Coverage Report

Created: 2025-09-04 06:27

/src/igraph/src/community/spinglass/clustertool.cpp
Line
Count
Source (jump to first uncovered line)
1
/*
2
   igraph library.
3
   Copyright (C) 2006-2012  Gabor Csardi <csardi.gabor@gmail.com>
4
   334 Harvard street, Cambridge, MA 02139 USA
5
6
   This program is free software; you can redistribute it and/or modify
7
   it under the terms of the GNU General Public License as published by
8
   the Free Software Foundation; either version 2 of the License, or
9
   (at your option) any later version.
10
11
   This program is distributed in the hope that it will be useful,
12
   but WITHOUT ANY WARRANTY; without even the implied warranty of
13
   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14
   GNU General Public License for more details.
15
16
   You should have received a copy of the GNU General Public License
17
   along with this program; if not, write to the Free Software
18
   Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
19
   02110-1301 USA
20
21
*/
22
23
/* The original version of this file was written by Joerg Reichardt
24
   The original copyright notice follows here */
25
26
/***************************************************************************
27
                          main.cpp  -  description
28
                             -------------------
29
    begin                : Tue Jul 13 11:26:47 CEST 2004
30
    copyright            : (C) 2004 by
31
    email                :
32
 ***************************************************************************/
33
34
/***************************************************************************
35
 *                                                                         *
36
 *   This program is free software; you can redistribute it and/or modify  *
37
 *   it under the terms of the GNU General Public License as published by  *
38
 *   the Free Software Foundation; either version 2 of the License, or     *
39
 *   (at your option) any later version.                                   *
40
 *                                                                         *
41
 ***************************************************************************/
42
43
#include "NetDataTypes.h"
44
#include "NetRoutines.h"
45
#include "pottsmodel_2.h"
46
47
#include "igraph_community.h"
48
#include "igraph_components.h"
49
#include "igraph_error.h"
50
#include "igraph_interface.h"
51
#include "igraph_random.h"
52
53
#include "core/interruption.h"
54
#include "core/exceptions.h"
55
56
static igraph_error_t igraph_i_community_spinglass_orig(
57
        const igraph_t *graph,
58
        const igraph_vector_t *weights,
59
        igraph_real_t *modularity,
60
        igraph_real_t *temperature,
61
        igraph_vector_int_t *membership,
62
        igraph_vector_int_t *csize,
63
        igraph_int_t spins,
64
        igraph_bool_t parupdate,
65
        igraph_real_t starttemp,
66
        igraph_real_t stoptemp,
67
        igraph_real_t coolfact,
68
        igraph_spincomm_update_t update_rule,
69
        igraph_real_t gamma);
70
71
static igraph_error_t igraph_i_community_spinglass_negative(
72
        const igraph_t *graph,
73
        const igraph_vector_t *weights,
74
        igraph_real_t *modularity,
75
        igraph_real_t *temperature,
76
        igraph_vector_int_t *membership,
77
        igraph_vector_int_t *csize,
78
        igraph_int_t spins,
79
        igraph_bool_t parupdate,
80
        igraph_real_t starttemp,
81
        igraph_real_t stoptemp,
82
        igraph_real_t coolfact,
83
        igraph_spincomm_update_t update_rule,
84
        igraph_real_t gamma,
85
        igraph_real_t gamma_minus);
86
87
/**
88
 * \function igraph_community_spinglass
89
 * \brief Community detection based on statistical mechanics.
90
 *
91
 * This function implements the community structure detection
92
 * algorithm proposed by Joerg Reichardt and Stefan Bornholdt.
93
 * The algorithm is described in their paper: Statistical Mechanics of
94
 * Community Detection, http://arxiv.org/abs/cond-mat/0603718 .
95
 *
96
 * </para><para>
97
 * From version 0.6, igraph also supports an extension to
98
 * the algorithm that allows negative edge weights. This is described
99
 * in  V. A. Traag and Jeroen Bruggeman: Community detection in networks
100
 * with positive and negative links, http://arxiv.org/abs/0811.2329 .
101
 *
102
 * \param graph The input graph, it may be directed but the direction
103
 *     of the edges is ignored by the algorithm.
104
 * \param weights The vector giving the edge weights, it may be \c NULL,
105
 *     in which case all edges are weighted equally. The edge weights
106
 *     must be positive unless using the \c IGRAPH_SPINCOMM_IMP_NEG
107
 *     implementation.
108
 * \param modularity Pointer to a real number, if not \c NULL then the
109
 *     modularity score of the solution will be stored here. This is the
110
 *     gereralized modularity, taking into account the resolution parameter
111
 *     \p gamma. See \ref igraph_modularity() for details.
112
 * \param temperature Pointer to a real number, if not \c NULL then
113
 *     the temperature at the end of the algorithm will be stored
114
 *     here.
115
 * \param membership Pointer to an initialized vector or \c NULL. If
116
 *     not \c NULL then the result of the clustering will be stored
117
 *     here. For each vertex, the number of its cluster is given, with the
118
 *     first cluster numbered zero. The vector will be resized as
119
 *     needed.
120
 * \param csize Pointer to an initialized vector or \c NULL. If not \c
121
 *     NULL then the sizes of the clusters will stored here in cluster
122
 *     number order. The vector will be resized as needed.
123
 * \param spins Integer giving the number of spins, i.e. the maximum
124
 *     number of clusters. Even if the number of spins is high the number of
125
 *     clusters in the result might be small.
126
 * \param parupdate A Boolean constant, whether to update all spins in
127
 *     parallel. It is not implemented in the \c IGRAPH_SPINCOMM_INP_NEG
128
 *     implementation.
129
 * \param starttemp Real number, the temperature at the start. A reasonable
130
 *     default is 1.0.
131
 * \param stoptemp Real number, the algorithm stops at this temperature. A
132
 *     reasonable default is 0.01.
133
 * \param coolfact Real number, the cooling factor for the simulated
134
 *     annealing. A reasonable default is 0.99.
135
 * \param update_rule The type of the update rule. Possible values: \c
136
 *     IGRAPH_SPINCOMM_UPDATE_SIMPLE and \c
137
 *     IGRAPH_SPINCOMM_UPDATE_CONFIG. Basically this parameter defines
138
 *     the null model based on which the actual clustering is done. If
139
 *     this is \c IGRAPH_SPINCOMM_UPDATE_SIMPLE then the random graph
140
 *     (i.e. G(n,p)), if it is \c IGRAPH_SPINCOMM_UPDATE then the
141
 *     configuration model is used. The configuration means that the
142
 *     baseline for the clustering is a random graph with the same
143
 *     degree distribution as the input graph.
144
 * \param gamma Real number. The gamma parameter of the algorithm,
145
 *     acting as a resolution parameter. Smaller values typically lead to
146
 *     larger clusters, larger values typically lead to smaller clusters.
147
 * \param implementation Constant, chooses between the two
148
 *     implementations of the spin-glass algorithm that are included
149
 *     in igraph. \c IGRAPH_SPINCOMM_IMP_ORIG selects the original
150
 *     implementation, this is faster, \c IGRAPH_SPINCOMM_INP_NEG selects
151
 *     an implementation that allows negative edge weights.
152
 * \param gamma_minus Real number. Parameter for the \c IGRAPH_SPINCOMM_IMP_NEG
153
 *     implementation. This acts as a resolution parameter for the negative part
154
 *     of the network. Smaller values of \p gamma_minus leads to fewer negative
155
 *     edges within clusters. If this argument is set to zero, the algorithm
156
 *     reduces to a graph coloring algorithm when all edges have negative
157
 *     weights, using the number of spins as the number of colors.
158
 * \return Error code.
159
 *
160
 * \sa \ref igraph_community_spinglass_single() for calculating the community
161
 * of a single vertex.
162
 *
163
 * Time complexity: TODO.
164
 *
165
 */
166
167
igraph_error_t igraph_community_spinglass(const igraph_t *graph,
168
                               const igraph_vector_t *weights,
169
                               igraph_real_t *modularity,
170
                               igraph_real_t *temperature,
171
                               igraph_vector_int_t *membership,
172
                               igraph_vector_int_t *csize,
173
                               igraph_int_t spins,
174
                               igraph_bool_t parupdate,
175
                               igraph_real_t starttemp,
176
                               igraph_real_t stoptemp,
177
                               igraph_real_t coolfact,
178
                               igraph_spincomm_update_t update_rule,
179
                               igraph_real_t gamma,
180
                               igraph_spinglass_implementation_t implementation,
181
500
                               igraph_real_t gamma_minus) {
182
183
500
    IGRAPH_HANDLE_EXCEPTIONS(
184
0
        switch (implementation) {
185
0
        case IGRAPH_SPINCOMM_IMP_ORIG:
186
0
            return igraph_i_community_spinglass_orig(graph, weights, modularity,
187
0
                    temperature, membership, csize,
188
0
                    spins, parupdate, starttemp,
189
0
                    stoptemp, coolfact, update_rule,
190
0
                    gamma);
191
0
            break;
192
0
        case IGRAPH_SPINCOMM_IMP_NEG:
193
0
            return igraph_i_community_spinglass_negative(graph, weights, modularity,
194
0
                    temperature, membership, csize,
195
0
                    spins, parupdate, starttemp,
196
0
                    stoptemp, coolfact,
197
0
                    update_rule, gamma,
198
0
                    gamma_minus);
199
0
            break;
200
0
        default:
201
0
            IGRAPH_ERROR("Unknown implementation in spinglass community detection.",
202
0
                         IGRAPH_EINVAL);
203
0
        }
204
0
    );
205
0
}
206
207
static igraph_error_t igraph_i_community_spinglass_orig(
208
        const igraph_t *graph,
209
        const igraph_vector_t *weights,
210
        igraph_real_t *modularity,
211
        igraph_real_t *temperature,
212
        igraph_vector_int_t *membership,
213
        igraph_vector_int_t *csize,
214
        igraph_int_t spins,
215
        igraph_bool_t parupdate,
216
        igraph_real_t starttemp,
217
        igraph_real_t stoptemp,
218
        igraph_real_t coolfact,
219
        igraph_spincomm_update_t update_rule,
220
500
        igraph_real_t gamma) {
221
222
500
    igraph_int_t no_of_nodes = igraph_vcount(graph);
223
500
    igraph_int_t changes, runs;
224
500
    igraph_bool_t use_weights = false;
225
500
    bool zeroT;
226
500
    double kT, acc, prob;
227
228
    /* Check arguments */
229
230
500
    if (spins < 2) {
231
0
        IGRAPH_ERROR("Number of spins must be at least 2.", IGRAPH_EINVAL);
232
0
    }
233
500
    if (update_rule != IGRAPH_SPINCOMM_UPDATE_SIMPLE &&
234
500
        update_rule != IGRAPH_SPINCOMM_UPDATE_CONFIG) {
235
0
        IGRAPH_ERROR("Invalid update rule for spinglass community detection.", IGRAPH_EINVAL);
236
0
    }
237
500
    if (weights) {
238
500
        if (igraph_vector_size(weights) != igraph_ecount(graph)) {
239
0
            IGRAPH_ERROR("Invalid weight vector length.", IGRAPH_EINVAL);
240
0
        }
241
500
        use_weights = true;
242
500
        if (igraph_vector_size(weights) > 0 && igraph_vector_min(weights) < 0) {
243
0
            IGRAPH_ERROR(
244
0
                "Weights must not be negative when using the original implementation of spinglass communities. "
245
0
                "Select the implementation meant for negative weights.",
246
0
                IGRAPH_EINVAL);
247
0
        }
248
500
    }
249
500
    if (coolfact < 0 || coolfact >= 1.0) {
250
0
        IGRAPH_ERROR("Cooling factor must be positive and strictly smaller than 1.", IGRAPH_EINVAL);
251
0
    }
252
500
    if (gamma < 0.0) {
253
0
        IGRAPH_ERROR("Gamma value must not be negative.", IGRAPH_EINVAL);
254
0
    }
255
500
    if ( !(starttemp == 0 && stoptemp == 0) ) {
256
500
        if (! (starttemp > 0 && stoptemp > 0)) {
257
0
            IGRAPH_ERROR("Starting and stopping temperatures must be both positive or both zero.",
258
0
                         IGRAPH_EINVAL);
259
0
        }
260
500
        if (starttemp <= stoptemp) {
261
0
            IGRAPH_ERROR("The starting temperature must be larger than the stopping temperature.",
262
0
                         IGRAPH_EINVAL);
263
0
        }
264
500
    }
265
266
    /* The spinglass algorithm does not handle the trivial cases of the
267
       null and singleton graphs, so we catch them here. */
268
500
    if (no_of_nodes < 2) {
269
11
        if (membership) {
270
11
            IGRAPH_CHECK(igraph_vector_int_resize(membership, no_of_nodes));
271
11
            igraph_vector_int_null(membership);
272
11
        }
273
11
        if (modularity) {
274
11
            IGRAPH_CHECK(igraph_modularity(graph, membership, nullptr, 1, igraph_is_directed(graph), modularity));
275
11
        }
276
11
        if (temperature) {
277
0
            *temperature = stoptemp;
278
0
        }
279
11
        if (csize) {
280
            /* 0 clusters for 0 nodes, 1 cluster for 1 node */
281
0
            IGRAPH_CHECK(igraph_vector_int_resize(csize, no_of_nodes));
282
0
            igraph_vector_int_fill(csize, 1);
283
0
        }
284
11
        return IGRAPH_SUCCESS;
285
11
    }
286
287
    /* Check whether we have a single component */
288
489
    igraph_bool_t conn;
289
489
    IGRAPH_CHECK(igraph_is_connected(graph, &conn, IGRAPH_WEAK));
290
489
    if (!conn) {
291
0
        IGRAPH_ERROR("Cannot work with unconnected graph.", IGRAPH_EINVAL);
292
0
    }
293
294
489
    network net;
295
296
    /* Transform the igraph_t */
297
489
    IGRAPH_CHECK(igraph_i_read_network_spinglass(graph, weights,
298
489
                                       &net, use_weights));
299
300
489
    prob = 2.0 * net.sum_weights / double(net.node_list.Size())
301
489
           / double(net.node_list.Size() - 1);
302
303
489
    PottsModel pm(&net, spins, update_rule);
304
305
489
    if ((stoptemp == 0.0) && (starttemp == 0.0)) {
306
0
        zeroT = true;
307
489
    } else {
308
489
        zeroT = false;
309
489
    }
310
489
    if (!zeroT) {
311
489
        kT = pm.FindStartTemp(gamma, prob, starttemp);
312
489
    } else {
313
0
        kT = stoptemp;
314
0
    }
315
    /* assign random initial configuration */
316
489
    pm.assign_initial_conf(-1);
317
489
    runs = 0;
318
489
    changes = 1;
319
320
188k
    while (changes > 0 && (kT / stoptemp > 1.0 || (zeroT && runs < 150))) {
321
322
188k
        IGRAPH_ALLOW_INTERRUPTION();
323
324
188k
        runs++;
325
188k
        if (!zeroT) {
326
188k
            kT *= coolfact;
327
188k
            if (parupdate) {
328
0
                changes = pm.HeatBathParallelLookup(gamma, prob, kT, 50);
329
188k
            } else {
330
188k
                acc = pm.HeatBathLookup(gamma, prob, kT, 50);
331
188k
                if (acc < (1.0 - 1.0 / double(spins)) * 0.01) {
332
263
                    changes = 0;
333
187k
                } else {
334
187k
                    changes = 1;
335
187k
                }
336
188k
            }
337
188k
        } else {
338
0
            if (parupdate) {
339
0
                changes = pm.HeatBathParallelLookupZeroTemp(gamma, prob, 50);
340
0
            } else {
341
0
                acc = pm.HeatBathLookupZeroTemp(gamma, prob, 50);
342
                /* less than 1 percent acceptance ratio */
343
0
                if (acc < (1.0 - 1.0 / double(spins)) * 0.01) {
344
0
                    changes = 0;
345
0
                } else {
346
0
                    changes = 1;
347
0
                }
348
0
            }
349
0
        }
350
188k
    } /* while loop */
351
352
489
    pm.WriteClusters(modularity, temperature, csize, membership, kT, gamma);
353
354
489
    return IGRAPH_SUCCESS;
355
489
}
356
357
/**
358
 * \function igraph_community_spinglass_single
359
 * \brief Community of a single node based on statistical mechanics.
360
 *
361
 * This function implements the community structure detection
362
 * algorithm proposed by Joerg Reichardt and Stefan Bornholdt. It is
363
 * described in their paper: Statistical Mechanics of
364
 * Community Detection, http://arxiv.org/abs/cond-mat/0603718 .
365
 *
366
 * </para><para>
367
 * This function calculates the community of a single vertex without
368
 * calculating all the communities in the graph.
369
 *
370
 * \param graph The input graph, it may be directed but the direction
371
 *    of the edges is not used in the algorithm.
372
 * \param weights Pointer to a vector with the weights of the edges.
373
 *    Alternatively \c NULL can be supplied to have the same weight
374
 *    for every edge.
375
 * \param vertex The vertex ID of the vertex of which ths community is
376
 *    calculated.
377
 * \param community Pointer to an initialized vector, the result, the
378
 *    IDs of the vertices in the community of the input vertex will be
379
 *    stored here. The vector will be resized as needed.
380
 * \param cohesion Pointer to a real variable, if not \c NULL the
381
 *     cohesion index of the community will be stored here.
382
 * \param adhesion Pointer to a real variable, if not \c NULL the
383
 *     adhesion index of the community will be stored here.
384
 * \param inner_links Pointer to a real, if not \c NULL the
385
 *     number of edges within the community (or the sum of their weights)
386
 *     is stored here.
387
 * \param outer_links Pointer to a real, if not \c NULL the
388
 *     number of edges between the community and the rest of the graph
389
 *     (or the sum of their weights) will be stored here.
390
 * \param spins The number of spins to use, this can be higher than
391
 *    the actual number of clusters in the network, in which case some
392
 *    clusters will contain zero vertices.
393
 * \param update_rule The type of the update rule. Possible values: \c
394
 *     IGRAPH_SPINCOMM_UPDATE_SIMPLE and \c
395
 *     IGRAPH_SPINCOMM_UPDATE_CONFIG. Basically this parameter defined
396
 *     the null model based on which the actual clustering is done. If
397
 *     this is \c IGRAPH_SPINCOMM_UPDATE_SIMPLE then the random graph
398
 *     (ie. G(n,p)), if it is \c IGRAPH_SPINCOMM_UPDATE then the
399
 *     configuration model is used. The configuration means that the
400
 *     baseline for the clustering is a random graph with the same
401
 *     degree distribution as the input graph.
402
 * \param gamma Real number. The gamma parameter of the
403
 *     algorithm. This defined the weight of the missing and existing
404
 *     links in the quality function for the clustering. The default
405
 *     value in the original code was 1.0, which is equal weight to
406
 *     missing and existing edges. Smaller values make the existing
407
 *     links contibute more to the energy function which is minimized
408
 *     in the algorithm. Bigger values make the missing links more
409
 *     important. (If my understanding is correct.)
410
 * \return Error code.
411
 *
412
 * \sa igraph_community_spinglass() for the traditional version of the
413
 * algorithm.
414
 *
415
 * Time complexity: TODO.
416
 */
417
418
igraph_error_t igraph_community_spinglass_single(const igraph_t *graph,
419
                                      const igraph_vector_t *weights,
420
                                      igraph_int_t vertex,
421
                                      igraph_vector_int_t *community,
422
                                      igraph_real_t *cohesion,
423
                                      igraph_real_t *adhesion,
424
                                      igraph_real_t *inner_links,
425
                                      igraph_real_t *outer_links,
426
                                      igraph_int_t spins,
427
                                      igraph_spincomm_update_t update_rule,
428
0
                                      igraph_real_t gamma) {
429
0
    IGRAPH_HANDLE_EXCEPTIONS(
430
0
        igraph_bool_t use_weights = false;
431
0
        char startnode[SPINGLASS_MAX_NAME_LEN];
432
433
        /* Check arguments */
434
435
0
        if (spins < 2) {
436
0
            IGRAPH_ERROR("Number of spins must be at least 2", IGRAPH_EINVAL);
437
0
        }
438
0
        if (update_rule != IGRAPH_SPINCOMM_UPDATE_SIMPLE &&
439
0
            update_rule != IGRAPH_SPINCOMM_UPDATE_CONFIG) {
440
0
            IGRAPH_ERROR("Invalid update rule", IGRAPH_EINVAL);
441
0
        }
442
0
        if (weights) {
443
0
            if (igraph_vector_size(weights) != igraph_ecount(graph)) {
444
0
                IGRAPH_ERROR("Invalid weight vector length", IGRAPH_EINVAL);
445
0
            }
446
0
            use_weights = 1;
447
0
        }
448
0
        if (gamma < 0.0) {
449
0
            IGRAPH_ERROR("Invalid gamme value", IGRAPH_EINVAL);
450
0
        }
451
0
        if (vertex < 0 || vertex > igraph_vcount(graph)) {
452
0
            IGRAPH_ERROR("Invalid vertex ID", IGRAPH_EINVAL);
453
0
        }
454
455
        /* Check whether we have a single component */
456
0
        igraph_bool_t conn;
457
0
        IGRAPH_CHECK(igraph_is_connected(graph, &conn, IGRAPH_WEAK));
458
0
        if (!conn) {
459
0
            IGRAPH_ERROR("Cannot work with unconnected graph", IGRAPH_EINVAL);
460
0
        }
461
462
0
        network net;
463
464
        /* Transform the igraph_t */
465
0
        IGRAPH_CHECK(igraph_i_read_network_spinglass(graph, weights,
466
0
                                           &net, use_weights));
467
468
0
        PottsModel pm(&net, spins, update_rule);
469
470
        /* to be expected, if we want to find the community around a particular node*/
471
        /* the initial conf is needed, because otherwise,
472
           the degree of the nodes is not in the weight property, stupid!!! */
473
0
        pm.assign_initial_conf(-1);
474
0
        snprintf(startnode, sizeof(startnode) / sizeof(startnode[0]), "%" IGRAPH_PRId "", vertex + 1);
475
0
        pm.FindCommunityFromStart(gamma, startnode, community,
476
0
                                   cohesion, adhesion, inner_links, outer_links);
477
0
    );
478
479
0
    return IGRAPH_SUCCESS;
480
0
}
481
482
static igraph_error_t igraph_i_community_spinglass_negative(
483
        const igraph_t *graph,
484
        const igraph_vector_t *weights,
485
        igraph_real_t *modularity,
486
        igraph_real_t *temperature,
487
        igraph_vector_int_t *membership,
488
        igraph_vector_int_t *csize,
489
        igraph_int_t spins,
490
        igraph_bool_t parupdate,
491
        igraph_real_t starttemp,
492
        igraph_real_t stoptemp,
493
        igraph_real_t coolfact,
494
        igraph_spincomm_update_t update_rule,
495
        igraph_real_t gamma,
496
0
        igraph_real_t gamma_minus) {
497
498
0
    igraph_int_t no_of_nodes = igraph_vcount(graph);
499
0
    igraph_int_t runs;
500
0
    igraph_bool_t use_weights = false;
501
0
    bool zeroT;
502
0
    double kT, acc;
503
0
    igraph_real_t d_n;
504
0
    igraph_real_t d_p;
505
506
    /* Check arguments */
507
508
0
    if (parupdate) {
509
0
        IGRAPH_ERROR("Parallel spin update not implemented with negative weights.",
510
0
                     IGRAPH_UNIMPLEMENTED);
511
0
    }
512
513
0
    if (spins < 2) {
514
0
        IGRAPH_ERROR("Number of spins must be at least 2.", IGRAPH_EINVAL);
515
0
    }
516
0
    if (update_rule != IGRAPH_SPINCOMM_UPDATE_SIMPLE &&
517
0
        update_rule != IGRAPH_SPINCOMM_UPDATE_CONFIG) {
518
0
        IGRAPH_ERROR("Invalid update rule for spinglass community detection.", IGRAPH_EINVAL);
519
0
    }
520
0
    if (weights) {
521
0
        if (igraph_vector_size(weights) != igraph_ecount(graph)) {
522
0
            IGRAPH_ERROR("Invalid weight vector length.", IGRAPH_EINVAL);
523
0
        }
524
0
        use_weights = true;
525
0
    }
526
0
    if (coolfact < 0 || coolfact >= 1.0) {
527
0
        IGRAPH_ERROR("Cooling factor must be positive and strictly smaller than 1.", IGRAPH_EINVAL);
528
0
    }
529
0
    if (gamma < 0.0) {
530
0
        IGRAPH_ERROR("Gamma value must not be negative.", IGRAPH_EINVAL);
531
0
    }
532
0
    if ( !(starttemp == 0 && stoptemp == 0) ) {
533
0
        if (! (starttemp > 0 && stoptemp > 0)) {
534
0
            IGRAPH_ERROR("Starting and stopping temperatures must be both positive or both zero.",
535
0
                         IGRAPH_EINVAL);
536
0
        }
537
0
        if (starttemp <= stoptemp) {
538
0
            IGRAPH_ERROR("The starting temperature must be larger than the stopping temperature.",
539
0
                         IGRAPH_EINVAL);
540
0
        }
541
0
    }
542
543
    /* The spinglass algorithm does not handle the trivial cases of the
544
       null and singleton graphs, so we catch them here. */
545
0
    if (no_of_nodes < 2) {
546
0
        if (membership) {
547
0
            IGRAPH_CHECK(igraph_vector_int_resize(membership, no_of_nodes));
548
0
            igraph_vector_int_null(membership);
549
0
        }
550
0
        if (modularity) {
551
0
            IGRAPH_CHECK(igraph_modularity(graph, membership, nullptr, 1, igraph_is_directed(graph), modularity));
552
0
        }
553
0
        if (temperature) {
554
0
            *temperature = stoptemp;
555
0
        }
556
0
        if (csize) {
557
            /* 0 clusters for 0 nodes, 1 cluster for 1 node */
558
0
            IGRAPH_CHECK(igraph_vector_int_resize(csize, no_of_nodes));
559
0
            igraph_vector_int_fill(csize, 1);
560
0
        }
561
0
        return IGRAPH_SUCCESS;
562
0
    }
563
564
    /* Check whether we have a single component */
565
0
    igraph_bool_t conn;
566
0
    IGRAPH_CHECK(igraph_is_connected(graph, &conn, IGRAPH_WEAK));
567
0
    if (!conn) {
568
0
        IGRAPH_ERROR("Cannot work with unconnected graph.", IGRAPH_EINVAL);
569
0
    }
570
571
0
    if (weights && igraph_vector_size(weights) > 0) {
572
0
        igraph_vector_minmax(weights, &d_n, &d_p);
573
0
    } else {
574
0
        d_n = d_p = 1;
575
0
    }
576
577
0
    if (d_n > 0) {
578
0
        d_n = 0;
579
0
    }
580
0
    if (d_p < 0) {
581
0
        d_p = 0;
582
0
    }
583
0
    d_n = -d_n;
584
585
0
    network net;
586
587
    /* Transform the igraph_t */
588
0
    IGRAPH_CHECK(igraph_i_read_network_spinglass(graph, weights,
589
0
                                       &net, use_weights));
590
591
0
    bool directed = igraph_is_directed(graph);
592
593
0
    PottsModelN pm(&net, spins, directed);
594
595
0
    if ((stoptemp == 0.0) && (starttemp == 0.0)) {
596
0
        zeroT = true;
597
0
    } else {
598
0
        zeroT = false;
599
0
    }
600
601
    //Begin at a high enough temperature
602
0
    kT = pm.FindStartTemp(gamma, gamma_minus, starttemp);
603
604
    /* assign random initial configuration */
605
0
    pm.assign_initial_conf(true);
606
607
0
    runs = 0;
608
0
    while (kT / stoptemp > 1.0 || (zeroT && runs < 150)) {
609
0
        IGRAPH_ALLOW_INTERRUPTION();
610
611
0
        runs++;
612
0
        kT = kT * coolfact;
613
0
        acc = pm.HeatBathLookup(gamma, gamma_minus, kT, 50);
614
0
        if (acc < (1.0 - 1.0 / double(spins)) * 0.001) {
615
0
            break;
616
0
        }
617
0
    } /* while loop */
618
619
    /* These are needed, otherwise 'modularity' is not calculated */
620
0
    igraph_matrix_t adhesion, normalized_adhesion;
621
0
    igraph_real_t polarization;
622
0
    IGRAPH_MATRIX_INIT_FINALLY(&adhesion, 0, 0);
623
0
    IGRAPH_MATRIX_INIT_FINALLY(&normalized_adhesion, 0, 0);
624
0
    pm.WriteClusters(modularity, temperature, csize, membership,
625
0
                      &adhesion, &normalized_adhesion, &polarization,
626
0
                      kT, d_p, d_n);
627
0
    igraph_matrix_destroy(&normalized_adhesion);
628
0
    igraph_matrix_destroy(&adhesion);
629
0
    IGRAPH_FINALLY_CLEAN(2);
630
631
0
    return IGRAPH_SUCCESS;
632
0
}