Coverage Report

Created: 2025-07-11 07:25

/rust/registry/src/index.crates.io-6f17d22bba15001f/half-2.6.0/src/binary16.rs
Line
Count
Source (jump to first uncovered line)
1
#[cfg(all(feature = "serde", feature = "alloc"))]
2
#[allow(unused_imports)]
3
use alloc::string::ToString;
4
#[cfg(feature = "bytemuck")]
5
use bytemuck::{Pod, Zeroable};
6
use core::{
7
    cmp::Ordering,
8
    iter::{Product, Sum},
9
    num::FpCategory,
10
    ops::{Add, AddAssign, Div, DivAssign, Mul, MulAssign, Neg, Rem, RemAssign, Sub, SubAssign},
11
};
12
#[cfg(not(target_arch = "spirv"))]
13
use core::{
14
    fmt::{
15
        Binary, Debug, Display, Error, Formatter, LowerExp, LowerHex, Octal, UpperExp, UpperHex,
16
    },
17
    num::ParseFloatError,
18
    str::FromStr,
19
};
20
#[cfg(feature = "serde")]
21
use serde::{Deserialize, Serialize};
22
#[cfg(feature = "zerocopy")]
23
use zerocopy::{FromBytes, Immutable, IntoBytes, KnownLayout};
24
25
pub(crate) mod arch;
26
27
/// A 16-bit floating point type implementing the IEEE 754-2008 standard [`binary16`] a.k.a "half"
28
/// format.
29
///
30
/// This 16-bit floating point type is intended for efficient storage where the full range and
31
/// precision of a larger floating point value is not required.
32
///
33
/// [`binary16`]: https://en.wikipedia.org/wiki/Half-precision_floating-point_format
34
#[allow(non_camel_case_types)]
35
#[derive(Clone, Copy, Default)]
36
#[repr(transparent)]
37
#[cfg_attr(feature = "serde", derive(Serialize))]
38
#[cfg_attr(
39
    feature = "rkyv",
40
    derive(rkyv::Archive, rkyv::Serialize, rkyv::Deserialize)
41
)]
42
#[cfg_attr(feature = "rkyv", rkyv(resolver = F16Resolver))]
43
#[cfg_attr(feature = "bytemuck", derive(Zeroable, Pod))]
44
#[cfg_attr(
45
    feature = "zerocopy",
46
    derive(FromBytes, Immutable, IntoBytes, KnownLayout)
47
)]
48
#[cfg_attr(kani, derive(kani::Arbitrary))]
49
#[cfg_attr(feature = "arbitrary", derive(arbitrary::Arbitrary))]
50
pub struct f16(u16);
51
52
impl f16 {
53
    /// Constructs a 16-bit floating point value from the raw bits.
54
    #[inline]
55
    #[must_use]
56
0
    pub const fn from_bits(bits: u16) -> f16 {
57
0
        f16(bits)
58
0
    }
59
60
    /// Constructs a 16-bit floating point value from a 32-bit floating point value.
61
    ///
62
    /// This operation is lossy. If the 32-bit value is to large to fit in 16-bits, ±∞ will result.
63
    /// NaN values are preserved. 32-bit subnormal values are too tiny to be represented in 16-bits
64
    /// and result in ±0. Exponents that underflow the minimum 16-bit exponent will result in 16-bit
65
    /// subnormals or ±0. All other values are truncated and rounded to the nearest representable
66
    /// 16-bit value.
67
    #[inline]
68
    #[must_use]
69
0
    pub fn from_f32(value: f32) -> f16 {
70
0
        f16(arch::f32_to_f16(value))
71
0
    }
Unexecuted instantiation: <half::binary16::f16>::from_f32
Unexecuted instantiation: <half::binary16::f16>::from_f32
72
73
    /// Constructs a 16-bit floating point value from a 32-bit floating point value.
74
    ///
75
    /// This function is identical to [`from_f32`][Self::from_f32] except it never uses hardware
76
    /// intrinsics, which allows it to be `const`. [`from_f32`][Self::from_f32] should be preferred
77
    /// in any non-`const` context.
78
    ///
79
    /// This operation is lossy. If the 32-bit value is to large to fit in 16-bits, ±∞ will result.
80
    /// NaN values are preserved. 32-bit subnormal values are too tiny to be represented in 16-bits
81
    /// and result in ±0. Exponents that underflow the minimum 16-bit exponent will result in 16-bit
82
    /// subnormals or ±0. All other values are truncated and rounded to the nearest representable
83
    /// 16-bit value.
84
    #[inline]
85
    #[must_use]
86
0
    pub const fn from_f32_const(value: f32) -> f16 {
87
0
        f16(arch::f32_to_f16_fallback(value))
88
0
    }
89
90
    /// Constructs a 16-bit floating point value from a 64-bit floating point value.
91
    ///
92
    /// This operation is lossy. If the 64-bit value is to large to fit in 16-bits, ±∞ will result.
93
    /// NaN values are preserved. 64-bit subnormal values are too tiny to be represented in 16-bits
94
    /// and result in ±0. Exponents that underflow the minimum 16-bit exponent will result in 16-bit
95
    /// subnormals or ±0. All other values are truncated and rounded to the nearest representable
96
    /// 16-bit value.
97
    #[inline]
98
    #[must_use]
99
0
    pub fn from_f64(value: f64) -> f16 {
100
0
        f16(arch::f64_to_f16(value))
101
0
    }
102
103
    /// Constructs a 16-bit floating point value from a 64-bit floating point value.
104
    ///
105
    /// This function is identical to [`from_f64`][Self::from_f64] except it never uses hardware
106
    /// intrinsics, which allows it to be `const`. [`from_f64`][Self::from_f64] should be preferred
107
    /// in any non-`const` context.
108
    ///
109
    /// This operation is lossy. If the 64-bit value is to large to fit in 16-bits, ±∞ will result.
110
    /// NaN values are preserved. 64-bit subnormal values are too tiny to be represented in 16-bits
111
    /// and result in ±0. Exponents that underflow the minimum 16-bit exponent will result in 16-bit
112
    /// subnormals or ±0. All other values are truncated and rounded to the nearest representable
113
    /// 16-bit value.
114
    #[inline]
115
    #[must_use]
116
0
    pub const fn from_f64_const(value: f64) -> f16 {
117
0
        f16(arch::f64_to_f16_fallback(value))
118
0
    }
119
120
    /// Converts a [`struct@f16`] into the underlying bit representation.
121
    #[inline]
122
    #[must_use]
123
0
    pub const fn to_bits(self) -> u16 {
124
0
        self.0
125
0
    }
Unexecuted instantiation: <half::binary16::f16>::to_bits
Unexecuted instantiation: <half::binary16::f16>::to_bits
Unexecuted instantiation: <half::binary16::f16>::to_bits
126
127
    /// Returns the memory representation of the underlying bit representation as a byte array in
128
    /// little-endian byte order.
129
    ///
130
    /// # Examples
131
    ///
132
    /// ```rust
133
    /// # use half::prelude::*;
134
    /// let bytes = f16::from_f32(12.5).to_le_bytes();
135
    /// assert_eq!(bytes, [0x40, 0x4A]);
136
    /// ```
137
    #[inline]
138
    #[must_use]
139
0
    pub const fn to_le_bytes(self) -> [u8; 2] {
140
0
        self.0.to_le_bytes()
141
0
    }
142
143
    /// Returns the memory representation of the underlying bit representation as a byte array in
144
    /// big-endian (network) byte order.
145
    ///
146
    /// # Examples
147
    ///
148
    /// ```rust
149
    /// # use half::prelude::*;
150
    /// let bytes = f16::from_f32(12.5).to_be_bytes();
151
    /// assert_eq!(bytes, [0x4A, 0x40]);
152
    /// ```
153
    #[inline]
154
    #[must_use]
155
0
    pub const fn to_be_bytes(self) -> [u8; 2] {
156
0
        self.0.to_be_bytes()
157
0
    }
158
159
    /// Returns the memory representation of the underlying bit representation as a byte array in
160
    /// native byte order.
161
    ///
162
    /// As the target platform's native endianness is used, portable code should use
163
    /// [`to_be_bytes`][Self::to_be_bytes] or [`to_le_bytes`][Self::to_le_bytes], as appropriate,
164
    /// instead.
165
    ///
166
    /// # Examples
167
    ///
168
    /// ```rust
169
    /// # use half::prelude::*;
170
    /// let bytes = f16::from_f32(12.5).to_ne_bytes();
171
    /// assert_eq!(bytes, if cfg!(target_endian = "big") {
172
    ///     [0x4A, 0x40]
173
    /// } else {
174
    ///     [0x40, 0x4A]
175
    /// });
176
    /// ```
177
    #[inline]
178
    #[must_use]
179
0
    pub const fn to_ne_bytes(self) -> [u8; 2] {
180
0
        self.0.to_ne_bytes()
181
0
    }
182
183
    /// Creates a floating point value from its representation as a byte array in little endian.
184
    ///
185
    /// # Examples
186
    ///
187
    /// ```rust
188
    /// # use half::prelude::*;
189
    /// let value = f16::from_le_bytes([0x40, 0x4A]);
190
    /// assert_eq!(value, f16::from_f32(12.5));
191
    /// ```
192
    #[inline]
193
    #[must_use]
194
0
    pub const fn from_le_bytes(bytes: [u8; 2]) -> f16 {
195
0
        f16::from_bits(u16::from_le_bytes(bytes))
196
0
    }
197
198
    /// Creates a floating point value from its representation as a byte array in big endian.
199
    ///
200
    /// # Examples
201
    ///
202
    /// ```rust
203
    /// # use half::prelude::*;
204
    /// let value = f16::from_be_bytes([0x4A, 0x40]);
205
    /// assert_eq!(value, f16::from_f32(12.5));
206
    /// ```
207
    #[inline]
208
    #[must_use]
209
0
    pub const fn from_be_bytes(bytes: [u8; 2]) -> f16 {
210
0
        f16::from_bits(u16::from_be_bytes(bytes))
211
0
    }
212
213
    /// Creates a floating point value from its representation as a byte array in native endian.
214
    ///
215
    /// As the target platform's native endianness is used, portable code likely wants to use
216
    /// [`from_be_bytes`][Self::from_be_bytes] or [`from_le_bytes`][Self::from_le_bytes], as
217
    /// appropriate instead.
218
    ///
219
    /// # Examples
220
    ///
221
    /// ```rust
222
    /// # use half::prelude::*;
223
    /// let value = f16::from_ne_bytes(if cfg!(target_endian = "big") {
224
    ///     [0x4A, 0x40]
225
    /// } else {
226
    ///     [0x40, 0x4A]
227
    /// });
228
    /// assert_eq!(value, f16::from_f32(12.5));
229
    /// ```
230
    #[inline]
231
    #[must_use]
232
0
    pub const fn from_ne_bytes(bytes: [u8; 2]) -> f16 {
233
0
        f16::from_bits(u16::from_ne_bytes(bytes))
234
0
    }
235
236
    /// Converts a [`struct@f16`] value into a `f32` value.
237
    ///
238
    /// This conversion is lossless as all 16-bit floating point values can be represented exactly
239
    /// in 32-bit floating point.
240
    #[inline]
241
    #[must_use]
242
0
    pub fn to_f32(self) -> f32 {
243
0
        arch::f16_to_f32(self.0)
244
0
    }
Unexecuted instantiation: <half::binary16::f16>::to_f32
Unexecuted instantiation: <half::binary16::f16>::to_f32
245
246
    /// Converts a [`struct@f16`] value into a `f32` value.
247
    ///
248
    /// This function is identical to [`to_f32`][Self::to_f32] except it never uses hardware
249
    /// intrinsics, which allows it to be `const`. [`to_f32`][Self::to_f32] should be preferred
250
    /// in any non-`const` context.
251
    ///
252
    /// This conversion is lossless as all 16-bit floating point values can be represented exactly
253
    /// in 32-bit floating point.
254
    #[inline]
255
    #[must_use]
256
0
    pub const fn to_f32_const(self) -> f32 {
257
0
        arch::f16_to_f32_fallback(self.0)
258
0
    }
259
260
    /// Converts a [`struct@f16`] value into a `f64` value.
261
    ///
262
    /// This conversion is lossless as all 16-bit floating point values can be represented exactly
263
    /// in 64-bit floating point.
264
    #[inline]
265
    #[must_use]
266
0
    pub fn to_f64(self) -> f64 {
267
0
        arch::f16_to_f64(self.0)
268
0
    }
269
270
    /// Converts a [`struct@f16`] value into a `f64` value.
271
    ///
272
    /// This function is identical to [`to_f64`][Self::to_f64] except it never uses hardware
273
    /// intrinsics, which allows it to be `const`. [`to_f64`][Self::to_f64] should be preferred
274
    /// in any non-`const` context.
275
    ///
276
    /// This conversion is lossless as all 16-bit floating point values can be represented exactly
277
    /// in 64-bit floating point.
278
    #[inline]
279
    #[must_use]
280
0
    pub const fn to_f64_const(self) -> f64 {
281
0
        arch::f16_to_f64_fallback(self.0)
282
0
    }
283
284
    /// Returns `true` if this value is `NaN` and `false` otherwise.
285
    ///
286
    /// # Examples
287
    ///
288
    /// ```rust
289
    /// # use half::prelude::*;
290
    ///
291
    /// let nan = f16::NAN;
292
    /// let f = f16::from_f32(7.0_f32);
293
    ///
294
    /// assert!(nan.is_nan());
295
    /// assert!(!f.is_nan());
296
    /// ```
297
    #[inline]
298
    #[must_use]
299
0
    pub const fn is_nan(self) -> bool {
300
0
        self.0 & 0x7FFFu16 > 0x7C00u16
301
0
    }
302
303
    /// Returns `true` if this value is ±∞ and `false`.
304
    /// otherwise.
305
    ///
306
    /// # Examples
307
    ///
308
    /// ```rust
309
    /// # use half::prelude::*;
310
    ///
311
    /// let f = f16::from_f32(7.0f32);
312
    /// let inf = f16::INFINITY;
313
    /// let neg_inf = f16::NEG_INFINITY;
314
    /// let nan = f16::NAN;
315
    ///
316
    /// assert!(!f.is_infinite());
317
    /// assert!(!nan.is_infinite());
318
    ///
319
    /// assert!(inf.is_infinite());
320
    /// assert!(neg_inf.is_infinite());
321
    /// ```
322
    #[inline]
323
    #[must_use]
324
0
    pub const fn is_infinite(self) -> bool {
325
0
        self.0 & 0x7FFFu16 == 0x7C00u16
326
0
    }
327
328
    /// Returns `true` if this number is neither infinite nor `NaN`.
329
    ///
330
    /// # Examples
331
    ///
332
    /// ```rust
333
    /// # use half::prelude::*;
334
    ///
335
    /// let f = f16::from_f32(7.0f32);
336
    /// let inf = f16::INFINITY;
337
    /// let neg_inf = f16::NEG_INFINITY;
338
    /// let nan = f16::NAN;
339
    ///
340
    /// assert!(f.is_finite());
341
    ///
342
    /// assert!(!nan.is_finite());
343
    /// assert!(!inf.is_finite());
344
    /// assert!(!neg_inf.is_finite());
345
    /// ```
346
    #[inline]
347
    #[must_use]
348
0
    pub const fn is_finite(self) -> bool {
349
0
        self.0 & 0x7C00u16 != 0x7C00u16
350
0
    }
351
352
    /// Returns `true` if the number is neither zero, infinite, subnormal, or `NaN`.
353
    ///
354
    /// # Examples
355
    ///
356
    /// ```rust
357
    /// # use half::prelude::*;
358
    ///
359
    /// let min = f16::MIN_POSITIVE;
360
    /// let max = f16::MAX;
361
    /// let lower_than_min = f16::from_f32(1.0e-10_f32);
362
    /// let zero = f16::from_f32(0.0_f32);
363
    ///
364
    /// assert!(min.is_normal());
365
    /// assert!(max.is_normal());
366
    ///
367
    /// assert!(!zero.is_normal());
368
    /// assert!(!f16::NAN.is_normal());
369
    /// assert!(!f16::INFINITY.is_normal());
370
    /// // Values between `0` and `min` are Subnormal.
371
    /// assert!(!lower_than_min.is_normal());
372
    /// ```
373
    #[inline]
374
    #[must_use]
375
0
    pub const fn is_normal(self) -> bool {
376
0
        let exp = self.0 & 0x7C00u16;
377
0
        exp != 0x7C00u16 && exp != 0
378
0
    }
379
380
    /// Returns the floating point category of the number.
381
    ///
382
    /// If only one property is going to be tested, it is generally faster to use the specific
383
    /// predicate instead.
384
    ///
385
    /// # Examples
386
    ///
387
    /// ```rust
388
    /// use std::num::FpCategory;
389
    /// # use half::prelude::*;
390
    ///
391
    /// let num = f16::from_f32(12.4_f32);
392
    /// let inf = f16::INFINITY;
393
    ///
394
    /// assert_eq!(num.classify(), FpCategory::Normal);
395
    /// assert_eq!(inf.classify(), FpCategory::Infinite);
396
    /// ```
397
    #[must_use]
398
0
    pub const fn classify(self) -> FpCategory {
399
0
        let exp = self.0 & 0x7C00u16;
400
0
        let man = self.0 & 0x03FFu16;
401
0
        match (exp, man) {
402
0
            (0, 0) => FpCategory::Zero,
403
0
            (0, _) => FpCategory::Subnormal,
404
0
            (0x7C00u16, 0) => FpCategory::Infinite,
405
0
            (0x7C00u16, _) => FpCategory::Nan,
406
0
            _ => FpCategory::Normal,
407
        }
408
0
    }
409
410
    /// Returns a number that represents the sign of `self`.
411
    ///
412
    /// * `1.0` if the number is positive, `+0.0` or [`INFINITY`][f16::INFINITY]
413
    /// * `-1.0` if the number is negative, `-0.0` or [`NEG_INFINITY`][f16::NEG_INFINITY]
414
    /// * [`NAN`][f16::NAN] if the number is `NaN`
415
    ///
416
    /// # Examples
417
    ///
418
    /// ```rust
419
    /// # use half::prelude::*;
420
    ///
421
    /// let f = f16::from_f32(3.5_f32);
422
    ///
423
    /// assert_eq!(f.signum(), f16::from_f32(1.0));
424
    /// assert_eq!(f16::NEG_INFINITY.signum(), f16::from_f32(-1.0));
425
    ///
426
    /// assert!(f16::NAN.signum().is_nan());
427
    /// ```
428
    #[must_use]
429
0
    pub const fn signum(self) -> f16 {
430
0
        if self.is_nan() {
431
0
            self
432
0
        } else if self.0 & 0x8000u16 != 0 {
433
0
            Self::NEG_ONE
434
        } else {
435
0
            Self::ONE
436
        }
437
0
    }
438
439
    /// Returns `true` if and only if `self` has a positive sign, including `+0.0`, `NaNs` with a
440
    /// positive sign bit and +∞.
441
    ///
442
    /// # Examples
443
    ///
444
    /// ```rust
445
    /// # use half::prelude::*;
446
    ///
447
    /// let nan = f16::NAN;
448
    /// let f = f16::from_f32(7.0_f32);
449
    /// let g = f16::from_f32(-7.0_f32);
450
    ///
451
    /// assert!(f.is_sign_positive());
452
    /// assert!(!g.is_sign_positive());
453
    /// // `NaN` can be either positive or negative
454
    /// assert!(nan.is_sign_positive() != nan.is_sign_negative());
455
    /// ```
456
    #[inline]
457
    #[must_use]
458
0
    pub const fn is_sign_positive(self) -> bool {
459
0
        self.0 & 0x8000u16 == 0
460
0
    }
461
462
    /// Returns `true` if and only if `self` has a negative sign, including `-0.0`, `NaNs` with a
463
    /// negative sign bit and −∞.
464
    ///
465
    /// # Examples
466
    ///
467
    /// ```rust
468
    /// # use half::prelude::*;
469
    ///
470
    /// let nan = f16::NAN;
471
    /// let f = f16::from_f32(7.0f32);
472
    /// let g = f16::from_f32(-7.0f32);
473
    ///
474
    /// assert!(!f.is_sign_negative());
475
    /// assert!(g.is_sign_negative());
476
    /// // `NaN` can be either positive or negative
477
    /// assert!(nan.is_sign_positive() != nan.is_sign_negative());
478
    /// ```
479
    #[inline]
480
    #[must_use]
481
0
    pub const fn is_sign_negative(self) -> bool {
482
0
        self.0 & 0x8000u16 != 0
483
0
    }
484
485
    /// Returns a number composed of the magnitude of `self` and the sign of `sign`.
486
    ///
487
    /// Equal to `self` if the sign of `self` and `sign` are the same, otherwise equal to `-self`.
488
    /// If `self` is NaN, then NaN with the sign of `sign` is returned.
489
    ///
490
    /// # Examples
491
    ///
492
    /// ```
493
    /// # use half::prelude::*;
494
    /// let f = f16::from_f32(3.5);
495
    ///
496
    /// assert_eq!(f.copysign(f16::from_f32(0.42)), f16::from_f32(3.5));
497
    /// assert_eq!(f.copysign(f16::from_f32(-0.42)), f16::from_f32(-3.5));
498
    /// assert_eq!((-f).copysign(f16::from_f32(0.42)), f16::from_f32(3.5));
499
    /// assert_eq!((-f).copysign(f16::from_f32(-0.42)), f16::from_f32(-3.5));
500
    ///
501
    /// assert!(f16::NAN.copysign(f16::from_f32(1.0)).is_nan());
502
    /// ```
503
    #[inline]
504
    #[must_use]
505
0
    pub const fn copysign(self, sign: f16) -> f16 {
506
0
        f16((sign.0 & 0x8000u16) | (self.0 & 0x7FFFu16))
507
0
    }
508
509
    /// Returns the maximum of the two numbers.
510
    ///
511
    /// If one of the arguments is NaN, then the other argument is returned.
512
    ///
513
    /// # Examples
514
    ///
515
    /// ```
516
    /// # use half::prelude::*;
517
    /// let x = f16::from_f32(1.0);
518
    /// let y = f16::from_f32(2.0);
519
    ///
520
    /// assert_eq!(x.max(y), y);
521
    /// ```
522
    #[inline]
523
    #[must_use]
524
0
    pub fn max(self, other: f16) -> f16 {
525
0
        if other > self && !other.is_nan() {
526
0
            other
527
        } else {
528
0
            self
529
        }
530
0
    }
531
532
    /// Returns the minimum of the two numbers.
533
    ///
534
    /// If one of the arguments is NaN, then the other argument is returned.
535
    ///
536
    /// # Examples
537
    ///
538
    /// ```
539
    /// # use half::prelude::*;
540
    /// let x = f16::from_f32(1.0);
541
    /// let y = f16::from_f32(2.0);
542
    ///
543
    /// assert_eq!(x.min(y), x);
544
    /// ```
545
    #[inline]
546
    #[must_use]
547
0
    pub fn min(self, other: f16) -> f16 {
548
0
        if other < self && !other.is_nan() {
549
0
            other
550
        } else {
551
0
            self
552
        }
553
0
    }
554
555
    /// Restrict a value to a certain interval unless it is NaN.
556
    ///
557
    /// Returns `max` if `self` is greater than `max`, and `min` if `self` is less than `min`.
558
    /// Otherwise this returns `self`.
559
    ///
560
    /// Note that this function returns NaN if the initial value was NaN as well.
561
    ///
562
    /// # Panics
563
    /// Panics if `min > max`, `min` is NaN, or `max` is NaN.
564
    ///
565
    /// # Examples
566
    ///
567
    /// ```
568
    /// # use half::prelude::*;
569
    /// assert!(f16::from_f32(-3.0).clamp(f16::from_f32(-2.0), f16::from_f32(1.0)) == f16::from_f32(-2.0));
570
    /// assert!(f16::from_f32(0.0).clamp(f16::from_f32(-2.0), f16::from_f32(1.0)) == f16::from_f32(0.0));
571
    /// assert!(f16::from_f32(2.0).clamp(f16::from_f32(-2.0), f16::from_f32(1.0)) == f16::from_f32(1.0));
572
    /// assert!(f16::NAN.clamp(f16::from_f32(-2.0), f16::from_f32(1.0)).is_nan());
573
    /// ```
574
    #[inline]
575
    #[must_use]
576
0
    pub fn clamp(self, min: f16, max: f16) -> f16 {
577
0
        assert!(min <= max);
578
0
        let mut x = self;
579
0
        if x < min {
580
0
            x = min;
581
0
        }
582
0
        if x > max {
583
0
            x = max;
584
0
        }
585
0
        x
586
0
    }
587
588
    /// Returns the ordering between `self` and `other`.
589
    ///
590
    /// Unlike the standard partial comparison between floating point numbers,
591
    /// this comparison always produces an ordering in accordance to
592
    /// the `totalOrder` predicate as defined in the IEEE 754 (2008 revision)
593
    /// floating point standard. The values are ordered in the following sequence:
594
    ///
595
    /// - negative quiet NaN
596
    /// - negative signaling NaN
597
    /// - negative infinity
598
    /// - negative numbers
599
    /// - negative subnormal numbers
600
    /// - negative zero
601
    /// - positive zero
602
    /// - positive subnormal numbers
603
    /// - positive numbers
604
    /// - positive infinity
605
    /// - positive signaling NaN
606
    /// - positive quiet NaN.
607
    ///
608
    /// The ordering established by this function does not always agree with the
609
    /// [`PartialOrd`] and [`PartialEq`] implementations of `f16`. For example,
610
    /// they consider negative and positive zero equal, while `total_cmp`
611
    /// doesn't.
612
    ///
613
    /// The interpretation of the signaling NaN bit follows the definition in
614
    /// the IEEE 754 standard, which may not match the interpretation by some of
615
    /// the older, non-conformant (e.g. MIPS) hardware implementations.
616
    ///
617
    /// # Examples
618
    /// ```
619
    /// # use half::f16;
620
    /// let mut v: Vec<f16> = vec![];
621
    /// v.push(f16::ONE);
622
    /// v.push(f16::INFINITY);
623
    /// v.push(f16::NEG_INFINITY);
624
    /// v.push(f16::NAN);
625
    /// v.push(f16::MAX_SUBNORMAL);
626
    /// v.push(-f16::MAX_SUBNORMAL);
627
    /// v.push(f16::ZERO);
628
    /// v.push(f16::NEG_ZERO);
629
    /// v.push(f16::NEG_ONE);
630
    /// v.push(f16::MIN_POSITIVE);
631
    ///
632
    /// v.sort_by(|a, b| a.total_cmp(&b));
633
    ///
634
    /// assert!(v
635
    ///     .into_iter()
636
    ///     .zip(
637
    ///         [
638
    ///             f16::NEG_INFINITY,
639
    ///             f16::NEG_ONE,
640
    ///             -f16::MAX_SUBNORMAL,
641
    ///             f16::NEG_ZERO,
642
    ///             f16::ZERO,
643
    ///             f16::MAX_SUBNORMAL,
644
    ///             f16::MIN_POSITIVE,
645
    ///             f16::ONE,
646
    ///             f16::INFINITY,
647
    ///             f16::NAN
648
    ///         ]
649
    ///         .iter()
650
    ///     )
651
    ///     .all(|(a, b)| a.to_bits() == b.to_bits()));
652
    /// ```
653
    // Implementation based on: https://doc.rust-lang.org/std/primitive.f32.html#method.total_cmp
654
    #[inline]
655
    #[must_use]
656
0
    pub fn total_cmp(&self, other: &Self) -> Ordering {
657
0
        let mut left = self.to_bits() as i16;
658
0
        let mut right = other.to_bits() as i16;
659
0
        left ^= (((left >> 15) as u16) >> 1) as i16;
660
0
        right ^= (((right >> 15) as u16) >> 1) as i16;
661
0
        left.cmp(&right)
662
0
    }
663
664
    /// Alternate serialize adapter for serializing as a float.
665
    ///
666
    /// By default, [`struct@f16`] serializes as a newtype of [`u16`]. This is an alternate serialize
667
    /// implementation that serializes as an [`f32`] value. It is designed for use with
668
    /// `serialize_with` serde attributes. Deserialization from `f32` values is already supported by
669
    /// the default deserialize implementation.
670
    ///
671
    /// # Examples
672
    ///
673
    /// A demonstration on how to use this adapater:
674
    ///
675
    /// ```
676
    /// use serde::{Serialize, Deserialize};
677
    /// use half::f16;
678
    ///
679
    /// #[derive(Serialize, Deserialize)]
680
    /// struct MyStruct {
681
    ///     #[serde(serialize_with = "f16::serialize_as_f32")]
682
    ///     value: f16 // Will be serialized as f32 instead of u16
683
    /// }
684
    /// ```
685
    #[cfg(feature = "serde")]
686
    pub fn serialize_as_f32<S: serde::Serializer>(&self, serializer: S) -> Result<S::Ok, S::Error> {
687
        serializer.serialize_f32(self.to_f32())
688
    }
689
690
    /// Alternate serialize adapter for serializing as a string.
691
    ///
692
    /// By default, [`struct@f16`] serializes as a newtype of [`u16`]. This is an alternate serialize
693
    /// implementation that serializes as a string value. It is designed for use with
694
    /// `serialize_with` serde attributes. Deserialization from string values is already supported
695
    /// by the default deserialize implementation.
696
    ///
697
    /// # Examples
698
    ///
699
    /// A demonstration on how to use this adapater:
700
    ///
701
    /// ```
702
    /// use serde::{Serialize, Deserialize};
703
    /// use half::f16;
704
    ///
705
    /// #[derive(Serialize, Deserialize)]
706
    /// struct MyStruct {
707
    ///     #[serde(serialize_with = "f16::serialize_as_string")]
708
    ///     value: f16 // Will be serialized as a string instead of u16
709
    /// }
710
    /// ```
711
    #[cfg(all(feature = "serde", feature = "alloc"))]
712
    pub fn serialize_as_string<S: serde::Serializer>(
713
        &self,
714
        serializer: S,
715
    ) -> Result<S::Ok, S::Error> {
716
        serializer.serialize_str(&self.to_string())
717
    }
718
719
    /// Approximate number of [`struct@f16`] significant digits in base 10
720
    pub const DIGITS: u32 = 3;
721
    /// [`struct@f16`]
722
    /// [machine epsilon](https://en.wikipedia.org/wiki/Machine_epsilon) value
723
    ///
724
    /// This is the difference between 1.0 and the next largest representable number.
725
    pub const EPSILON: f16 = f16(0x1400u16);
726
    /// [`struct@f16`] positive Infinity (+∞)
727
    pub const INFINITY: f16 = f16(0x7C00u16);
728
    /// Number of [`struct@f16`] significant digits in base 2
729
    pub const MANTISSA_DIGITS: u32 = 11;
730
    /// Largest finite [`struct@f16`] value
731
    pub const MAX: f16 = f16(0x7BFF);
732
    /// Maximum possible [`struct@f16`] power of 10 exponent
733
    pub const MAX_10_EXP: i32 = 4;
734
    /// Maximum possible [`struct@f16`] power of 2 exponent
735
    pub const MAX_EXP: i32 = 16;
736
    /// Smallest finite [`struct@f16`] value
737
    pub const MIN: f16 = f16(0xFBFF);
738
    /// Minimum possible normal [`struct@f16`] power of 10 exponent
739
    pub const MIN_10_EXP: i32 = -4;
740
    /// One greater than the minimum possible normal [`struct@f16`] power of 2 exponent
741
    pub const MIN_EXP: i32 = -13;
742
    /// Smallest positive normal [`struct@f16`] value
743
    pub const MIN_POSITIVE: f16 = f16(0x0400u16);
744
    /// [`struct@f16`] Not a Number (NaN)
745
    pub const NAN: f16 = f16(0x7E00u16);
746
    /// [`struct@f16`] negative infinity (-∞)
747
    pub const NEG_INFINITY: f16 = f16(0xFC00u16);
748
    /// The radix or base of the internal representation of [`struct@f16`]
749
    pub const RADIX: u32 = 2;
750
751
    /// Minimum positive subnormal [`struct@f16`] value
752
    pub const MIN_POSITIVE_SUBNORMAL: f16 = f16(0x0001u16);
753
    /// Maximum subnormal [`struct@f16`] value
754
    pub const MAX_SUBNORMAL: f16 = f16(0x03FFu16);
755
756
    /// [`struct@f16`] 1
757
    pub const ONE: f16 = f16(0x3C00u16);
758
    /// [`struct@f16`] 0
759
    pub const ZERO: f16 = f16(0x0000u16);
760
    /// [`struct@f16`] -0
761
    pub const NEG_ZERO: f16 = f16(0x8000u16);
762
    /// [`struct@f16`] -1
763
    pub const NEG_ONE: f16 = f16(0xBC00u16);
764
765
    /// [`struct@f16`] Euler's number (ℯ)
766
    pub const E: f16 = f16(0x4170u16);
767
    /// [`struct@f16`] Archimedes' constant (π)
768
    pub const PI: f16 = f16(0x4248u16);
769
    /// [`struct@f16`] 1/π
770
    pub const FRAC_1_PI: f16 = f16(0x3518u16);
771
    /// [`struct@f16`] 1/√2
772
    pub const FRAC_1_SQRT_2: f16 = f16(0x39A8u16);
773
    /// [`struct@f16`] 2/π
774
    pub const FRAC_2_PI: f16 = f16(0x3918u16);
775
    /// [`struct@f16`] 2/√π
776
    pub const FRAC_2_SQRT_PI: f16 = f16(0x3C83u16);
777
    /// [`struct@f16`] π/2
778
    pub const FRAC_PI_2: f16 = f16(0x3E48u16);
779
    /// [`struct@f16`] π/3
780
    pub const FRAC_PI_3: f16 = f16(0x3C30u16);
781
    /// [`struct@f16`] π/4
782
    pub const FRAC_PI_4: f16 = f16(0x3A48u16);
783
    /// [`struct@f16`] π/6
784
    pub const FRAC_PI_6: f16 = f16(0x3830u16);
785
    /// [`struct@f16`] π/8
786
    pub const FRAC_PI_8: f16 = f16(0x3648u16);
787
    /// [`struct@f16`] 𝗅𝗇 10
788
    pub const LN_10: f16 = f16(0x409Bu16);
789
    /// [`struct@f16`] 𝗅𝗇 2
790
    pub const LN_2: f16 = f16(0x398Cu16);
791
    /// [`struct@f16`] 𝗅𝗈𝗀₁₀ℯ
792
    pub const LOG10_E: f16 = f16(0x36F3u16);
793
    /// [`struct@f16`] 𝗅𝗈𝗀₁₀2
794
    pub const LOG10_2: f16 = f16(0x34D1u16);
795
    /// [`struct@f16`] 𝗅𝗈𝗀₂ℯ
796
    pub const LOG2_E: f16 = f16(0x3DC5u16);
797
    /// [`struct@f16`] 𝗅𝗈𝗀₂10
798
    pub const LOG2_10: f16 = f16(0x42A5u16);
799
    /// [`struct@f16`] √2
800
    pub const SQRT_2: f16 = f16(0x3DA8u16);
801
}
802
803
impl From<f16> for f32 {
804
    #[inline]
805
0
    fn from(x: f16) -> f32 {
806
0
        x.to_f32()
807
0
    }
808
}
809
810
impl From<f16> for f64 {
811
    #[inline]
812
0
    fn from(x: f16) -> f64 {
813
0
        x.to_f64()
814
0
    }
815
}
816
817
impl From<i8> for f16 {
818
    #[inline]
819
0
    fn from(x: i8) -> f16 {
820
0
        // Convert to f32, then to f16
821
0
        f16::from_f32(f32::from(x))
822
0
    }
823
}
824
825
impl From<u8> for f16 {
826
    #[inline]
827
0
    fn from(x: u8) -> f16 {
828
0
        // Convert to f32, then to f16
829
0
        f16::from_f32(f32::from(x))
830
0
    }
831
}
832
833
impl PartialEq for f16 {
834
0
    fn eq(&self, other: &f16) -> bool {
835
0
        if self.is_nan() || other.is_nan() {
836
0
            false
837
        } else {
838
0
            (self.0 == other.0) || ((self.0 | other.0) & 0x7FFFu16 == 0)
839
        }
840
0
    }
841
}
842
843
impl PartialOrd for f16 {
844
0
    fn partial_cmp(&self, other: &f16) -> Option<Ordering> {
845
0
        if self.is_nan() || other.is_nan() {
846
0
            None
847
        } else {
848
0
            let neg = self.0 & 0x8000u16 != 0;
849
0
            let other_neg = other.0 & 0x8000u16 != 0;
850
0
            match (neg, other_neg) {
851
0
                (false, false) => Some(self.0.cmp(&other.0)),
852
                (false, true) => {
853
0
                    if (self.0 | other.0) & 0x7FFFu16 == 0 {
854
0
                        Some(Ordering::Equal)
855
                    } else {
856
0
                        Some(Ordering::Greater)
857
                    }
858
                }
859
                (true, false) => {
860
0
                    if (self.0 | other.0) & 0x7FFFu16 == 0 {
861
0
                        Some(Ordering::Equal)
862
                    } else {
863
0
                        Some(Ordering::Less)
864
                    }
865
                }
866
0
                (true, true) => Some(other.0.cmp(&self.0)),
867
            }
868
        }
869
0
    }
870
871
0
    fn lt(&self, other: &f16) -> bool {
872
0
        if self.is_nan() || other.is_nan() {
873
0
            false
874
        } else {
875
0
            let neg = self.0 & 0x8000u16 != 0;
876
0
            let other_neg = other.0 & 0x8000u16 != 0;
877
0
            match (neg, other_neg) {
878
0
                (false, false) => self.0 < other.0,
879
0
                (false, true) => false,
880
0
                (true, false) => (self.0 | other.0) & 0x7FFFu16 != 0,
881
0
                (true, true) => self.0 > other.0,
882
            }
883
        }
884
0
    }
885
886
0
    fn le(&self, other: &f16) -> bool {
887
0
        if self.is_nan() || other.is_nan() {
888
0
            false
889
        } else {
890
0
            let neg = self.0 & 0x8000u16 != 0;
891
0
            let other_neg = other.0 & 0x8000u16 != 0;
892
0
            match (neg, other_neg) {
893
0
                (false, false) => self.0 <= other.0,
894
0
                (false, true) => (self.0 | other.0) & 0x7FFFu16 == 0,
895
0
                (true, false) => true,
896
0
                (true, true) => self.0 >= other.0,
897
            }
898
        }
899
0
    }
900
901
0
    fn gt(&self, other: &f16) -> bool {
902
0
        if self.is_nan() || other.is_nan() {
903
0
            false
904
        } else {
905
0
            let neg = self.0 & 0x8000u16 != 0;
906
0
            let other_neg = other.0 & 0x8000u16 != 0;
907
0
            match (neg, other_neg) {
908
0
                (false, false) => self.0 > other.0,
909
0
                (false, true) => (self.0 | other.0) & 0x7FFFu16 != 0,
910
0
                (true, false) => false,
911
0
                (true, true) => self.0 < other.0,
912
            }
913
        }
914
0
    }
915
916
0
    fn ge(&self, other: &f16) -> bool {
917
0
        if self.is_nan() || other.is_nan() {
918
0
            false
919
        } else {
920
0
            let neg = self.0 & 0x8000u16 != 0;
921
0
            let other_neg = other.0 & 0x8000u16 != 0;
922
0
            match (neg, other_neg) {
923
0
                (false, false) => self.0 >= other.0,
924
0
                (false, true) => true,
925
0
                (true, false) => (self.0 | other.0) & 0x7FFFu16 == 0,
926
0
                (true, true) => self.0 <= other.0,
927
            }
928
        }
929
0
    }
930
}
931
932
#[cfg(not(target_arch = "spirv"))]
933
impl FromStr for f16 {
934
    type Err = ParseFloatError;
935
0
    fn from_str(src: &str) -> Result<f16, ParseFloatError> {
936
0
        f32::from_str(src).map(f16::from_f32)
937
0
    }
938
}
939
940
#[cfg(not(target_arch = "spirv"))]
941
impl Debug for f16 {
942
0
    fn fmt(&self, f: &mut Formatter<'_>) -> Result<(), Error> {
943
0
        Debug::fmt(&self.to_f32(), f)
944
0
    }
945
}
946
947
#[cfg(not(target_arch = "spirv"))]
948
impl Display for f16 {
949
0
    fn fmt(&self, f: &mut Formatter<'_>) -> Result<(), Error> {
950
0
        Display::fmt(&self.to_f32(), f)
951
0
    }
952
}
953
954
#[cfg(not(target_arch = "spirv"))]
955
impl LowerExp for f16 {
956
0
    fn fmt(&self, f: &mut Formatter<'_>) -> Result<(), Error> {
957
0
        write!(f, "{:e}", self.to_f32())
958
0
    }
959
}
960
961
#[cfg(not(target_arch = "spirv"))]
962
impl UpperExp for f16 {
963
0
    fn fmt(&self, f: &mut Formatter<'_>) -> Result<(), Error> {
964
0
        write!(f, "{:E}", self.to_f32())
965
0
    }
966
}
967
968
#[cfg(not(target_arch = "spirv"))]
969
impl Binary for f16 {
970
0
    fn fmt(&self, f: &mut Formatter<'_>) -> Result<(), Error> {
971
0
        write!(f, "{:b}", self.0)
972
0
    }
973
}
974
975
#[cfg(not(target_arch = "spirv"))]
976
impl Octal for f16 {
977
0
    fn fmt(&self, f: &mut Formatter<'_>) -> Result<(), Error> {
978
0
        write!(f, "{:o}", self.0)
979
0
    }
980
}
981
982
#[cfg(not(target_arch = "spirv"))]
983
impl LowerHex for f16 {
984
0
    fn fmt(&self, f: &mut Formatter<'_>) -> Result<(), Error> {
985
0
        write!(f, "{:x}", self.0)
986
0
    }
987
}
988
989
#[cfg(not(target_arch = "spirv"))]
990
impl UpperHex for f16 {
991
0
    fn fmt(&self, f: &mut Formatter<'_>) -> Result<(), Error> {
992
0
        write!(f, "{:X}", self.0)
993
0
    }
994
}
995
996
impl Neg for f16 {
997
    type Output = Self;
998
999
    #[inline]
1000
0
    fn neg(self) -> Self::Output {
1001
0
        Self(self.0 ^ 0x8000)
1002
0
    }
1003
}
1004
1005
impl Neg for &f16 {
1006
    type Output = <f16 as Neg>::Output;
1007
1008
    #[inline]
1009
0
    fn neg(self) -> Self::Output {
1010
0
        Neg::neg(*self)
1011
0
    }
1012
}
1013
1014
impl Add for f16 {
1015
    type Output = Self;
1016
1017
    #[inline]
1018
0
    fn add(self, rhs: Self) -> Self::Output {
1019
0
        f16(arch::add_f16(self.0, rhs.0))
1020
0
    }
1021
}
1022
1023
impl Add<&f16> for f16 {
1024
    type Output = <f16 as Add<f16>>::Output;
1025
1026
    #[inline]
1027
0
    fn add(self, rhs: &f16) -> Self::Output {
1028
0
        self.add(*rhs)
1029
0
    }
1030
}
1031
1032
impl Add<&f16> for &f16 {
1033
    type Output = <f16 as Add<f16>>::Output;
1034
1035
    #[inline]
1036
0
    fn add(self, rhs: &f16) -> Self::Output {
1037
0
        (*self).add(*rhs)
1038
0
    }
1039
}
1040
1041
impl Add<f16> for &f16 {
1042
    type Output = <f16 as Add<f16>>::Output;
1043
1044
    #[inline]
1045
0
    fn add(self, rhs: f16) -> Self::Output {
1046
0
        (*self).add(rhs)
1047
0
    }
1048
}
1049
1050
impl AddAssign for f16 {
1051
    #[inline]
1052
0
    fn add_assign(&mut self, rhs: Self) {
1053
0
        *self = (*self).add(rhs);
1054
0
    }
1055
}
1056
1057
impl AddAssign<&f16> for f16 {
1058
    #[inline]
1059
0
    fn add_assign(&mut self, rhs: &f16) {
1060
0
        *self = (*self).add(rhs);
1061
0
    }
1062
}
1063
1064
impl Sub for f16 {
1065
    type Output = Self;
1066
1067
    #[inline]
1068
0
    fn sub(self, rhs: Self) -> Self::Output {
1069
0
        f16(arch::subtract_f16(self.0, rhs.0))
1070
0
    }
1071
}
1072
1073
impl Sub<&f16> for f16 {
1074
    type Output = <f16 as Sub<f16>>::Output;
1075
1076
    #[inline]
1077
0
    fn sub(self, rhs: &f16) -> Self::Output {
1078
0
        self.sub(*rhs)
1079
0
    }
1080
}
1081
1082
impl Sub<&f16> for &f16 {
1083
    type Output = <f16 as Sub<f16>>::Output;
1084
1085
    #[inline]
1086
0
    fn sub(self, rhs: &f16) -> Self::Output {
1087
0
        (*self).sub(*rhs)
1088
0
    }
1089
}
1090
1091
impl Sub<f16> for &f16 {
1092
    type Output = <f16 as Sub<f16>>::Output;
1093
1094
    #[inline]
1095
0
    fn sub(self, rhs: f16) -> Self::Output {
1096
0
        (*self).sub(rhs)
1097
0
    }
1098
}
1099
1100
impl SubAssign for f16 {
1101
    #[inline]
1102
0
    fn sub_assign(&mut self, rhs: Self) {
1103
0
        *self = (*self).sub(rhs);
1104
0
    }
1105
}
1106
1107
impl SubAssign<&f16> for f16 {
1108
    #[inline]
1109
0
    fn sub_assign(&mut self, rhs: &f16) {
1110
0
        *self = (*self).sub(rhs);
1111
0
    }
1112
}
1113
1114
impl Mul for f16 {
1115
    type Output = Self;
1116
1117
    #[inline]
1118
0
    fn mul(self, rhs: Self) -> Self::Output {
1119
0
        f16(arch::multiply_f16(self.0, rhs.0))
1120
0
    }
1121
}
1122
1123
impl Mul<&f16> for f16 {
1124
    type Output = <f16 as Mul<f16>>::Output;
1125
1126
    #[inline]
1127
0
    fn mul(self, rhs: &f16) -> Self::Output {
1128
0
        self.mul(*rhs)
1129
0
    }
1130
}
1131
1132
impl Mul<&f16> for &f16 {
1133
    type Output = <f16 as Mul<f16>>::Output;
1134
1135
    #[inline]
1136
0
    fn mul(self, rhs: &f16) -> Self::Output {
1137
0
        (*self).mul(*rhs)
1138
0
    }
1139
}
1140
1141
impl Mul<f16> for &f16 {
1142
    type Output = <f16 as Mul<f16>>::Output;
1143
1144
    #[inline]
1145
0
    fn mul(self, rhs: f16) -> Self::Output {
1146
0
        (*self).mul(rhs)
1147
0
    }
1148
}
1149
1150
impl MulAssign for f16 {
1151
    #[inline]
1152
0
    fn mul_assign(&mut self, rhs: Self) {
1153
0
        *self = (*self).mul(rhs);
1154
0
    }
1155
}
1156
1157
impl MulAssign<&f16> for f16 {
1158
    #[inline]
1159
0
    fn mul_assign(&mut self, rhs: &f16) {
1160
0
        *self = (*self).mul(rhs);
1161
0
    }
1162
}
1163
1164
impl Div for f16 {
1165
    type Output = Self;
1166
1167
    #[inline]
1168
0
    fn div(self, rhs: Self) -> Self::Output {
1169
0
        f16(arch::divide_f16(self.0, rhs.0))
1170
0
    }
1171
}
1172
1173
impl Div<&f16> for f16 {
1174
    type Output = <f16 as Div<f16>>::Output;
1175
1176
    #[inline]
1177
0
    fn div(self, rhs: &f16) -> Self::Output {
1178
0
        self.div(*rhs)
1179
0
    }
1180
}
1181
1182
impl Div<&f16> for &f16 {
1183
    type Output = <f16 as Div<f16>>::Output;
1184
1185
    #[inline]
1186
0
    fn div(self, rhs: &f16) -> Self::Output {
1187
0
        (*self).div(*rhs)
1188
0
    }
1189
}
1190
1191
impl Div<f16> for &f16 {
1192
    type Output = <f16 as Div<f16>>::Output;
1193
1194
    #[inline]
1195
0
    fn div(self, rhs: f16) -> Self::Output {
1196
0
        (*self).div(rhs)
1197
0
    }
1198
}
1199
1200
impl DivAssign for f16 {
1201
    #[inline]
1202
0
    fn div_assign(&mut self, rhs: Self) {
1203
0
        *self = (*self).div(rhs);
1204
0
    }
1205
}
1206
1207
impl DivAssign<&f16> for f16 {
1208
    #[inline]
1209
0
    fn div_assign(&mut self, rhs: &f16) {
1210
0
        *self = (*self).div(rhs);
1211
0
    }
1212
}
1213
1214
impl Rem for f16 {
1215
    type Output = Self;
1216
1217
    #[inline]
1218
0
    fn rem(self, rhs: Self) -> Self::Output {
1219
0
        f16(arch::remainder_f16(self.0, rhs.0))
1220
0
    }
1221
}
1222
1223
impl Rem<&f16> for f16 {
1224
    type Output = <f16 as Rem<f16>>::Output;
1225
1226
    #[inline]
1227
0
    fn rem(self, rhs: &f16) -> Self::Output {
1228
0
        self.rem(*rhs)
1229
0
    }
1230
}
1231
1232
impl Rem<&f16> for &f16 {
1233
    type Output = <f16 as Rem<f16>>::Output;
1234
1235
    #[inline]
1236
0
    fn rem(self, rhs: &f16) -> Self::Output {
1237
0
        (*self).rem(*rhs)
1238
0
    }
1239
}
1240
1241
impl Rem<f16> for &f16 {
1242
    type Output = <f16 as Rem<f16>>::Output;
1243
1244
    #[inline]
1245
0
    fn rem(self, rhs: f16) -> Self::Output {
1246
0
        (*self).rem(rhs)
1247
0
    }
1248
}
1249
1250
impl RemAssign for f16 {
1251
    #[inline]
1252
0
    fn rem_assign(&mut self, rhs: Self) {
1253
0
        *self = (*self).rem(rhs);
1254
0
    }
1255
}
1256
1257
impl RemAssign<&f16> for f16 {
1258
    #[inline]
1259
0
    fn rem_assign(&mut self, rhs: &f16) {
1260
0
        *self = (*self).rem(rhs);
1261
0
    }
1262
}
1263
1264
impl Product for f16 {
1265
    #[inline]
1266
0
    fn product<I: Iterator<Item = Self>>(iter: I) -> Self {
1267
0
        f16(arch::product_f16(iter.map(|f| f.to_bits())))
1268
0
    }
1269
}
1270
1271
impl<'a> Product<&'a f16> for f16 {
1272
    #[inline]
1273
0
    fn product<I: Iterator<Item = &'a f16>>(iter: I) -> Self {
1274
0
        f16(arch::product_f16(iter.map(|f| f.to_bits())))
1275
0
    }
1276
}
1277
1278
impl Sum for f16 {
1279
    #[inline]
1280
0
    fn sum<I: Iterator<Item = Self>>(iter: I) -> Self {
1281
0
        f16(arch::sum_f16(iter.map(|f| f.to_bits())))
1282
0
    }
1283
}
1284
1285
impl<'a> Sum<&'a f16> for f16 {
1286
    #[inline]
1287
0
    fn sum<I: Iterator<Item = &'a f16>>(iter: I) -> Self {
1288
0
        f16(arch::sum_f16(iter.map(|f| f.to_bits())))
1289
0
    }
1290
}
1291
1292
#[cfg(feature = "serde")]
1293
struct Visitor;
1294
1295
#[cfg(feature = "serde")]
1296
impl<'de> Deserialize<'de> for f16 {
1297
    fn deserialize<D>(deserializer: D) -> Result<f16, D::Error>
1298
    where
1299
        D: serde::de::Deserializer<'de>,
1300
    {
1301
        deserializer.deserialize_newtype_struct("f16", Visitor)
1302
    }
1303
}
1304
1305
#[cfg(feature = "serde")]
1306
impl<'de> serde::de::Visitor<'de> for Visitor {
1307
    type Value = f16;
1308
1309
    fn expecting(&self, formatter: &mut core::fmt::Formatter) -> core::fmt::Result {
1310
        write!(formatter, "tuple struct f16")
1311
    }
1312
1313
    fn visit_newtype_struct<D>(self, deserializer: D) -> Result<Self::Value, D::Error>
1314
    where
1315
        D: serde::Deserializer<'de>,
1316
    {
1317
        Ok(f16(<u16 as Deserialize>::deserialize(deserializer)?))
1318
    }
1319
1320
    fn visit_str<E>(self, v: &str) -> Result<Self::Value, E>
1321
    where
1322
        E: serde::de::Error,
1323
    {
1324
        v.parse().map_err(|_| {
1325
            serde::de::Error::invalid_value(serde::de::Unexpected::Str(v), &"a float string")
1326
        })
1327
    }
1328
1329
    fn visit_f32<E>(self, v: f32) -> Result<Self::Value, E>
1330
    where
1331
        E: serde::de::Error,
1332
    {
1333
        Ok(f16::from_f32(v))
1334
    }
1335
1336
    fn visit_f64<E>(self, v: f64) -> Result<Self::Value, E>
1337
    where
1338
        E: serde::de::Error,
1339
    {
1340
        Ok(f16::from_f64(v))
1341
    }
1342
}
1343
1344
#[allow(
1345
    clippy::cognitive_complexity,
1346
    clippy::float_cmp,
1347
    clippy::neg_cmp_op_on_partial_ord
1348
)]
1349
#[cfg(test)]
1350
mod test {
1351
    use super::*;
1352
    #[allow(unused_imports)]
1353
    use core::cmp::Ordering;
1354
    #[cfg(feature = "num-traits")]
1355
    use num_traits::{AsPrimitive, FromBytes, FromPrimitive, ToBytes, ToPrimitive};
1356
    use quickcheck_macros::quickcheck;
1357
1358
    #[cfg(feature = "num-traits")]
1359
    #[test]
1360
    fn as_primitive() {
1361
        let two = f16::from_f32(2.0);
1362
        assert_eq!(<i32 as AsPrimitive<f16>>::as_(2), two);
1363
        assert_eq!(<f16 as AsPrimitive<i32>>::as_(two), 2);
1364
1365
        assert_eq!(<f32 as AsPrimitive<f16>>::as_(2.0), two);
1366
        assert_eq!(<f16 as AsPrimitive<f32>>::as_(two), 2.0);
1367
1368
        assert_eq!(<f64 as AsPrimitive<f16>>::as_(2.0), two);
1369
        assert_eq!(<f16 as AsPrimitive<f64>>::as_(two), 2.0);
1370
    }
1371
1372
    #[cfg(feature = "num-traits")]
1373
    #[test]
1374
    fn to_primitive() {
1375
        let two = f16::from_f32(2.0);
1376
        assert_eq!(ToPrimitive::to_i32(&two).unwrap(), 2i32);
1377
        assert_eq!(ToPrimitive::to_f32(&two).unwrap(), 2.0f32);
1378
        assert_eq!(ToPrimitive::to_f64(&two).unwrap(), 2.0f64);
1379
    }
1380
1381
    #[cfg(feature = "num-traits")]
1382
    #[test]
1383
    fn from_primitive() {
1384
        let two = f16::from_f32(2.0);
1385
        assert_eq!(<f16 as FromPrimitive>::from_i32(2).unwrap(), two);
1386
        assert_eq!(<f16 as FromPrimitive>::from_f32(2.0).unwrap(), two);
1387
        assert_eq!(<f16 as FromPrimitive>::from_f64(2.0).unwrap(), two);
1388
    }
1389
1390
    #[cfg(feature = "num-traits")]
1391
    #[test]
1392
    fn to_and_from_bytes() {
1393
        let two = f16::from_f32(2.0);
1394
        assert_eq!(<f16 as ToBytes>::to_le_bytes(&two), [0, 64]);
1395
        assert_eq!(<f16 as FromBytes>::from_le_bytes(&[0, 64]), two);
1396
        assert_eq!(<f16 as ToBytes>::to_be_bytes(&two), [64, 0]);
1397
        assert_eq!(<f16 as FromBytes>::from_be_bytes(&[64, 0]), two);
1398
    }
1399
1400
    #[test]
1401
    fn test_f16_consts() {
1402
        // DIGITS
1403
        let digits = ((f16::MANTISSA_DIGITS as f32 - 1.0) * 2f32.log10()).floor() as u32;
1404
        assert_eq!(f16::DIGITS, digits);
1405
        // sanity check to show test is good
1406
        let digits32 = ((core::f32::MANTISSA_DIGITS as f32 - 1.0) * 2f32.log10()).floor() as u32;
1407
        assert_eq!(core::f32::DIGITS, digits32);
1408
1409
        // EPSILON
1410
        let one = f16::from_f32(1.0);
1411
        let one_plus_epsilon = f16::from_bits(one.to_bits() + 1);
1412
        let epsilon = f16::from_f32(one_plus_epsilon.to_f32() - 1.0);
1413
        assert_eq!(f16::EPSILON, epsilon);
1414
        // sanity check to show test is good
1415
        let one_plus_epsilon32 = f32::from_bits(1.0f32.to_bits() + 1);
1416
        let epsilon32 = one_plus_epsilon32 - 1f32;
1417
        assert_eq!(core::f32::EPSILON, epsilon32);
1418
1419
        // MAX, MIN and MIN_POSITIVE
1420
        let max = f16::from_bits(f16::INFINITY.to_bits() - 1);
1421
        let min = f16::from_bits(f16::NEG_INFINITY.to_bits() - 1);
1422
        let min_pos = f16::from_f32(2f32.powi(f16::MIN_EXP - 1));
1423
        assert_eq!(f16::MAX, max);
1424
        assert_eq!(f16::MIN, min);
1425
        assert_eq!(f16::MIN_POSITIVE, min_pos);
1426
        // sanity check to show test is good
1427
        let max32 = f32::from_bits(core::f32::INFINITY.to_bits() - 1);
1428
        let min32 = f32::from_bits(core::f32::NEG_INFINITY.to_bits() - 1);
1429
        let min_pos32 = 2f32.powi(core::f32::MIN_EXP - 1);
1430
        assert_eq!(core::f32::MAX, max32);
1431
        assert_eq!(core::f32::MIN, min32);
1432
        assert_eq!(core::f32::MIN_POSITIVE, min_pos32);
1433
1434
        // MIN_10_EXP and MAX_10_EXP
1435
        let ten_to_min = 10f32.powi(f16::MIN_10_EXP);
1436
        assert!(ten_to_min / 10.0 < f16::MIN_POSITIVE.to_f32());
1437
        assert!(ten_to_min > f16::MIN_POSITIVE.to_f32());
1438
        let ten_to_max = 10f32.powi(f16::MAX_10_EXP);
1439
        assert!(ten_to_max < f16::MAX.to_f32());
1440
        assert!(ten_to_max * 10.0 > f16::MAX.to_f32());
1441
        // sanity check to show test is good
1442
        let ten_to_min32 = 10f64.powi(core::f32::MIN_10_EXP);
1443
        assert!(ten_to_min32 / 10.0 < f64::from(core::f32::MIN_POSITIVE));
1444
        assert!(ten_to_min32 > f64::from(core::f32::MIN_POSITIVE));
1445
        let ten_to_max32 = 10f64.powi(core::f32::MAX_10_EXP);
1446
        assert!(ten_to_max32 < f64::from(core::f32::MAX));
1447
        assert!(ten_to_max32 * 10.0 > f64::from(core::f32::MAX));
1448
    }
1449
1450
    #[test]
1451
    fn test_f16_consts_from_f32() {
1452
        let one = f16::from_f32(1.0);
1453
        let zero = f16::from_f32(0.0);
1454
        let neg_zero = f16::from_f32(-0.0);
1455
        let neg_one = f16::from_f32(-1.0);
1456
        let inf = f16::from_f32(core::f32::INFINITY);
1457
        let neg_inf = f16::from_f32(core::f32::NEG_INFINITY);
1458
        let nan = f16::from_f32(core::f32::NAN);
1459
1460
        assert_eq!(f16::ONE, one);
1461
        assert_eq!(f16::ZERO, zero);
1462
        assert!(zero.is_sign_positive());
1463
        assert_eq!(f16::NEG_ZERO, neg_zero);
1464
        assert!(neg_zero.is_sign_negative());
1465
        assert_eq!(f16::NEG_ONE, neg_one);
1466
        assert!(neg_one.is_sign_negative());
1467
        assert_eq!(f16::INFINITY, inf);
1468
        assert_eq!(f16::NEG_INFINITY, neg_inf);
1469
        assert!(nan.is_nan());
1470
        assert!(f16::NAN.is_nan());
1471
1472
        let e = f16::from_f32(core::f32::consts::E);
1473
        let pi = f16::from_f32(core::f32::consts::PI);
1474
        let frac_1_pi = f16::from_f32(core::f32::consts::FRAC_1_PI);
1475
        let frac_1_sqrt_2 = f16::from_f32(core::f32::consts::FRAC_1_SQRT_2);
1476
        let frac_2_pi = f16::from_f32(core::f32::consts::FRAC_2_PI);
1477
        let frac_2_sqrt_pi = f16::from_f32(core::f32::consts::FRAC_2_SQRT_PI);
1478
        let frac_pi_2 = f16::from_f32(core::f32::consts::FRAC_PI_2);
1479
        let frac_pi_3 = f16::from_f32(core::f32::consts::FRAC_PI_3);
1480
        let frac_pi_4 = f16::from_f32(core::f32::consts::FRAC_PI_4);
1481
        let frac_pi_6 = f16::from_f32(core::f32::consts::FRAC_PI_6);
1482
        let frac_pi_8 = f16::from_f32(core::f32::consts::FRAC_PI_8);
1483
        let ln_10 = f16::from_f32(core::f32::consts::LN_10);
1484
        let ln_2 = f16::from_f32(core::f32::consts::LN_2);
1485
        let log10_e = f16::from_f32(core::f32::consts::LOG10_E);
1486
        // core::f32::consts::LOG10_2 requires rustc 1.43.0
1487
        let log10_2 = f16::from_f32(2f32.log10());
1488
        let log2_e = f16::from_f32(core::f32::consts::LOG2_E);
1489
        // core::f32::consts::LOG2_10 requires rustc 1.43.0
1490
        let log2_10 = f16::from_f32(10f32.log2());
1491
        let sqrt_2 = f16::from_f32(core::f32::consts::SQRT_2);
1492
1493
        assert_eq!(f16::E, e);
1494
        assert_eq!(f16::PI, pi);
1495
        assert_eq!(f16::FRAC_1_PI, frac_1_pi);
1496
        assert_eq!(f16::FRAC_1_SQRT_2, frac_1_sqrt_2);
1497
        assert_eq!(f16::FRAC_2_PI, frac_2_pi);
1498
        assert_eq!(f16::FRAC_2_SQRT_PI, frac_2_sqrt_pi);
1499
        assert_eq!(f16::FRAC_PI_2, frac_pi_2);
1500
        assert_eq!(f16::FRAC_PI_3, frac_pi_3);
1501
        assert_eq!(f16::FRAC_PI_4, frac_pi_4);
1502
        assert_eq!(f16::FRAC_PI_6, frac_pi_6);
1503
        assert_eq!(f16::FRAC_PI_8, frac_pi_8);
1504
        assert_eq!(f16::LN_10, ln_10);
1505
        assert_eq!(f16::LN_2, ln_2);
1506
        assert_eq!(f16::LOG10_E, log10_e);
1507
        assert_eq!(f16::LOG10_2, log10_2);
1508
        assert_eq!(f16::LOG2_E, log2_e);
1509
        assert_eq!(f16::LOG2_10, log2_10);
1510
        assert_eq!(f16::SQRT_2, sqrt_2);
1511
    }
1512
1513
    #[test]
1514
    fn test_f16_consts_from_f64() {
1515
        let one = f16::from_f64(1.0);
1516
        let zero = f16::from_f64(0.0);
1517
        let neg_zero = f16::from_f64(-0.0);
1518
        let inf = f16::from_f64(core::f64::INFINITY);
1519
        let neg_inf = f16::from_f64(core::f64::NEG_INFINITY);
1520
        let nan = f16::from_f64(core::f64::NAN);
1521
1522
        assert_eq!(f16::ONE, one);
1523
        assert_eq!(f16::ZERO, zero);
1524
        assert!(zero.is_sign_positive());
1525
        assert_eq!(f16::NEG_ZERO, neg_zero);
1526
        assert!(neg_zero.is_sign_negative());
1527
        assert_eq!(f16::INFINITY, inf);
1528
        assert_eq!(f16::NEG_INFINITY, neg_inf);
1529
        assert!(nan.is_nan());
1530
        assert!(f16::NAN.is_nan());
1531
1532
        let e = f16::from_f64(core::f64::consts::E);
1533
        let pi = f16::from_f64(core::f64::consts::PI);
1534
        let frac_1_pi = f16::from_f64(core::f64::consts::FRAC_1_PI);
1535
        let frac_1_sqrt_2 = f16::from_f64(core::f64::consts::FRAC_1_SQRT_2);
1536
        let frac_2_pi = f16::from_f64(core::f64::consts::FRAC_2_PI);
1537
        let frac_2_sqrt_pi = f16::from_f64(core::f64::consts::FRAC_2_SQRT_PI);
1538
        let frac_pi_2 = f16::from_f64(core::f64::consts::FRAC_PI_2);
1539
        let frac_pi_3 = f16::from_f64(core::f64::consts::FRAC_PI_3);
1540
        let frac_pi_4 = f16::from_f64(core::f64::consts::FRAC_PI_4);
1541
        let frac_pi_6 = f16::from_f64(core::f64::consts::FRAC_PI_6);
1542
        let frac_pi_8 = f16::from_f64(core::f64::consts::FRAC_PI_8);
1543
        let ln_10 = f16::from_f64(core::f64::consts::LN_10);
1544
        let ln_2 = f16::from_f64(core::f64::consts::LN_2);
1545
        let log10_e = f16::from_f64(core::f64::consts::LOG10_E);
1546
        // core::f64::consts::LOG10_2 requires rustc 1.43.0
1547
        let log10_2 = f16::from_f64(2f64.log10());
1548
        let log2_e = f16::from_f64(core::f64::consts::LOG2_E);
1549
        // core::f64::consts::LOG2_10 requires rustc 1.43.0
1550
        let log2_10 = f16::from_f64(10f64.log2());
1551
        let sqrt_2 = f16::from_f64(core::f64::consts::SQRT_2);
1552
1553
        assert_eq!(f16::E, e);
1554
        assert_eq!(f16::PI, pi);
1555
        assert_eq!(f16::FRAC_1_PI, frac_1_pi);
1556
        assert_eq!(f16::FRAC_1_SQRT_2, frac_1_sqrt_2);
1557
        assert_eq!(f16::FRAC_2_PI, frac_2_pi);
1558
        assert_eq!(f16::FRAC_2_SQRT_PI, frac_2_sqrt_pi);
1559
        assert_eq!(f16::FRAC_PI_2, frac_pi_2);
1560
        assert_eq!(f16::FRAC_PI_3, frac_pi_3);
1561
        assert_eq!(f16::FRAC_PI_4, frac_pi_4);
1562
        assert_eq!(f16::FRAC_PI_6, frac_pi_6);
1563
        assert_eq!(f16::FRAC_PI_8, frac_pi_8);
1564
        assert_eq!(f16::LN_10, ln_10);
1565
        assert_eq!(f16::LN_2, ln_2);
1566
        assert_eq!(f16::LOG10_E, log10_e);
1567
        assert_eq!(f16::LOG10_2, log10_2);
1568
        assert_eq!(f16::LOG2_E, log2_e);
1569
        assert_eq!(f16::LOG2_10, log2_10);
1570
        assert_eq!(f16::SQRT_2, sqrt_2);
1571
    }
1572
1573
    #[test]
1574
    fn test_nan_conversion_to_smaller() {
1575
        let nan64 = f64::from_bits(0x7FF0_0000_0000_0001u64);
1576
        let neg_nan64 = f64::from_bits(0xFFF0_0000_0000_0001u64);
1577
        let nan32 = f32::from_bits(0x7F80_0001u32);
1578
        let neg_nan32 = f32::from_bits(0xFF80_0001u32);
1579
        let nan32_from_64 = nan64 as f32;
1580
        let neg_nan32_from_64 = neg_nan64 as f32;
1581
        let nan16_from_64 = f16::from_f64(nan64);
1582
        let neg_nan16_from_64 = f16::from_f64(neg_nan64);
1583
        let nan16_from_32 = f16::from_f32(nan32);
1584
        let neg_nan16_from_32 = f16::from_f32(neg_nan32);
1585
1586
        assert!(nan64.is_nan() && nan64.is_sign_positive());
1587
        assert!(neg_nan64.is_nan() && neg_nan64.is_sign_negative());
1588
        assert!(nan32.is_nan() && nan32.is_sign_positive());
1589
        assert!(neg_nan32.is_nan() && neg_nan32.is_sign_negative());
1590
1591
        // f32/f64 NaN conversion sign is non-deterministic: https://github.com/starkat99/half-rs/issues/103
1592
        assert!(nan32_from_64.is_nan());
1593
        assert!(neg_nan32_from_64.is_nan());
1594
        assert!(nan16_from_64.is_nan());
1595
        assert!(neg_nan16_from_64.is_nan());
1596
        assert!(nan16_from_32.is_nan());
1597
        assert!(neg_nan16_from_32.is_nan());
1598
    }
1599
1600
    #[test]
1601
    fn test_nan_conversion_to_larger() {
1602
        let nan16 = f16::from_bits(0x7C01u16);
1603
        let neg_nan16 = f16::from_bits(0xFC01u16);
1604
        let nan32 = f32::from_bits(0x7F80_0001u32);
1605
        let neg_nan32 = f32::from_bits(0xFF80_0001u32);
1606
        let nan32_from_16 = f32::from(nan16);
1607
        let neg_nan32_from_16 = f32::from(neg_nan16);
1608
        let nan64_from_16 = f64::from(nan16);
1609
        let neg_nan64_from_16 = f64::from(neg_nan16);
1610
        let nan64_from_32 = f64::from(nan32);
1611
        let neg_nan64_from_32 = f64::from(neg_nan32);
1612
1613
        assert!(nan16.is_nan() && nan16.is_sign_positive());
1614
        assert!(neg_nan16.is_nan() && neg_nan16.is_sign_negative());
1615
        assert!(nan32.is_nan() && nan32.is_sign_positive());
1616
        assert!(neg_nan32.is_nan() && neg_nan32.is_sign_negative());
1617
1618
        // f32/f64 NaN conversion sign is non-deterministic: https://github.com/starkat99/half-rs/issues/103
1619
        assert!(nan32_from_16.is_nan());
1620
        assert!(neg_nan32_from_16.is_nan());
1621
        assert!(nan64_from_16.is_nan());
1622
        assert!(neg_nan64_from_16.is_nan());
1623
        assert!(nan64_from_32.is_nan());
1624
        assert!(neg_nan64_from_32.is_nan());
1625
    }
1626
1627
    #[test]
1628
    fn test_f16_to_f32() {
1629
        let f = f16::from_f32(7.0);
1630
        assert_eq!(f.to_f32(), 7.0f32);
1631
1632
        // 7.1 is NOT exactly representable in 16-bit, it's rounded
1633
        let f = f16::from_f32(7.1);
1634
        let diff = (f.to_f32() - 7.1f32).abs();
1635
        // diff must be <= 4 * EPSILON, as 7 has two more significant bits than 1
1636
        assert!(diff <= 4.0 * f16::EPSILON.to_f32());
1637
1638
        assert_eq!(f16::from_bits(0x0000_0001).to_f32(), 2.0f32.powi(-24));
1639
        assert_eq!(f16::from_bits(0x0000_0005).to_f32(), 5.0 * 2.0f32.powi(-24));
1640
1641
        assert_eq!(f16::from_bits(0x0000_0001), f16::from_f32(2.0f32.powi(-24)));
1642
        assert_eq!(
1643
            f16::from_bits(0x0000_0005),
1644
            f16::from_f32(5.0 * 2.0f32.powi(-24))
1645
        );
1646
    }
1647
1648
    #[test]
1649
    fn test_f16_to_f64() {
1650
        let f = f16::from_f64(7.0);
1651
        assert_eq!(f.to_f64(), 7.0f64);
1652
1653
        // 7.1 is NOT exactly representable in 16-bit, it's rounded
1654
        let f = f16::from_f64(7.1);
1655
        let diff = (f.to_f64() - 7.1f64).abs();
1656
        // diff must be <= 4 * EPSILON, as 7 has two more significant bits than 1
1657
        assert!(diff <= 4.0 * f16::EPSILON.to_f64());
1658
1659
        assert_eq!(f16::from_bits(0x0000_0001).to_f64(), 2.0f64.powi(-24));
1660
        assert_eq!(f16::from_bits(0x0000_0005).to_f64(), 5.0 * 2.0f64.powi(-24));
1661
1662
        assert_eq!(f16::from_bits(0x0000_0001), f16::from_f64(2.0f64.powi(-24)));
1663
        assert_eq!(
1664
            f16::from_bits(0x0000_0005),
1665
            f16::from_f64(5.0 * 2.0f64.powi(-24))
1666
        );
1667
    }
1668
1669
    #[test]
1670
    fn test_comparisons() {
1671
        let zero = f16::from_f64(0.0);
1672
        let one = f16::from_f64(1.0);
1673
        let neg_zero = f16::from_f64(-0.0);
1674
        let neg_one = f16::from_f64(-1.0);
1675
1676
        assert_eq!(zero.partial_cmp(&neg_zero), Some(Ordering::Equal));
1677
        assert_eq!(neg_zero.partial_cmp(&zero), Some(Ordering::Equal));
1678
        assert!(zero == neg_zero);
1679
        assert!(neg_zero == zero);
1680
        assert!(!(zero != neg_zero));
1681
        assert!(!(neg_zero != zero));
1682
        assert!(!(zero < neg_zero));
1683
        assert!(!(neg_zero < zero));
1684
        assert!(zero <= neg_zero);
1685
        assert!(neg_zero <= zero);
1686
        assert!(!(zero > neg_zero));
1687
        assert!(!(neg_zero > zero));
1688
        assert!(zero >= neg_zero);
1689
        assert!(neg_zero >= zero);
1690
1691
        assert_eq!(one.partial_cmp(&neg_zero), Some(Ordering::Greater));
1692
        assert_eq!(neg_zero.partial_cmp(&one), Some(Ordering::Less));
1693
        assert!(!(one == neg_zero));
1694
        assert!(!(neg_zero == one));
1695
        assert!(one != neg_zero);
1696
        assert!(neg_zero != one);
1697
        assert!(!(one < neg_zero));
1698
        assert!(neg_zero < one);
1699
        assert!(!(one <= neg_zero));
1700
        assert!(neg_zero <= one);
1701
        assert!(one > neg_zero);
1702
        assert!(!(neg_zero > one));
1703
        assert!(one >= neg_zero);
1704
        assert!(!(neg_zero >= one));
1705
1706
        assert_eq!(one.partial_cmp(&neg_one), Some(Ordering::Greater));
1707
        assert_eq!(neg_one.partial_cmp(&one), Some(Ordering::Less));
1708
        assert!(!(one == neg_one));
1709
        assert!(!(neg_one == one));
1710
        assert!(one != neg_one);
1711
        assert!(neg_one != one);
1712
        assert!(!(one < neg_one));
1713
        assert!(neg_one < one);
1714
        assert!(!(one <= neg_one));
1715
        assert!(neg_one <= one);
1716
        assert!(one > neg_one);
1717
        assert!(!(neg_one > one));
1718
        assert!(one >= neg_one);
1719
        assert!(!(neg_one >= one));
1720
    }
1721
1722
    #[test]
1723
    #[allow(clippy::erasing_op, clippy::identity_op)]
1724
    fn round_to_even_f32() {
1725
        // smallest positive subnormal = 0b0.0000_0000_01 * 2^-14 = 2^-24
1726
        let min_sub = f16::from_bits(1);
1727
        let min_sub_f = (-24f32).exp2();
1728
        assert_eq!(f16::from_f32(min_sub_f).to_bits(), min_sub.to_bits());
1729
        assert_eq!(f32::from(min_sub).to_bits(), min_sub_f.to_bits());
1730
1731
        // 0.0000000000_011111 rounded to 0.0000000000 (< tie, no rounding)
1732
        // 0.0000000000_100000 rounded to 0.0000000000 (tie and even, remains at even)
1733
        // 0.0000000000_100001 rounded to 0.0000000001 (> tie, rounds up)
1734
        assert_eq!(
1735
            f16::from_f32(min_sub_f * 0.49).to_bits(),
1736
            min_sub.to_bits() * 0
1737
        );
1738
        assert_eq!(
1739
            f16::from_f32(min_sub_f * 0.50).to_bits(),
1740
            min_sub.to_bits() * 0
1741
        );
1742
        assert_eq!(
1743
            f16::from_f32(min_sub_f * 0.51).to_bits(),
1744
            min_sub.to_bits() * 1
1745
        );
1746
1747
        // 0.0000000001_011111 rounded to 0.0000000001 (< tie, no rounding)
1748
        // 0.0000000001_100000 rounded to 0.0000000010 (tie and odd, rounds up to even)
1749
        // 0.0000000001_100001 rounded to 0.0000000010 (> tie, rounds up)
1750
        assert_eq!(
1751
            f16::from_f32(min_sub_f * 1.49).to_bits(),
1752
            min_sub.to_bits() * 1
1753
        );
1754
        assert_eq!(
1755
            f16::from_f32(min_sub_f * 1.50).to_bits(),
1756
            min_sub.to_bits() * 2
1757
        );
1758
        assert_eq!(
1759
            f16::from_f32(min_sub_f * 1.51).to_bits(),
1760
            min_sub.to_bits() * 2
1761
        );
1762
1763
        // 0.0000000010_011111 rounded to 0.0000000010 (< tie, no rounding)
1764
        // 0.0000000010_100000 rounded to 0.0000000010 (tie and even, remains at even)
1765
        // 0.0000000010_100001 rounded to 0.0000000011 (> tie, rounds up)
1766
        assert_eq!(
1767
            f16::from_f32(min_sub_f * 2.49).to_bits(),
1768
            min_sub.to_bits() * 2
1769
        );
1770
        assert_eq!(
1771
            f16::from_f32(min_sub_f * 2.50).to_bits(),
1772
            min_sub.to_bits() * 2
1773
        );
1774
        assert_eq!(
1775
            f16::from_f32(min_sub_f * 2.51).to_bits(),
1776
            min_sub.to_bits() * 3
1777
        );
1778
1779
        assert_eq!(
1780
            f16::from_f32(2000.49f32).to_bits(),
1781
            f16::from_f32(2000.0).to_bits()
1782
        );
1783
        assert_eq!(
1784
            f16::from_f32(2000.50f32).to_bits(),
1785
            f16::from_f32(2000.0).to_bits()
1786
        );
1787
        assert_eq!(
1788
            f16::from_f32(2000.51f32).to_bits(),
1789
            f16::from_f32(2001.0).to_bits()
1790
        );
1791
        assert_eq!(
1792
            f16::from_f32(2001.49f32).to_bits(),
1793
            f16::from_f32(2001.0).to_bits()
1794
        );
1795
        assert_eq!(
1796
            f16::from_f32(2001.50f32).to_bits(),
1797
            f16::from_f32(2002.0).to_bits()
1798
        );
1799
        assert_eq!(
1800
            f16::from_f32(2001.51f32).to_bits(),
1801
            f16::from_f32(2002.0).to_bits()
1802
        );
1803
        assert_eq!(
1804
            f16::from_f32(2002.49f32).to_bits(),
1805
            f16::from_f32(2002.0).to_bits()
1806
        );
1807
        assert_eq!(
1808
            f16::from_f32(2002.50f32).to_bits(),
1809
            f16::from_f32(2002.0).to_bits()
1810
        );
1811
        assert_eq!(
1812
            f16::from_f32(2002.51f32).to_bits(),
1813
            f16::from_f32(2003.0).to_bits()
1814
        );
1815
    }
1816
1817
    #[test]
1818
    #[allow(clippy::erasing_op, clippy::identity_op)]
1819
    fn round_to_even_f64() {
1820
        // smallest positive subnormal = 0b0.0000_0000_01 * 2^-14 = 2^-24
1821
        let min_sub = f16::from_bits(1);
1822
        let min_sub_f = (-24f64).exp2();
1823
        assert_eq!(f16::from_f64(min_sub_f).to_bits(), min_sub.to_bits());
1824
        assert_eq!(f64::from(min_sub).to_bits(), min_sub_f.to_bits());
1825
1826
        // 0.0000000000_011111 rounded to 0.0000000000 (< tie, no rounding)
1827
        // 0.0000000000_100000 rounded to 0.0000000000 (tie and even, remains at even)
1828
        // 0.0000000000_100001 rounded to 0.0000000001 (> tie, rounds up)
1829
        assert_eq!(
1830
            f16::from_f64(min_sub_f * 0.49).to_bits(),
1831
            min_sub.to_bits() * 0
1832
        );
1833
        assert_eq!(
1834
            f16::from_f64(min_sub_f * 0.50).to_bits(),
1835
            min_sub.to_bits() * 0
1836
        );
1837
        assert_eq!(
1838
            f16::from_f64(min_sub_f * 0.51).to_bits(),
1839
            min_sub.to_bits() * 1
1840
        );
1841
1842
        // 0.0000000001_011111 rounded to 0.0000000001 (< tie, no rounding)
1843
        // 0.0000000001_100000 rounded to 0.0000000010 (tie and odd, rounds up to even)
1844
        // 0.0000000001_100001 rounded to 0.0000000010 (> tie, rounds up)
1845
        assert_eq!(
1846
            f16::from_f64(min_sub_f * 1.49).to_bits(),
1847
            min_sub.to_bits() * 1
1848
        );
1849
        assert_eq!(
1850
            f16::from_f64(min_sub_f * 1.50).to_bits(),
1851
            min_sub.to_bits() * 2
1852
        );
1853
        assert_eq!(
1854
            f16::from_f64(min_sub_f * 1.51).to_bits(),
1855
            min_sub.to_bits() * 2
1856
        );
1857
1858
        // 0.0000000010_011111 rounded to 0.0000000010 (< tie, no rounding)
1859
        // 0.0000000010_100000 rounded to 0.0000000010 (tie and even, remains at even)
1860
        // 0.0000000010_100001 rounded to 0.0000000011 (> tie, rounds up)
1861
        assert_eq!(
1862
            f16::from_f64(min_sub_f * 2.49).to_bits(),
1863
            min_sub.to_bits() * 2
1864
        );
1865
        assert_eq!(
1866
            f16::from_f64(min_sub_f * 2.50).to_bits(),
1867
            min_sub.to_bits() * 2
1868
        );
1869
        assert_eq!(
1870
            f16::from_f64(min_sub_f * 2.51).to_bits(),
1871
            min_sub.to_bits() * 3
1872
        );
1873
1874
        assert_eq!(
1875
            f16::from_f64(2000.49f64).to_bits(),
1876
            f16::from_f64(2000.0).to_bits()
1877
        );
1878
        assert_eq!(
1879
            f16::from_f64(2000.50f64).to_bits(),
1880
            f16::from_f64(2000.0).to_bits()
1881
        );
1882
        assert_eq!(
1883
            f16::from_f64(2000.51f64).to_bits(),
1884
            f16::from_f64(2001.0).to_bits()
1885
        );
1886
        assert_eq!(
1887
            f16::from_f64(2001.49f64).to_bits(),
1888
            f16::from_f64(2001.0).to_bits()
1889
        );
1890
        assert_eq!(
1891
            f16::from_f64(2001.50f64).to_bits(),
1892
            f16::from_f64(2002.0).to_bits()
1893
        );
1894
        assert_eq!(
1895
            f16::from_f64(2001.51f64).to_bits(),
1896
            f16::from_f64(2002.0).to_bits()
1897
        );
1898
        assert_eq!(
1899
            f16::from_f64(2002.49f64).to_bits(),
1900
            f16::from_f64(2002.0).to_bits()
1901
        );
1902
        assert_eq!(
1903
            f16::from_f64(2002.50f64).to_bits(),
1904
            f16::from_f64(2002.0).to_bits()
1905
        );
1906
        assert_eq!(
1907
            f16::from_f64(2002.51f64).to_bits(),
1908
            f16::from_f64(2003.0).to_bits()
1909
        );
1910
    }
1911
1912
    #[test]
1913
    fn arithmetic() {
1914
        assert_eq!(f16::ONE + f16::ONE, f16::from_f32(2.));
1915
        assert_eq!(f16::ONE - f16::ONE, f16::ZERO);
1916
        assert_eq!(f16::ONE * f16::ONE, f16::ONE);
1917
        assert_eq!(f16::from_f32(2.) * f16::from_f32(2.), f16::from_f32(4.));
1918
        assert_eq!(f16::ONE / f16::ONE, f16::ONE);
1919
        assert_eq!(f16::from_f32(4.) / f16::from_f32(2.), f16::from_f32(2.));
1920
        assert_eq!(f16::from_f32(4.) % f16::from_f32(3.), f16::from_f32(1.));
1921
    }
1922
1923
    #[cfg(feature = "std")]
1924
    #[test]
1925
    fn formatting() {
1926
        let f = f16::from_f32(0.1152344);
1927
1928
        assert_eq!(format!("{:.3}", f), "0.115");
1929
        assert_eq!(format!("{:.4}", f), "0.1152");
1930
        assert_eq!(format!("{:+.4}", f), "+0.1152");
1931
        assert_eq!(format!("{:>+10.4}", f), "   +0.1152");
1932
1933
        assert_eq!(format!("{:.3?}", f), "0.115");
1934
        assert_eq!(format!("{:.4?}", f), "0.1152");
1935
        assert_eq!(format!("{:+.4?}", f), "+0.1152");
1936
        assert_eq!(format!("{:>+10.4?}", f), "   +0.1152");
1937
    }
1938
1939
    impl quickcheck::Arbitrary for f16 {
1940
        fn arbitrary(g: &mut quickcheck::Gen) -> Self {
1941
            f16(u16::arbitrary(g))
1942
        }
1943
    }
1944
1945
    #[quickcheck]
1946
    fn qc_roundtrip_f16_f32_is_identity(f: f16) -> bool {
1947
        let roundtrip = f16::from_f32(f.to_f32());
1948
        if f.is_nan() {
1949
            roundtrip.is_nan() && f.is_sign_negative() == roundtrip.is_sign_negative()
1950
        } else {
1951
            f.0 == roundtrip.0
1952
        }
1953
    }
1954
1955
    #[quickcheck]
1956
    fn qc_roundtrip_f16_f64_is_identity(f: f16) -> bool {
1957
        let roundtrip = f16::from_f64(f.to_f64());
1958
        if f.is_nan() {
1959
            roundtrip.is_nan() && f.is_sign_negative() == roundtrip.is_sign_negative()
1960
        } else {
1961
            f.0 == roundtrip.0
1962
        }
1963
    }
1964
}