/rust/registry/src/index.crates.io-6f17d22bba15001f/crc32fast-1.5.0/src/specialized/pclmulqdq.rs
Line | Count | Source (jump to first uncovered line) |
1 | | //! Specialized checksum code for the x86 CPU architecture, based on the efficient algorithm described |
2 | | //! in the following whitepaper: |
3 | | //! |
4 | | //! Gopal, V., Ozturk, E., Guilford, J., Wolrich, G., Feghali, W., Dixon, M., & Karakoyunlu, D. (2009). |
5 | | //! _Fast CRC computation for generic polynomials using PCLMULQDQ instruction_. Intel. |
6 | | //! (Mirror link: <https://fossies.org/linux/zlib-ng/doc/crc-pclmulqdq.pdf>, accessed 2024-05-20) |
7 | | //! |
8 | | //! Throughout the code, this work is referred to as "the paper". |
9 | | |
10 | | #[cfg(target_arch = "x86")] |
11 | | use core::arch::x86 as arch; |
12 | | #[cfg(target_arch = "x86_64")] |
13 | | use core::arch::x86_64 as arch; |
14 | | |
15 | | #[derive(Clone)] |
16 | | pub struct State { |
17 | | state: u32, |
18 | | } |
19 | | |
20 | | impl State { |
21 | | #[cfg(not(feature = "std"))] |
22 | | pub fn new(state: u32) -> Option<Self> { |
23 | | if cfg!(target_feature = "pclmulqdq") |
24 | | && cfg!(target_feature = "sse2") |
25 | | && cfg!(target_feature = "sse4.1") |
26 | | { |
27 | | // SAFETY: The conditions above ensure that all |
28 | | // required instructions are supported by the CPU. |
29 | | Some(Self { state }) |
30 | | } else { |
31 | | None |
32 | | } |
33 | | } |
34 | | |
35 | | #[cfg(feature = "std")] |
36 | 29.0k | pub fn new(state: u32) -> Option<Self> { |
37 | 29.0k | if is_x86_feature_detected!("pclmulqdq") |
38 | 29.0k | && is_x86_feature_detected!("sse2") |
39 | 29.0k | && is_x86_feature_detected!("sse4.1") |
40 | | { |
41 | | // SAFETY: The conditions above ensure that all |
42 | | // required instructions are supported by the CPU. |
43 | 29.0k | Some(Self { state }) |
44 | | } else { |
45 | 0 | None |
46 | | } |
47 | 29.0k | } |
48 | | |
49 | 24.9M | pub fn update(&mut self, buf: &[u8]) { |
50 | 24.9M | // SAFETY: The `State::new` constructor ensures that all |
51 | 24.9M | // required instructions are supported by the CPU. |
52 | 24.9M | self.state = unsafe { calculate(self.state, buf) } |
53 | 24.9M | } |
54 | | |
55 | 262k | pub fn finalize(self) -> u32 { |
56 | 262k | self.state |
57 | 262k | } |
58 | | |
59 | 281k | pub fn reset(&mut self) { |
60 | 281k | self.state = 0; |
61 | 281k | } |
62 | | |
63 | 0 | pub fn combine(&mut self, other: u32, amount: u64) { |
64 | 0 | self.state = crate::combine::combine(self.state, other, amount); |
65 | 0 | } |
66 | | } |
67 | | |
68 | | const K1: i64 = 0x154442bd4; |
69 | | const K2: i64 = 0x1c6e41596; |
70 | | const K3: i64 = 0x1751997d0; |
71 | | const K4: i64 = 0x0ccaa009e; |
72 | | const K5: i64 = 0x163cd6124; |
73 | | |
74 | | const P_X: i64 = 0x1DB710641; |
75 | | const U_PRIME: i64 = 0x1F7011641; |
76 | | |
77 | | #[target_feature(enable = "pclmulqdq", enable = "sse2", enable = "sse4.1")] |
78 | 24.9M | unsafe fn calculate(crc: u32, mut data: &[u8]) -> u32 { |
79 | 24.9M | // In theory we can accelerate smaller chunks too, but for now just rely on |
80 | 24.9M | // the fallback implementation as it's too much hassle and doesn't seem too |
81 | 24.9M | // beneficial. |
82 | 24.9M | if data.len() < 128 { |
83 | 24.9M | return crate::baseline::update_fast_16(crc, data); |
84 | 17.1k | } |
85 | 17.1k | |
86 | 17.1k | // Step 1: fold by 4 loop |
87 | 17.1k | let mut x3 = get(&mut data); |
88 | 17.1k | let mut x2 = get(&mut data); |
89 | 17.1k | let mut x1 = get(&mut data); |
90 | 17.1k | let mut x0 = get(&mut data); |
91 | 17.1k | |
92 | 17.1k | // fold in our initial value, part of the incremental crc checksum |
93 | 17.1k | x3 = arch::_mm_xor_si128(x3, arch::_mm_cvtsi32_si128(!crc as i32)); |
94 | 17.1k | |
95 | 17.1k | let k1k2 = arch::_mm_set_epi64x(K2, K1); |
96 | 756k | while data.len() >= 64 { |
97 | 739k | x3 = reduce128(x3, get(&mut data), k1k2); |
98 | 739k | x2 = reduce128(x2, get(&mut data), k1k2); |
99 | 739k | x1 = reduce128(x1, get(&mut data), k1k2); |
100 | 739k | x0 = reduce128(x0, get(&mut data), k1k2); |
101 | 739k | } |
102 | | |
103 | 17.1k | let k3k4 = arch::_mm_set_epi64x(K4, K3); |
104 | 17.1k | let mut x = reduce128(x3, x2, k3k4); |
105 | 17.1k | x = reduce128(x, x1, k3k4); |
106 | 17.1k | x = reduce128(x, x0, k3k4); |
107 | | |
108 | | // Step 2: fold by 1 loop |
109 | 32.2k | while data.len() >= 16 { |
110 | 15.0k | x = reduce128(x, get(&mut data), k3k4); |
111 | 15.0k | } |
112 | | |
113 | | // Perform step 3, reduction from 128 bits to 64 bits. This is |
114 | | // significantly different from the paper and basically doesn't follow it |
115 | | // at all. It's not really clear why, but implementations of this algorithm |
116 | | // in Chrome/Linux diverge in the same way. It is beyond me why this is |
117 | | // different than the paper, maybe the paper has like errata or something? |
118 | | // Unclear. |
119 | | // |
120 | | // It's also not clear to me what's actually happening here and/or why, but |
121 | | // algebraically what's happening is: |
122 | | // |
123 | | // x = (x[0:63] • K4) ^ x[64:127] // 96 bit result |
124 | | // x = ((x[0:31] as u64) • K5) ^ x[32:95] // 64 bit result |
125 | | // |
126 | | // It's... not clear to me what's going on here. The paper itself is pretty |
127 | | // vague on this part but definitely uses different constants at least. |
128 | | // It's not clear to me, reading the paper, where the xor operations are |
129 | | // happening or why things are shifting around. This implementation... |
130 | | // appears to work though! |
131 | 17.1k | let x = arch::_mm_xor_si128( |
132 | 17.1k | arch::_mm_clmulepi64_si128(x, k3k4, 0x10), |
133 | 17.1k | arch::_mm_srli_si128(x, 8), |
134 | 17.1k | ); |
135 | 17.1k | let x = arch::_mm_xor_si128( |
136 | 17.1k | arch::_mm_clmulepi64_si128( |
137 | 17.1k | arch::_mm_and_si128(x, arch::_mm_set_epi32(0, 0, 0, !0)), |
138 | 17.1k | arch::_mm_set_epi64x(0, K5), |
139 | 17.1k | 0x00, |
140 | 17.1k | ), |
141 | 17.1k | arch::_mm_srli_si128(x, 4), |
142 | 17.1k | ); |
143 | 17.1k | |
144 | 17.1k | // Perform a Barrett reduction from our now 64 bits to 32 bits. The |
145 | 17.1k | // algorithm for this is described at the end of the paper, and note that |
146 | 17.1k | // this also implements the "bit reflected input" variant. |
147 | 17.1k | let pu = arch::_mm_set_epi64x(U_PRIME, P_X); |
148 | 17.1k | |
149 | 17.1k | // T1(x) = ⌊(R(x) % x^32)⌋ • μ |
150 | 17.1k | let t1 = arch::_mm_clmulepi64_si128( |
151 | 17.1k | arch::_mm_and_si128(x, arch::_mm_set_epi32(0, 0, 0, !0)), |
152 | 17.1k | pu, |
153 | 17.1k | 0x10, |
154 | 17.1k | ); |
155 | 17.1k | // T2(x) = ⌊(T1(x) % x^32)⌋ • P(x) |
156 | 17.1k | let t2 = arch::_mm_clmulepi64_si128( |
157 | 17.1k | arch::_mm_and_si128(t1, arch::_mm_set_epi32(0, 0, 0, !0)), |
158 | 17.1k | pu, |
159 | 17.1k | 0x00, |
160 | 17.1k | ); |
161 | 17.1k | // We're doing the bit-reflected variant, so get the upper 32-bits of the |
162 | 17.1k | // 64-bit result instead of the lower 32-bits. |
163 | 17.1k | // |
164 | 17.1k | // C(x) = R(x) ^ T2(x) / x^32 |
165 | 17.1k | let c = arch::_mm_extract_epi32(arch::_mm_xor_si128(x, t2), 1) as u32; |
166 | 17.1k | |
167 | 17.1k | if !data.is_empty() { |
168 | 10.9k | crate::baseline::update_fast_16(!c, data) |
169 | | } else { |
170 | 6.11k | !c |
171 | | } |
172 | 24.9M | } |
173 | | |
174 | 3.02M | unsafe fn reduce128(a: arch::__m128i, b: arch::__m128i, keys: arch::__m128i) -> arch::__m128i { |
175 | 3.02M | let t1 = arch::_mm_clmulepi64_si128(a, keys, 0x00); |
176 | 3.02M | let t2 = arch::_mm_clmulepi64_si128(a, keys, 0x11); |
177 | 3.02M | arch::_mm_xor_si128(arch::_mm_xor_si128(b, t1), t2) |
178 | 3.02M | } |
179 | | |
180 | 3.04M | unsafe fn get(a: &mut &[u8]) -> arch::__m128i { |
181 | 3.04M | debug_assert!(a.len() >= 16); |
182 | 3.04M | let r = arch::_mm_loadu_si128(a.as_ptr() as *const arch::__m128i); |
183 | 3.04M | *a = &a[16..]; |
184 | 3.04M | r |
185 | 3.04M | } |
186 | | |
187 | | #[cfg(test)] |
188 | | mod test { |
189 | | quickcheck::quickcheck! { |
190 | | fn check_against_baseline(init: u32, chunks: Vec<(Vec<u8>, usize)>) -> bool { |
191 | | let mut baseline = super::super::super::baseline::State::new(init); |
192 | | let mut pclmulqdq = super::State::new(init).expect("not supported"); |
193 | | for (chunk, mut offset) in chunks { |
194 | | // simulate random alignments by offsetting the slice by up to 15 bytes |
195 | | offset &= 0xF; |
196 | | if chunk.len() <= offset { |
197 | | baseline.update(&chunk); |
198 | | pclmulqdq.update(&chunk); |
199 | | } else { |
200 | | baseline.update(&chunk[offset..]); |
201 | | pclmulqdq.update(&chunk[offset..]); |
202 | | } |
203 | | } |
204 | | pclmulqdq.finalize() == baseline.finalize() |
205 | | } |
206 | | } |
207 | | } |