr_128_random_r(struct pcg_state_128* rng) |
2319 | 0 | { |
2320 | 0 | pcg_unique_128_step_r(rng); |
2321 | 0 | return pcg_output_xsl_rr_rr_128_128(rng->state); |
2322 | 0 | } |
2323 | | #endif |
2324 | | |
2325 | | #if PCG_HAS_128BIT_OPS |
2326 | | inline pcg128_t |
2327 | | pcg_unique_128_xsl_rr_rr_128_boundedrand_r(struct pcg_state_128* rng, |
2328 | | pcg128_t bound) |
2329 | 0 | { |
2330 | 0 | pcg128_t threshold = -bound % bound; |
2331 | 0 | for (;;) { |
2332 | 0 | pcg128_t r = pcg_unique_128_xsl_rr_rr_128_random_r(rng); |
2333 | 0 | if (r >= threshold) |
2334 | 0 | return r % bound; |
2335 | 0 | } |
2336 | 0 | } |
2337 | | #endif |
2338 | | |
2339 | | inline uint64_t |
2340 | | pcg_setseq_64_xsl_rr_rr_64_random_r(struct pcg_state_setseq_64* rng) |
2341 | 0 | { |
2342 | 0 | uint64_t oldstate = rng->state; |
2343 | 0 | pcg_setseq_64_step_r(rng); |
2344 | 0 | return pcg_output_xsl_rr_rr_64_64(oldstate); |
2345 | 0 | } |
2346 | | |
2347 | | inline uint64_t |
2348 | | pcg_setseq_64_xsl_rr_rr_64_boundedrand_r(struct pcg_state_setseq_64* rng, |
2349 | | uint64_t bound) |
2350 | 0 | { |
2351 | 0 | uint64_t threshold = -bound % bound; |
2352 | 0 | for (;;) { |
2353 | 0 | uint64_t r = pcg_setseq_64_xsl_rr_rr_64_random_r(rng); |
2354 | 0 | if (r >= threshold) |
2355 | 0 | return r % bound; |
2356 | 0 | } |
2357 | 0 | } |
2358 | | |
2359 | | #if PCG_HAS_128BIT_OPS |
2360 | | inline pcg128_t |
2361 | | pcg_setseq_128_xsl_rr_rr_128_random_r(struct pcg_state_setseq_128* rng) |
2362 | 0 | { |
2363 | 0 | pcg_setseq_128_step_r(rng); |
2364 | 0 | return pcg_output_xsl_rr_rr_128_128(rng->state); |
2365 | 0 | } |
2366 | | #endif |
2367 | | |
2368 | | #if PCG_HAS_128BIT_OPS |
2369 | | inline pcg128_t |
2370 | | pcg_setseq_128_xsl_rr_rr_128_boundedrand_r(struct pcg_state_setseq_128* rng, |
2371 | | pcg128_t bound) |
2372 | 0 | { |
2373 | 0 | pcg128_t threshold = -bound % bound; |
2374 | 0 | for (;;) { |
2375 | 0 | pcg128_t r = pcg_setseq_128_xsl_rr_rr_128_random_r(rng); |
2376 | 0 | if (r >= threshold) |
2377 | 0 | return r % bound; |
2378 | 0 | } |
2379 | 0 | } |
2380 | | #endif |
2381 | | |
2382 | | /*** Typedefs */ |
2383 | | typedef struct pcg_state_setseq_64 pcg32_random_t; |
2384 | | typedef struct pcg_state_64 pcg32s_random_t; |
2385 | | typedef struct pcg_state_64 pcg32u_random_t; |
2386 | | typedef struct pcg_state_64 pcg32f_random_t; |
2387 | | /*** random_r */ |
2388 | 0 | #define pcg32_random_r pcg_setseq_64_xsh_rr_32_random_r |
2389 | | #define pcg32s_random_r pcg_oneseq_64_xsh_rr_32_random_r |
2390 | | #define pcg32u_random_r pcg_unique_64_xsh_rr_32_random_r |
2391 | | #define pcg32f_random_r pcg_mcg_64_xsh_rs_32_random_r |
2392 | | /*** boundedrand_r */ |
2393 | | #define pcg32_boundedrand_r pcg_setseq_64_xsh_rr_32_boundedrand_r |
2394 | | #define pcg32s_boundedrand_r pcg_oneseq_64_xsh_rr_32_boundedrand_r |
2395 | | #define pcg32u_boundedrand_r pcg_unique_64_xsh_rr_32_boundedrand_r |
2396 | | #define pcg32f_boundedrand_r pcg_mcg_64_xsh_rs_32_boundedrand_r |
2397 | | /*** srandom_r */ |
2398 | 0 | #define pcg32_srandom_r pcg_setseq_64_srandom_r |
2399 | | #define pcg32s_srandom_r pcg_oneseq_64_srandom_r |
2400 | | #define pcg32u_srandom_r pcg_unique_64_srandom_r |
2401 | | #define pcg32f_srandom_r pcg_mcg_64_srandom_r |
2402 | | /*** advance_r */ |
2403 | | #define pcg32_advance_r pcg_setseq_64_advance_r |
2404 | | #define pcg32s_advance_r pcg_oneseq_64_advance_r |
2405 | | #define pcg32u_advance_r pcg_unique_64_advance_r |
2406 | | #define pcg32f_advance_r pcg_mcg_64_advance_r |
2407 | | |
2408 | | #if PCG_HAS_128BIT_OPS |
2409 | | /*** Typedefs */ |
2410 | | typedef struct pcg_state_setseq_128 pcg64_random_t; |
2411 | | typedef struct pcg_state_128 pcg64s_random_t; |
2412 | | typedef struct pcg_state_128 pcg64u_random_t; |
2413 | | typedef struct pcg_state_128 pcg64f_random_t; |
2414 | | /*** random_r */ |
2415 | | #define pcg64_random_r pcg_setseq_128_xsl_rr_64_random_r |
2416 | | #define pcg64s_random_r pcg_oneseq_128_xsl_rr_64_random_r |
2417 | | #define pcg64u_random_r pcg_unique_128_xsl_rr_64_random_r |
2418 | | #define pcg64f_random_r pcg_mcg_128_xsl_rr_64_random_r |
2419 | | /*** boundedrand_r */ |
2420 | | #define pcg64_boundedrand_r pcg_setseq_128_xsl_rr_64_boundedrand_r |
2421 | | #define pcg64s_boundedrand_r pcg_oneseq_128_xsl_rr_64_boundedrand_r |
2422 | | #define pcg64u_boundedrand_r pcg_unique_128_xsl_rr_64_boundedrand_r |
2423 | | #define pcg64f_boundedrand_r pcg_mcg_128_xsl_rr_64_boundedrand_r |
2424 | | /*** srandom_r */ |
2425 | | #define pcg64_srandom_r pcg_setseq_128_srandom_r |
2426 | | #define pcg64s_srandom_r pcg_oneseq_128_srandom_r |
2427 | | #define pcg64u_srandom_r pcg_unique_128_srandom_r |
2428 | | #define pcg64f_srandom_r pcg_mcg_128_srandom_r |
2429 | | /*** advance_r */ |
2430 | | #define pcg64_advance_r pcg_setseq_128_advance_r |
2431 | | #define pcg64s_advance_r pcg_oneseq_128_advance_r |
2432 | | #define pcg64u_advance_r pcg_unique_128_advance_r |
2433 | | #define pcg64f_advance_r pcg_mcg_128_advance_r |
2434 | | #endif |
2435 | | |
2436 | | /*** Typedefs */ |
2437 | | typedef struct pcg_state_8 pcg8si_random_t; |
2438 | | typedef struct pcg_state_16 pcg16si_random_t; |
2439 | | typedef struct pcg_state_32 pcg32si_random_t; |
2440 | | typedef struct pcg_state_64 pcg64si_random_t; |
2441 | | /*** random_r */ |
2442 | | #define pcg8si_random_r pcg_oneseq_8_rxs_m_xs_8_random_r |
2443 | | #define pcg16si_random_r pcg_oneseq_16_rxs_m_xs_16_random_r |
2444 | | #define pcg32si_random_r pcg_oneseq_32_rxs_m_xs_32_random_r |
2445 | | #define pcg64si_random_r pcg_oneseq_64_rxs_m_xs_64_random_r |
2446 | | /*** boundedrand_r */ |
2447 | | #define pcg8si_boundedrand_r pcg_oneseq_8_rxs_m_xs_8_boundedrand_r |
2448 | | #define pcg16si_boundedrand_r pcg_oneseq_16_rxs_m_xs_16_boundedrand_r |
2449 | | #define pcg32si_boundedrand_r pcg_oneseq_32_rxs_m_xs_32_boundedrand_r |
2450 | | #define pcg64si_boundedrand_r pcg_oneseq_64_rxs_m_xs_64_boundedrand_r |
2451 | | /*** srandom_r */ |
2452 | | #define pcg8si_srandom_r pcg_oneseq_8_srandom_r |
2453 | | #define pcg16si_srandom_r pcg_oneseq_16_srandom_r |
2454 | | #define pcg32si_srandom_r pcg_oneseq_32_srandom_r |
2455 | | #define pcg64si_srandom_r pcg_oneseq_64_srandom_r |
2456 | | /*** advance_r */ |
2457 | | #define pcg8si_advance_r pcg_oneseq_8_advance_r |
2458 | | #define pcg16si_advance_r pcg_oneseq_16_advance_r |
2459 | | #define pcg32si_advance_r pcg_oneseq_32_advance_r |
2460 | | #define pcg64si_advance_r pcg_oneseq_64_advance_r |
2461 | | |
2462 | | #if PCG_HAS_128BIT_OPS |
2463 | | typedef struct pcg_state_128 pcg128si_random_t; |
2464 | | #define pcg128si_random_r pcg_oneseq_128_rxs_m_xs_128_random_r |
2465 | | #define pcg128si_boundedrand_r pcg_oneseq_128_rxs_m_xs_128_boundedrand_r |
2466 | | #define pcg128si_srandom_r pcg_oneseq_128_srandom_r |
2467 | | #define pcg128si_advance_r pcg_oneseq_128_advance_r |
2468 | | #endif |
2469 | | |
2470 | | /*** Typedefs */ |
2471 | | typedef struct pcg_state_setseq_8 pcg8i_random_t; |
2472 | | typedef struct pcg_state_setseq_16 pcg16i_random_t; |
2473 | | typedef struct pcg_state_setseq_32 pcg32i_random_t; |
2474 | | typedef struct pcg_state_setseq_64 pcg64i_random_t; |
2475 | | /*** random_r */ |
2476 | | #define pcg8i_random_r pcg_setseq_8_rxs_m_xs_8_random_r |
2477 | | #define pcg16i_random_r pcg_setseq_16_rxs_m_xs_16_random_r |
2478 | | #define pcg32i_random_r pcg_setseq_32_rxs_m_xs_32_random_r |
2479 | | #define pcg64i_random_r pcg_setseq_64_rxs_m_xs_64_random_r |
2480 | | /*** boundedrand_r */ |
2481 | | #define pcg8i_boundedrand_r pcg_setseq_8_rxs_m_xs_8_boundedrand_r |
2482 | | #define pcg16i_boundedrand_r pcg_setseq_16_rxs_m_xs_16_boundedrand_r |
2483 | | #define pcg32i_boundedrand_r pcg_setseq_32_rxs_m_xs_32_boundedrand_r |
2484 | | #define pcg64i_boundedrand_r pcg_setseq_64_rxs_m_xs_64_boundedrand_r |
2485 | | /*** srandom_r */ |
2486 | | #define pcg8i_srandom_r pcg_setseq_8_srandom_r |
2487 | | #define pcg16i_srandom_r pcg_setseq_16_srandom_r |
2488 | | #define pcg32i_srandom_r pcg_setseq_32_srandom_r |
2489 | | #define pcg64i_srandom_r pcg_setseq_64_srandom_r |
2490 | | /*** advance_r */ |
2491 | | #define pcg8i_advance_r pcg_setseq_8_advance_r |
2492 | | #define pcg16i_advance_r pcg_setseq_16_advance_r |
2493 | | #define pcg32i_advance_r pcg_setseq_32_advance_r |
2494 | | #define pcg64i_advance_r pcg_setseq_64_advance_r |
2495 | | |
2496 | | #if PCG_HAS_128BIT_OPS |
2497 | | typedef struct pcg_state_setseq_128 pcg128i_random_t; |
2498 | | #define pcg128i_random_r pcg_setseq_128_rxs_m_xs_128_random_r |
2499 | | #define pcg128i_boundedrand_r pcg_setseq_128_rxs_m_xs_128_boundedrand_r |
2500 | | #define pcg128i_srandom_r pcg_setseq_128_srandom_r |
2501 | | #define pcg128i_advance_r pcg_setseq_128_advance_r |
2502 | | #endif |
2503 | | |
2504 | | extern uint32_t pcg32_random(void); |
2505 | | extern uint32_t pcg32_boundedrand(uint32_t bound); |
2506 | | extern void pcg32_srandom(uint64_t seed, uint64_t seq); |
2507 | | extern void pcg32_advance(uint64_t delta); |
2508 | | |
2509 | | #if PCG_HAS_128BIT_OPS |
2510 | | extern uint64_t pcg64_random(void); |
2511 | | extern uint64_t pcg64_boundedrand(uint64_t bound); |
2512 | | extern void pcg64_srandom(pcg128_t seed, pcg128_t seq); |
2513 | | extern void pcg64_advance(pcg128_t delta); |
2514 | | #endif |
2515 | | |
2516 | | /* |
2517 | | * Static initialization constants (if you can't call srandom for some |
2518 | | * bizarre reason). |
2519 | | */ |
2520 | | |
2521 | | #define PCG32_INITIALIZER PCG_STATE_SETSEQ_64_INITIALIZER |
2522 | | #define PCG32U_INITIALIZER PCG_STATE_UNIQUE_64_INITIALIZER |
2523 | | #define PCG32S_INITIALIZER PCG_STATE_ONESEQ_64_INITIALIZER |
2524 | | #define PCG32F_INITIALIZER PCG_STATE_MCG_64_INITIALIZER |
2525 | | |
2526 | | #if PCG_HAS_128BIT_OPS |
2527 | | #define PCG64_INITIALIZER PCG_STATE_SETSEQ_128_INITIALIZER |
2528 | | #define PCG64U_INITIALIZER PCG_STATE_UNIQUE_128_INITIALIZER |
2529 | | #define PCG64S_INITIALIZER PCG_STATE_ONESEQ_128_INITIALIZER |
2530 | | #define PCG64F_INITIALIZER PCG_STATE_MCG_128_INITIALIZER |
2531 | | #endif |
2532 | | |
2533 | | #define PCG8SI_INITIALIZER PCG_STATE_ONESEQ_8_INITIALIZER |
2534 | | #define PCG16SI_INITIALIZER PCG_STATE_ONESEQ_16_INITIALIZER |
2535 | | #define PCG32SI_INITIALIZER PCG_STATE_ONESEQ_32_INITIALIZER |
2536 | | #define PCG64SI_INITIALIZER PCG_STATE_ONESEQ_64_INITIALIZER |
2537 | | #if PCG_HAS_128BIT_OPS |
2538 | | #define PCG128SI_INITIALIZER PCG_STATE_ONESEQ_128_INITIALIZER |
2539 | | #endif |
2540 | | |
2541 | | #define PCG8I_INITIALIZER PCG_STATE_SETSEQ_8_INITIALIZER |
2542 | | #define PCG16I_INITIALIZER PCG_STATE_SETSEQ_16_INITIALIZER |
2543 | | #define PCG32I_INITIALIZER PCG_STATE_SETSEQ_32_INITIALIZER |
2544 | | #define PCG64I_INITIALIZER PCG_STATE_SETSEQ_64_INITIALIZER |
2545 | | #if PCG_HAS_128BIT_OPS |
2546 | | #define PCG128I_INITIALIZER PCG_STATE_SETSEQ_128_INITIALIZER |
2547 | | #endif |
2548 | | |
2549 | | #if __cplusplus |
2550 | | } |
2551 | | #endif |
2552 | | |
2553 | | #ifdef _MSC_VER |
2554 | | #pragma warning(pop) |
2555 | | #endif |
2556 | | |
2557 | | #endif /* PCG_VARIANTS_H_INCLUDED */ |