/src/igraph/src/paths/bellman_ford.c
Line  | Count  | Source  | 
1  |  | /*  | 
2  |  |    igraph library.  | 
3  |  |    Copyright (C) 2005-2025 The igraph development team  | 
4  |  |  | 
5  |  |    This program is free software; you can redistribute it and/or modify  | 
6  |  |    it under the terms of the GNU General Public License as published by  | 
7  |  |    the Free Software Foundation; either version 2 of the License, or  | 
8  |  |    (at your option) any later version.  | 
9  |  |  | 
10  |  |    This program is distributed in the hope that it will be useful,  | 
11  |  |    but WITHOUT ANY WARRANTY; without even the implied warranty of  | 
12  |  |    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the  | 
13  |  |    GNU General Public License for more details.  | 
14  |  |  | 
15  |  |    You should have received a copy of the GNU General Public License  | 
16  |  |    along with this program.  If not, see <https://www.gnu.org/licenses/>.  | 
17  |  | */  | 
18  |  |  | 
19  |  | #include "igraph_paths.h"  | 
20  |  |  | 
21  |  | #include "igraph_adjlist.h"  | 
22  |  | #include "igraph_bitset.h"  | 
23  |  | #include "igraph_dqueue.h"  | 
24  |  | #include "igraph_interface.h"  | 
25  |  | #include "igraph_memory.h"  | 
26  |  |  | 
27  |  | #include "core/interruption.h"  | 
28  |  | #include "paths/paths_internal.h"  | 
29  |  |  | 
30  |  | /**  | 
31  |  |  * \function igraph_distances_bellman_ford  | 
32  |  |  * \brief Weighted shortest path lengths between vertices, allowing negative weights.  | 
33  |  |  *  | 
34  |  |  * This function implements the Bellman-Ford algorithm to find the weighted  | 
35  |  |  * shortest paths to all vertices from a single source, allowing negative weights.  | 
36  |  |  * It is run independently for the given sources. If there are no negative  | 
37  |  |  * weights, you are better off with \ref igraph_distances_dijkstra() .  | 
38  |  |  *  | 
39  |  |  * \param graph The input graph, can be directed.  | 
40  |  |  * \param res The result, a matrix. A pointer to an initialized matrix  | 
41  |  |  *    should be passed here, the matrix will be resized if needed.  | 
42  |  |  *    Each row contains the distances from a single source, to all  | 
43  |  |  *    vertices in the graph, in the order of vertex IDs. For unreachable  | 
44  |  |  *    vertices the matrix contains \c IGRAPH_INFINITY.  | 
45  |  |  * \param from The source vertices.  | 
46  |  |  * \param to The target vertices.  | 
47  |  |  * \param weights The edge weights. There must not be any cycle in  | 
48  |  |  *    the graph that has a negative total weight (since this would allow  | 
49  |  |  *    us to decrease the weight of any path containing at least a single  | 
50  |  |  *    vertex of this cycle infinitely). Additionally, no edge weight may  | 
51  |  |  *    be NaN. If either case does not hold, an error is returned. If this  | 
52  |  |  *    is a null pointer, then the unweighted version,  | 
53  |  |  *    \ref igraph_distances() is called.  | 
54  |  |  * \param mode For directed graphs; whether to follow paths along edge  | 
55  |  |  *    directions (\c IGRAPH_OUT), or the opposite (\c IGRAPH_IN), or  | 
56  |  |  *    ignore edge directions completely (\c IGRAPH_ALL). It is ignored  | 
57  |  |  *    for undirected graphs.  | 
58  |  |  * \return Error code.  | 
59  |  |  *  | 
60  |  |  * Time complexity: O(s*|E|*|V|), where |V| is the number of  | 
61  |  |  * vertices, |E| the number of edges and s the number of sources.  | 
62  |  |  *  | 
63  |  |  * \sa \ref igraph_distances() for a non-algorithm-specific interface;  | 
64  |  |  * \ref igraph_distances_dijkstra() if you do not have negative  | 
65  |  |  * edge weights.  | 
66  |  |  *  | 
67  |  |  * \example examples/simple/bellman_ford.c  | 
68  |  |  */  | 
69  |  | igraph_error_t igraph_distances_bellman_ford(  | 
70  |  |         const igraph_t *graph,  | 
71  |  |         igraph_matrix_t *res,  | 
72  |  |         const igraph_vs_t from,  | 
73  |  |         const igraph_vs_t to,  | 
74  |  |         const igraph_vector_t *weights,  | 
75  | 3.02k  |         igraph_neimode_t mode) { | 
76  |  |  | 
77  | 3.02k  |     igraph_bool_t negative_weights;  | 
78  | 3.02k  |     IGRAPH_CHECK(igraph_i_validate_distance_weights(graph, weights, &negative_weights));  | 
79  | 3.02k  |     return igraph_i_distances_bellman_ford(graph, res, from, to, weights, mode);  | 
80  | 3.02k  | }  | 
81  |  |  | 
82  |  | igraph_error_t igraph_i_distances_bellman_ford(  | 
83  |  |         const igraph_t *graph,  | 
84  |  |         igraph_matrix_t *res,  | 
85  |  |         const igraph_vs_t from, const igraph_vs_t to,  | 
86  |  |         const igraph_vector_t *weights,  | 
87  | 3.02k  |         igraph_neimode_t mode) { | 
88  |  |  | 
89  | 3.02k  |     const igraph_int_t no_of_nodes = igraph_vcount(graph);  | 
90  | 3.02k  |     igraph_int_t no_of_edges = igraph_ecount(graph);  | 
91  | 3.02k  |     igraph_lazy_inclist_t inclist;  | 
92  | 3.02k  |     igraph_int_t i;  | 
93  | 3.02k  |     igraph_int_t no_of_from, no_of_to;  | 
94  | 3.02k  |     igraph_dqueue_int_t Q;  | 
95  | 3.02k  |     igraph_bitset_t clean_vertices;  | 
96  | 3.02k  |     igraph_vector_int_t num_queued;  | 
97  | 3.02k  |     igraph_vit_t fromvit, tovit;  | 
98  | 3.02k  |     igraph_bool_t all_to;  | 
99  | 3.02k  |     igraph_vector_t dist;  | 
100  | 3.02k  |     int iter = 0;  | 
101  |  |  | 
102  |  |     /*  | 
103  |  |        - speedup: a vertex is marked clean if its distance from the source  | 
104  |  |          did not change during the last phase. Neighbors of a clean vertex  | 
105  |  |          are not relaxed again, since it would mean no change in the  | 
106  |  |          shortest path values. Dirty vertices are queued. Negative cycles can  | 
107  |  |          be detected by checking whether a vertex has been queued at least  | 
108  |  |          n times.  | 
109  |  |     */  | 
110  |  |  | 
111  | 3.02k  |     if (!weights || no_of_edges == 0) { | 
112  | 142  |         return igraph_i_distances_unweighted_cutoff(graph, res, from, to, mode, -1);  | 
113  | 142  |     }  | 
114  |  |  | 
115  | 2.88k  |     IGRAPH_CHECK(igraph_vit_create(graph, from, &fromvit));  | 
116  | 2.88k  |     IGRAPH_FINALLY(igraph_vit_destroy, &fromvit);  | 
117  | 2.88k  |     no_of_from = IGRAPH_VIT_SIZE(fromvit);  | 
118  |  |  | 
119  | 2.88k  |     IGRAPH_DQUEUE_INT_INIT_FINALLY(&Q, no_of_nodes);  | 
120  | 2.88k  |     IGRAPH_BITSET_INIT_FINALLY(&clean_vertices, no_of_nodes);  | 
121  | 2.88k  |     IGRAPH_VECTOR_INT_INIT_FINALLY(&num_queued, no_of_nodes);  | 
122  | 2.88k  |     IGRAPH_CHECK(igraph_lazy_inclist_init(graph, &inclist, mode, IGRAPH_LOOPS));  | 
123  | 2.88k  |     IGRAPH_FINALLY(igraph_lazy_inclist_destroy, &inclist);  | 
124  |  |  | 
125  | 2.88k  |     all_to = igraph_vs_is_all(&to);  | 
126  | 2.88k  |     if (all_to) { | 
127  | 2.88k  |         no_of_to = no_of_nodes;  | 
128  | 2.88k  |     } else { | 
129  | 0  |         IGRAPH_CHECK(igraph_vit_create(graph, to, &tovit));  | 
130  | 0  |         IGRAPH_FINALLY(igraph_vit_destroy, &tovit);  | 
131  | 0  |         no_of_to = IGRAPH_VIT_SIZE(tovit);  | 
132  |  |  | 
133  |  |         /* No need to check here whether the vertices in 'to' are unique because  | 
134  |  |          * the loop below uses a temporary distance vector that is then copied  | 
135  |  |          * into the result matrix at the end of the outer loop iteration, and  | 
136  |  |          * this is safe even if 'to' contains the same vertex multiple times */  | 
137  | 0  |     }  | 
138  |  |  | 
139  | 2.88k  |     IGRAPH_VECTOR_INIT_FINALLY(&dist, no_of_nodes);  | 
140  | 2.88k  |     IGRAPH_CHECK(igraph_matrix_resize(res, no_of_from, no_of_to));  | 
141  |  |  | 
142  | 2.88k  |     for (IGRAPH_VIT_RESET(fromvit), i = 0;  | 
143  | 5.77k  |          !IGRAPH_VIT_END(fromvit);  | 
144  | 2.88k  |          IGRAPH_VIT_NEXT(fromvit), i++) { | 
145  | 2.88k  |         igraph_int_t source = IGRAPH_VIT_GET(fromvit);  | 
146  |  |  | 
147  | 2.88k  |         igraph_vector_fill(&dist, IGRAPH_INFINITY);  | 
148  | 2.88k  |         VECTOR(dist)[source] = 0;  | 
149  | 2.88k  |         igraph_bitset_null(&clean_vertices);  | 
150  | 2.88k  |         igraph_vector_int_null(&num_queued);  | 
151  |  |  | 
152  |  |         /* Fill the queue with vertices to be checked */  | 
153  | 565k  |         for (igraph_int_t j = 0; j < no_of_nodes; j++) { | 
154  | 562k  |             IGRAPH_CHECK(igraph_dqueue_int_push(&Q, j));  | 
155  | 562k  |         }  | 
156  |  |  | 
157  | 590k  |         while (!igraph_dqueue_int_empty(&Q)) { | 
158  | 587k  |             IGRAPH_ALLOW_INTERRUPTION_LIMITED(iter, 1 << 13);  | 
159  |  |  | 
160  | 587k  |             igraph_int_t j = igraph_dqueue_int_pop(&Q);  | 
161  | 587k  |             IGRAPH_BIT_SET(clean_vertices, j);  | 
162  | 587k  |             VECTOR(num_queued)[j] += 1;  | 
163  | 587k  |             if (VECTOR(num_queued)[j] > no_of_nodes) { | 
164  | 0  |                 IGRAPH_ERROR("Negative cycle in graph while calculating distances with Bellman-Ford algorithm.", | 
165  | 0  |                              IGRAPH_ENEGCYCLE);  | 
166  | 0  |             }  | 
167  |  |  | 
168  |  |             /* If we cannot get to j in finite time yet, there is no need to relax  | 
169  |  |              * its edges */  | 
170  | 587k  |             if (VECTOR(dist)[j] == IGRAPH_INFINITY) { | 
171  | 548k  |                 continue;  | 
172  | 548k  |             }  | 
173  |  |  | 
174  | 39.4k  |             igraph_vector_int_t *neis = igraph_lazy_inclist_get(&inclist, j);  | 
175  | 39.4k  |             IGRAPH_CHECK_OOM(neis, "Failed to query incident edges.");  | 
176  |  |  | 
177  | 39.4k  |             igraph_int_t nlen = igraph_vector_int_size(neis);  | 
178  | 125k  |             for (igraph_int_t k = 0; k < nlen; k++) { | 
179  | 85.9k  |                 igraph_int_t nei = VECTOR(*neis)[k];  | 
180  | 85.9k  |                 igraph_int_t target = IGRAPH_OTHER(graph, nei, j);  | 
181  | 85.9k  |                 igraph_real_t altdist = VECTOR(dist)[j] + VECTOR(*weights)[nei];  | 
182  | 85.9k  |                 if (VECTOR(dist)[target] > altdist) { | 
183  |  |                     /* relax the edge */  | 
184  | 38.0k  |                     VECTOR(dist)[target] = altdist;  | 
185  | 38.0k  |                     if (IGRAPH_BIT_TEST(clean_vertices, target)) { | 
186  | 24.9k  |                         IGRAPH_BIT_CLEAR(clean_vertices, target);  | 
187  | 24.9k  |                         IGRAPH_CHECK(igraph_dqueue_int_push(&Q, target));  | 
188  | 24.9k  |                     }  | 
189  | 38.0k  |                 }  | 
190  | 85.9k  |             }  | 
191  | 39.4k  |         }  | 
192  |  |  | 
193  |  |         /* Copy it to the result */  | 
194  | 2.88k  |         if (all_to) { | 
195  | 2.88k  |             IGRAPH_CHECK(igraph_matrix_set_row(res, &dist, i));  | 
196  | 2.88k  |         } else { | 
197  | 0  |             igraph_int_t j;  | 
198  | 0  |             for (IGRAPH_VIT_RESET(tovit), j = 0; !IGRAPH_VIT_END(tovit);  | 
199  | 0  |                  IGRAPH_VIT_NEXT(tovit), j++) { | 
200  | 0  |                 igraph_int_t v = IGRAPH_VIT_GET(tovit);  | 
201  | 0  |                 MATRIX(*res, i, j) = VECTOR(dist)[v];  | 
202  | 0  |             }  | 
203  | 0  |         }  | 
204  | 2.88k  |     }  | 
205  |  |  | 
206  | 2.88k  |     igraph_vector_destroy(&dist);  | 
207  | 2.88k  |     IGRAPH_FINALLY_CLEAN(1);  | 
208  |  |  | 
209  | 2.88k  |     if (!all_to) { | 
210  | 0  |         igraph_vit_destroy(&tovit);  | 
211  | 0  |         IGRAPH_FINALLY_CLEAN(1);  | 
212  | 0  |     }  | 
213  |  |  | 
214  | 2.88k  |     igraph_vit_destroy(&fromvit);  | 
215  | 2.88k  |     igraph_dqueue_int_destroy(&Q);  | 
216  | 2.88k  |     igraph_bitset_destroy(&clean_vertices);  | 
217  | 2.88k  |     igraph_vector_int_destroy(&num_queued);  | 
218  | 2.88k  |     igraph_lazy_inclist_destroy(&inclist);  | 
219  | 2.88k  |     IGRAPH_FINALLY_CLEAN(5);  | 
220  |  |  | 
221  | 2.88k  |     return IGRAPH_SUCCESS;  | 
222  | 2.88k  | }  | 
223  |  |  | 
224  |  |  | 
225  |  | /**  | 
226  |  |  * \ingroup structural  | 
227  |  |  * \function igraph_get_shortest_paths_bellman_ford  | 
228  |  |  * \brief Weighted shortest paths from a vertex, allowing negative weights.  | 
229  |  |  *  | 
230  |  |  * This function calculates weighted shortest paths from or to a single vertex  | 
231  |  |  * using the Bellman-Ford algorithm, whihc can handle negative weights. When  | 
232  |  |  * there is more than one shortest path between two vertices, only one of them  | 
233  |  |  * is returned. When there are no negative weights,  | 
234  |  |  * \ref igraph_get_shortest_paths_dijkstra() is likely to be faster.  | 
235  |  |  *  | 
236  |  |  * \param graph The input graph, can be directed.  | 
237  |  |  * \param vertices The result, the IDs of the vertices along the paths.  | 
238  |  |  *        This is a list of integer vectors where each element is an  | 
239  |  |  *        \ref igraph_vector_int_t object. The list will be resized as needed.  | 
240  |  |  *        Supply a null pointer here if you don't need these vectors.  | 
241  |  |  * \param edges The result, the IDs of the edges along the paths.  | 
242  |  |  *        This is a list of integer vectors where each element is an  | 
243  |  |  *        \ref igraph_vector_int_t object. The list will be resized as needed.  | 
244  |  |  *        Supply a null pointer here if you don't need these vectors.  | 
245  |  |  * \param from The id of the vertex from/to which the geodesics are  | 
246  |  |  *        calculated.  | 
247  |  |  * \param to Vertex sequence with the IDs of the vertices to/from which the  | 
248  |  |  *        shortest paths will be calculated. A vertex might be given multiple  | 
249  |  |  *        times.  | 
250  |  |  * \param weights The edge weights. There must not be any cycle in  | 
251  |  |  *    the graph that has a negative total weight (since this would allow  | 
252  |  |  *    us to decrease the weight of any path containing at least a single  | 
253  |  |  *    vertex of this cycle infinitely). If this is a null pointer, then the  | 
254  |  |  *    unweighted version, \ref igraph_get_shortest_paths() is called.  | 
255  |  |  *    Edges with positive infinite weights are ignored.  | 
256  |  |  * \param mode For directed graphs; whether to follow paths along edge  | 
257  |  |  *    directions (\c IGRAPH_OUT), or the opposite (\c IGRAPH_IN), or  | 
258  |  |  *    ignore edge directions completely (\c IGRAPH_ALL). It is ignored  | 
259  |  |  *    for undirected graphs.  | 
260  |  |  * \param parents A pointer to an initialized igraph vector or null.  | 
261  |  |  *        If not null, a vector containing the parent of each vertex in  | 
262  |  |  *        the single source shortest path tree is returned here. The  | 
263  |  |  *        parent of vertex i in the tree is the vertex from which vertex i  | 
264  |  |  *        was reached. The parent of the start vertex (in the \c from  | 
265  |  |  *        argument) is -1. If the parent is -2, it means  | 
266  |  |  *        that the given vertex was not reached from the source during the  | 
267  |  |  *        search. Note that the search terminates if all the vertices in  | 
268  |  |  *        \c to are reached.  | 
269  |  |  * \param inbound_edges A pointer to an initialized igraph vector or null.  | 
270  |  |  *        If not null, a vector containing the inbound edge of each vertex in  | 
271  |  |  *        the single source shortest path tree is returned here. The  | 
272  |  |  *        inbound edge of vertex i in the tree is the edge via which vertex i  | 
273  |  |  *        was reached. The start vertex and vertices that were not reached  | 
274  |  |  *        during the search will have -1 in the corresponding entry of the  | 
275  |  |  *        vector. Note that the search terminates if all the vertices in  | 
276  |  |  *        \c to are reached.  | 
277  |  |  * \return Error code:  | 
278  |  |  *         \clist  | 
279  |  |  *         \cli IGRAPH_ENOMEM  | 
280  |  |  *           Not enough memory for temporary data.  | 
281  |  |  *         \cli IGRAPH_EINVAL  | 
282  |  |  *           The weight vector doesn't math the number of edges.  | 
283  |  |  *         \cli IGRAPH_EINVVID  | 
284  |  |  *           \p from is invalid vertex ID  | 
285  |  |  *         \cli IGRAPH_ENEGCYCLE  | 
286  |  |  *           Bellman-ford algorithm encounted a negative cycle.  | 
287  |  |  *         \endclist  | 
288  |  |  *  | 
289  |  |  * Time complexity: O(|E|*|V|), where |V| is the number of  | 
290  |  |  * vertices, |E| the number of edges.  | 
291  |  |  *  | 
292  |  |  * \sa \ref igraph_distances_bellman_ford() to compute only shortest path  | 
293  |  |  * lengths, but not the paths themselves; \ref igraph_get_shortest_paths() for  | 
294  |  |  * a non-algorithm-specific interface.  | 
295  |  |  */  | 
296  |  | igraph_error_t igraph_get_shortest_paths_bellman_ford(  | 
297  |  |         const igraph_t *graph,  | 
298  |  |         igraph_vector_int_list_t *vertices,  | 
299  |  |         igraph_vector_int_list_t *edges,  | 
300  |  |         igraph_int_t from,  | 
301  |  |         igraph_vs_t to,  | 
302  |  |         const igraph_vector_t *weights,  | 
303  |  |         igraph_neimode_t mode,  | 
304  |  |         igraph_vector_int_t *parents,  | 
305  | 0  |         igraph_vector_int_t *inbound_edges) { | 
306  |  | 
  | 
307  | 0  |     igraph_bool_t negative_weights;  | 
308  | 0  |     IGRAPH_CHECK(igraph_i_validate_distance_weights(graph, weights, &negative_weights));  | 
309  | 0  |     return igraph_i_get_shortest_paths_bellman_ford(graph, vertices, edges, from, to, weights, mode, parents, inbound_edges);  | 
310  | 0  | }  | 
311  |  |  | 
312  |  | igraph_error_t igraph_i_get_shortest_paths_bellman_ford(  | 
313  |  |         const igraph_t *graph,  | 
314  |  |         igraph_vector_int_list_t *vertices,  | 
315  |  |         igraph_vector_int_list_t *edges,  | 
316  |  |         igraph_int_t from,  | 
317  |  |         igraph_vs_t to,  | 
318  |  |         const igraph_vector_t *weights,  | 
319  |  |         igraph_neimode_t mode,  | 
320  |  |         igraph_vector_int_t *parents,  | 
321  | 0  |         igraph_vector_int_t *inbound_edges) { | 
322  |  | 
  | 
323  | 0  |     const igraph_int_t no_of_nodes = igraph_vcount(graph);  | 
324  | 0  |     igraph_int_t *parent_eids;  | 
325  | 0  |     igraph_lazy_inclist_t inclist;  | 
326  | 0  |     igraph_int_t i, j, k;  | 
327  | 0  |     igraph_dqueue_int_t Q;  | 
328  | 0  |     igraph_bitset_t clean_vertices;  | 
329  | 0  |     igraph_vector_int_t num_queued;  | 
330  | 0  |     igraph_vit_t tovit;  | 
331  | 0  |     igraph_vector_t dist;  | 
332  | 0  |     int iter = 0;  | 
333  |  | 
  | 
334  | 0  |     if (!weights) { | 
335  | 0  |         return igraph_i_get_shortest_paths_unweighted(graph, vertices, edges, from, to, mode, parents, inbound_edges);  | 
336  | 0  |     }  | 
337  |  |  | 
338  | 0  |     if (from < 0 || from >= no_of_nodes) { | 
339  | 0  |         IGRAPH_ERROR("Index of source vertex is out of range.", IGRAPH_EINVVID); | 
340  | 0  |     }  | 
341  |  |  | 
342  | 0  |     IGRAPH_DQUEUE_INT_INIT_FINALLY(&Q, no_of_nodes);  | 
343  | 0  |     IGRAPH_BITSET_INIT_FINALLY(&clean_vertices, no_of_nodes);  | 
344  | 0  |     IGRAPH_VECTOR_INT_INIT_FINALLY(&num_queued, no_of_nodes);  | 
345  | 0  |     IGRAPH_CHECK(igraph_lazy_inclist_init(graph, &inclist, mode, IGRAPH_LOOPS));  | 
346  | 0  |     IGRAPH_FINALLY(igraph_lazy_inclist_destroy, &inclist);  | 
347  |  | 
  | 
348  | 0  |     IGRAPH_CHECK(igraph_vit_create(graph, to, &tovit));  | 
349  | 0  |     IGRAPH_FINALLY(igraph_vit_destroy, &tovit);  | 
350  |  | 
  | 
351  | 0  |     if (vertices) { | 
352  | 0  |         IGRAPH_CHECK(igraph_vector_int_list_resize(vertices, IGRAPH_VIT_SIZE(tovit)));  | 
353  | 0  |     }  | 
354  | 0  |     if (edges) { | 
355  | 0  |         IGRAPH_CHECK(igraph_vector_int_list_resize(edges, IGRAPH_VIT_SIZE(tovit)));  | 
356  | 0  |     }  | 
357  |  |  | 
358  | 0  |     parent_eids = IGRAPH_CALLOC(no_of_nodes, igraph_int_t);  | 
359  | 0  |     IGRAPH_CHECK_OOM(parent_eids, "Insufficient memory for shortest paths with Bellman-Ford.");  | 
360  | 0  |     IGRAPH_FINALLY(igraph_free, parent_eids);  | 
361  |  | 
  | 
362  | 0  |     IGRAPH_VECTOR_INIT_FINALLY(&dist, no_of_nodes);  | 
363  |  |  | 
364  | 0  |     igraph_vector_fill(&dist, IGRAPH_INFINITY);  | 
365  | 0  |     VECTOR(dist)[from] = 0;  | 
366  |  |  | 
367  |  |     /* Fill the queue with vertices to be checked */  | 
368  | 0  |     for (j = 0; j < no_of_nodes; j++) { | 
369  | 0  |         IGRAPH_CHECK(igraph_dqueue_int_push(&Q, j));  | 
370  | 0  |     }  | 
371  |  |  | 
372  | 0  |     while (!igraph_dqueue_int_empty(&Q)) { | 
373  | 0  |         IGRAPH_ALLOW_INTERRUPTION_LIMITED(iter, 1 << 13);  | 
374  |  |  | 
375  | 0  |         j = igraph_dqueue_int_pop(&Q);  | 
376  | 0  |         IGRAPH_BIT_SET(clean_vertices, j);  | 
377  | 0  |         VECTOR(num_queued)[j] += 1;  | 
378  | 0  |         if (VECTOR(num_queued)[j] > no_of_nodes) { | 
379  | 0  |             IGRAPH_ERROR("Negative cycle in graph while calculating distances with Bellman-Ford algorithm.", | 
380  | 0  |                          IGRAPH_ENEGCYCLE);  | 
381  | 0  |         }  | 
382  |  |  | 
383  |  |         /* If we cannot get to j in finite time yet, there is no need to relax its edges */  | 
384  | 0  |         if (VECTOR(dist)[j] == IGRAPH_INFINITY) { | 
385  | 0  |             continue;  | 
386  | 0  |         }  | 
387  |  |  | 
388  | 0  |         igraph_vector_int_t *neis = igraph_lazy_inclist_get(&inclist, j);  | 
389  | 0  |         IGRAPH_CHECK_OOM(neis, "Failed to query incident edges.");  | 
390  |  |  | 
391  | 0  |         igraph_int_t nlen = igraph_vector_int_size(neis);  | 
392  | 0  |         for (k = 0; k < nlen; k++) { | 
393  | 0  |             igraph_int_t nei = VECTOR(*neis)[k];  | 
394  | 0  |             igraph_int_t target = IGRAPH_OTHER(graph, nei, j);  | 
395  | 0  |             igraph_real_t weight = VECTOR(*weights)[nei];  | 
396  | 0  |             igraph_real_t altdist = VECTOR(dist)[j] + weight;  | 
397  |  |  | 
398  |  |             /* infinite weights are handled correctly here; if an edge has  | 
399  |  |              * infinite weight, altdist will also be infinite so the condition  | 
400  |  |              * will never be true as if the edge was ignored */  | 
401  |  | 
  | 
402  | 0  |             if (VECTOR(dist)[target] > altdist) { | 
403  |  |                 /* relax the edge */  | 
404  | 0  |                 VECTOR(dist)[target] = altdist;  | 
405  | 0  |                 parent_eids[target] = nei + 1;  | 
406  | 0  |                 if (IGRAPH_BIT_TEST(clean_vertices, target)) { | 
407  | 0  |                     IGRAPH_BIT_CLEAR(clean_vertices, target);  | 
408  | 0  |                     IGRAPH_CHECK(igraph_dqueue_int_push(&Q, target));  | 
409  | 0  |                 }  | 
410  | 0  |             }  | 
411  | 0  |         }  | 
412  | 0  |     }  | 
413  |  |  | 
414  |  |     /* Create `parents' if needed */  | 
415  | 0  |     if (parents) { | 
416  | 0  |         IGRAPH_CHECK(igraph_vector_int_resize(parents, no_of_nodes));  | 
417  |  |  | 
418  | 0  |         for (i = 0; i < no_of_nodes; i++) { | 
419  | 0  |             if (i == from) { | 
420  |  |                 /* i is the start vertex */  | 
421  | 0  |                 VECTOR(*parents)[i] = -1;  | 
422  | 0  |             } else if (parent_eids[i] <= 0) { | 
423  |  |                 /* i was not reached */  | 
424  | 0  |                 VECTOR(*parents)[i] = -2;  | 
425  | 0  |             } else { | 
426  |  |                 /* i was reached via the edge with ID = parent_eids[i] - 1 */  | 
427  | 0  |                 VECTOR(*parents)[i] = IGRAPH_OTHER(graph, parent_eids[i] - 1, i);  | 
428  | 0  |             }  | 
429  | 0  |         }  | 
430  | 0  |     }  | 
431  |  |  | 
432  |  |     /* Create `inbound_edges' if needed */  | 
433  | 0  |     if (inbound_edges) { | 
434  | 0  |         IGRAPH_CHECK(igraph_vector_int_resize(inbound_edges, no_of_nodes));  | 
435  |  |  | 
436  | 0  |         for (i = 0; i < no_of_nodes; i++) { | 
437  | 0  |             if (parent_eids[i] <= 0) { | 
438  |  |                 /* i was not reached */  | 
439  | 0  |                 VECTOR(*inbound_edges)[i] = -1;  | 
440  | 0  |             } else { | 
441  |  |                 /* i was reached via the edge with ID = parent_eids[i] - 1 */  | 
442  | 0  |                 VECTOR(*inbound_edges)[i] = parent_eids[i] - 1;  | 
443  | 0  |             }  | 
444  | 0  |         }  | 
445  | 0  |     }  | 
446  |  |  | 
447  |  |     /* Reconstruct the shortest paths based on vertex and/or edge IDs */  | 
448  | 0  |     if (vertices || edges) { | 
449  | 0  |         for (IGRAPH_VIT_RESET(tovit), i = 0; !IGRAPH_VIT_END(tovit); IGRAPH_VIT_NEXT(tovit), i++) { | 
450  | 0  |             igraph_int_t node = IGRAPH_VIT_GET(tovit);  | 
451  | 0  |             igraph_int_t size, act, edge;  | 
452  | 0  |             igraph_vector_int_t *vvec = 0, *evec = 0;  | 
453  | 0  |             if (vertices) { | 
454  | 0  |                 vvec = igraph_vector_int_list_get_ptr(vertices, i);  | 
455  | 0  |                 igraph_vector_int_clear(vvec);  | 
456  | 0  |             }  | 
457  | 0  |             if (edges) { | 
458  | 0  |                 evec = igraph_vector_int_list_get_ptr(edges, i);  | 
459  | 0  |                 igraph_vector_int_clear(evec);  | 
460  | 0  |             }  | 
461  |  | 
  | 
462  | 0  |             IGRAPH_ALLOW_INTERRUPTION();  | 
463  |  |  | 
464  | 0  |             size = 0;  | 
465  | 0  |             act = node;  | 
466  | 0  |             while (parent_eids[act]) { | 
467  | 0  |                 size++;  | 
468  | 0  |                 edge = parent_eids[act] - 1;  | 
469  | 0  |                 act = IGRAPH_OTHER(graph, edge, act);  | 
470  | 0  |             }  | 
471  | 0  |             if (vvec && (size > 0 || node == from)) { | 
472  | 0  |                 IGRAPH_CHECK(igraph_vector_int_resize(vvec, size + 1));  | 
473  | 0  |                 VECTOR(*vvec)[size] = node;  | 
474  | 0  |             }  | 
475  | 0  |             if (evec) { | 
476  | 0  |                 IGRAPH_CHECK(igraph_vector_int_resize(evec, size));  | 
477  | 0  |             }  | 
478  | 0  |             act = node;  | 
479  | 0  |             while (parent_eids[act]) { | 
480  | 0  |                 edge = parent_eids[act] - 1;  | 
481  | 0  |                 act = IGRAPH_OTHER(graph, edge, act);  | 
482  | 0  |                 size--;  | 
483  | 0  |                 if (vvec) { | 
484  | 0  |                     VECTOR(*vvec)[size] = act;  | 
485  | 0  |                 }  | 
486  | 0  |                 if (evec) { | 
487  | 0  |                     VECTOR(*evec)[size] = edge;  | 
488  | 0  |                 }  | 
489  | 0  |             }  | 
490  | 0  |         }  | 
491  | 0  |     }  | 
492  |  |  | 
493  | 0  |     igraph_vector_destroy(&dist);  | 
494  | 0  |     IGRAPH_FINALLY_CLEAN(1);  | 
495  |  | 
  | 
496  | 0  |     igraph_vit_destroy(&tovit);  | 
497  | 0  |     IGRAPH_FINALLY_CLEAN(1);  | 
498  |  | 
  | 
499  | 0  |     IGRAPH_FREE(parent_eids);  | 
500  | 0  |     igraph_dqueue_int_destroy(&Q);  | 
501  | 0  |     igraph_bitset_destroy(&clean_vertices);  | 
502  | 0  |     igraph_vector_int_destroy(&num_queued);  | 
503  | 0  |     igraph_lazy_inclist_destroy(&inclist);  | 
504  | 0  |     IGRAPH_FINALLY_CLEAN(5);  | 
505  |  | 
  | 
506  | 0  |     return IGRAPH_SUCCESS;  | 
507  | 0  | }  | 
508  |  |  | 
509  |  | /**  | 
510  |  |  * \function igraph_get_shortest_path_bellman_ford  | 
511  |  |  * \brief Weighted shortest path from one vertex to another one (Bellman-Ford).  | 
512  |  |  *  | 
513  |  |  * Finds a weighted shortest path from a single source vertex to  | 
514  |  |  * a single target using the Bellman-Ford algorithm.  | 
515  |  |  *  | 
516  |  |  * </para><para>  | 
517  |  |  * This function is a special case (and a wrapper) to  | 
518  |  |  * \ref igraph_get_shortest_paths_bellman_ford().  | 
519  |  |  *  | 
520  |  |  * \param graph The input graph, it can be directed or undirected.  | 
521  |  |  * \param vertices Pointer to an initialized vector or a null  | 
522  |  |  *        pointer. If not a null pointer, then the vertex IDs along  | 
523  |  |  *        the path are stored here, including the source and target  | 
524  |  |  *        vertices.  | 
525  |  |  * \param edges Pointer to an initialized vector or a null  | 
526  |  |  *        pointer. If not a null pointer, then the edge IDs along the  | 
527  |  |  *        path are stored here.  | 
528  |  |  * \param from The ID of the source vertex.  | 
529  |  |  * \param to The ID of the target vertex.  | 
530  |  |  * \param weights The edge weights. There must not be any cycle in  | 
531  |  |  *        the graph that has a negative total weight (since this would allow  | 
532  |  |  *        us to decrease the weight of any path containing at least a single  | 
533  |  |  *        vertex of this cycle infinitely). If this is a null pointer, then the  | 
534  |  |  *        unweighted version is called.  | 
535  |  |  * \param mode A constant specifying how edge directions are  | 
536  |  |  *        considered in directed graphs. \c IGRAPH_OUT follows edge  | 
537  |  |  *        directions, \c IGRAPH_IN follows the opposite directions,  | 
538  |  |  *        and \c IGRAPH_ALL ignores edge directions. This argument is  | 
539  |  |  *        ignored for undirected graphs.  | 
540  |  |  * \return Error code.  | 
541  |  |  *  | 
542  |  |  * Time complexity: O(|E|log|E|+|V|), |V| is the number of vertices,  | 
543  |  |  * |E| is the number of edges in the graph.  | 
544  |  |  *  | 
545  |  |  * \sa \ref igraph_get_shortest_paths_bellman_ford() for the version with  | 
546  |  |  * more target vertices.  | 
547  |  |  */  | 
548  |  |  | 
549  |  | igraph_error_t igraph_get_shortest_path_bellman_ford(const igraph_t *graph,  | 
550  |  |                                           igraph_vector_int_t *vertices,  | 
551  |  |                                           igraph_vector_int_t *edges,  | 
552  |  |                                           igraph_int_t from,  | 
553  |  |                                           igraph_int_t to,  | 
554  |  |                                           const igraph_vector_t *weights,  | 
555  | 0  |                                           igraph_neimode_t mode) { | 
556  |  | 
  | 
557  | 0  |     igraph_vector_int_list_t vertices2, *vp = &vertices2;  | 
558  | 0  |     igraph_vector_int_list_t edges2, *ep = &edges2;  | 
559  |  | 
  | 
560  | 0  |     if (vertices) { | 
561  | 0  |         IGRAPH_CHECK(igraph_vector_int_list_init(&vertices2, 1));  | 
562  | 0  |         IGRAPH_FINALLY(igraph_vector_int_list_destroy, &vertices2);  | 
563  | 0  |     } else { | 
564  | 0  |         vp = NULL;  | 
565  | 0  |     }  | 
566  | 0  |     if (edges) { | 
567  | 0  |         IGRAPH_CHECK(igraph_vector_int_list_init(&edges2, 1));  | 
568  | 0  |         IGRAPH_FINALLY(igraph_vector_int_list_destroy, &edges2);  | 
569  | 0  |     } else { | 
570  | 0  |         ep = NULL;  | 
571  | 0  |     }  | 
572  |  |  | 
573  | 0  |     IGRAPH_CHECK(igraph_get_shortest_paths_bellman_ford(graph, vp, ep,  | 
574  | 0  |                                                         from, igraph_vss_1(to),  | 
575  | 0  |                                                         weights, mode, NULL, NULL));  | 
576  |  |  | 
577  |  |     /* We use the constant time vector_swap() instead of the linear-time vector_update() to move the  | 
578  |  |        result to the output parameter. */  | 
579  | 0  |     if (edges) { | 
580  | 0  |         igraph_vector_int_swap(edges, igraph_vector_int_list_get_ptr(&edges2, 0));  | 
581  | 0  |         igraph_vector_int_list_destroy(&edges2);  | 
582  | 0  |         IGRAPH_FINALLY_CLEAN(1);  | 
583  | 0  |     }  | 
584  | 0  |     if (vertices) { | 
585  | 0  |         igraph_vector_int_swap(vertices, igraph_vector_int_list_get_ptr(&vertices2, 0));  | 
586  | 0  |         igraph_vector_int_list_destroy(&vertices2);  | 
587  | 0  |         IGRAPH_FINALLY_CLEAN(1);  | 
588  | 0  |     }  | 
589  |  | 
  | 
590  | 0  |     return IGRAPH_SUCCESS;  | 
591  | 0  | }  |