/rust/registry/src/index.crates.io-6f17d22bba15001f/half-2.6.0/src/binary16.rs
Line | Count | Source (jump to first uncovered line) |
1 | | #[cfg(all(feature = "serde", feature = "alloc"))] |
2 | | #[allow(unused_imports)] |
3 | | use alloc::string::ToString; |
4 | | #[cfg(feature = "bytemuck")] |
5 | | use bytemuck::{Pod, Zeroable}; |
6 | | use core::{ |
7 | | cmp::Ordering, |
8 | | iter::{Product, Sum}, |
9 | | num::FpCategory, |
10 | | ops::{Add, AddAssign, Div, DivAssign, Mul, MulAssign, Neg, Rem, RemAssign, Sub, SubAssign}, |
11 | | }; |
12 | | #[cfg(not(target_arch = "spirv"))] |
13 | | use core::{ |
14 | | fmt::{ |
15 | | Binary, Debug, Display, Error, Formatter, LowerExp, LowerHex, Octal, UpperExp, UpperHex, |
16 | | }, |
17 | | num::ParseFloatError, |
18 | | str::FromStr, |
19 | | }; |
20 | | #[cfg(feature = "serde")] |
21 | | use serde::{Deserialize, Serialize}; |
22 | | #[cfg(feature = "zerocopy")] |
23 | | use zerocopy::{FromBytes, Immutable, IntoBytes, KnownLayout}; |
24 | | |
25 | | pub(crate) mod arch; |
26 | | |
27 | | /// A 16-bit floating point type implementing the IEEE 754-2008 standard [`binary16`] a.k.a "half" |
28 | | /// format. |
29 | | /// |
30 | | /// This 16-bit floating point type is intended for efficient storage where the full range and |
31 | | /// precision of a larger floating point value is not required. |
32 | | /// |
33 | | /// [`binary16`]: https://en.wikipedia.org/wiki/Half-precision_floating-point_format |
34 | | #[allow(non_camel_case_types)] |
35 | | #[derive(Clone, Copy, Default)] |
36 | | #[repr(transparent)] |
37 | | #[cfg_attr(feature = "serde", derive(Serialize))] |
38 | | #[cfg_attr( |
39 | | feature = "rkyv", |
40 | | derive(rkyv::Archive, rkyv::Serialize, rkyv::Deserialize) |
41 | | )] |
42 | | #[cfg_attr(feature = "rkyv", rkyv(resolver = F16Resolver))] |
43 | | #[cfg_attr(feature = "bytemuck", derive(Zeroable, Pod))] |
44 | | #[cfg_attr( |
45 | | feature = "zerocopy", |
46 | | derive(FromBytes, Immutable, IntoBytes, KnownLayout) |
47 | | )] |
48 | | #[cfg_attr(kani, derive(kani::Arbitrary))] |
49 | | #[cfg_attr(feature = "arbitrary", derive(arbitrary::Arbitrary))] |
50 | | pub struct f16(u16); |
51 | | |
52 | | impl f16 { |
53 | | /// Constructs a 16-bit floating point value from the raw bits. |
54 | | #[inline] |
55 | | #[must_use] |
56 | 0 | pub const fn from_bits(bits: u16) -> f16 { |
57 | 0 | f16(bits) |
58 | 0 | } |
59 | | |
60 | | /// Constructs a 16-bit floating point value from a 32-bit floating point value. |
61 | | /// |
62 | | /// This operation is lossy. If the 32-bit value is to large to fit in 16-bits, ±∞ will result. |
63 | | /// NaN values are preserved. 32-bit subnormal values are too tiny to be represented in 16-bits |
64 | | /// and result in ±0. Exponents that underflow the minimum 16-bit exponent will result in 16-bit |
65 | | /// subnormals or ±0. All other values are truncated and rounded to the nearest representable |
66 | | /// 16-bit value. |
67 | | #[inline] |
68 | | #[must_use] |
69 | 0 | pub fn from_f32(value: f32) -> f16 { |
70 | 0 | f16(arch::f32_to_f16(value)) |
71 | 0 | } Unexecuted instantiation: <half::binary16::f16>::from_f32 Unexecuted instantiation: <half::binary16::f16>::from_f32 |
72 | | |
73 | | /// Constructs a 16-bit floating point value from a 32-bit floating point value. |
74 | | /// |
75 | | /// This function is identical to [`from_f32`][Self::from_f32] except it never uses hardware |
76 | | /// intrinsics, which allows it to be `const`. [`from_f32`][Self::from_f32] should be preferred |
77 | | /// in any non-`const` context. |
78 | | /// |
79 | | /// This operation is lossy. If the 32-bit value is to large to fit in 16-bits, ±∞ will result. |
80 | | /// NaN values are preserved. 32-bit subnormal values are too tiny to be represented in 16-bits |
81 | | /// and result in ±0. Exponents that underflow the minimum 16-bit exponent will result in 16-bit |
82 | | /// subnormals or ±0. All other values are truncated and rounded to the nearest representable |
83 | | /// 16-bit value. |
84 | | #[inline] |
85 | | #[must_use] |
86 | 0 | pub const fn from_f32_const(value: f32) -> f16 { |
87 | 0 | f16(arch::f32_to_f16_fallback(value)) |
88 | 0 | } |
89 | | |
90 | | /// Constructs a 16-bit floating point value from a 64-bit floating point value. |
91 | | /// |
92 | | /// This operation is lossy. If the 64-bit value is to large to fit in 16-bits, ±∞ will result. |
93 | | /// NaN values are preserved. 64-bit subnormal values are too tiny to be represented in 16-bits |
94 | | /// and result in ±0. Exponents that underflow the minimum 16-bit exponent will result in 16-bit |
95 | | /// subnormals or ±0. All other values are truncated and rounded to the nearest representable |
96 | | /// 16-bit value. |
97 | | #[inline] |
98 | | #[must_use] |
99 | 0 | pub fn from_f64(value: f64) -> f16 { |
100 | 0 | f16(arch::f64_to_f16(value)) |
101 | 0 | } |
102 | | |
103 | | /// Constructs a 16-bit floating point value from a 64-bit floating point value. |
104 | | /// |
105 | | /// This function is identical to [`from_f64`][Self::from_f64] except it never uses hardware |
106 | | /// intrinsics, which allows it to be `const`. [`from_f64`][Self::from_f64] should be preferred |
107 | | /// in any non-`const` context. |
108 | | /// |
109 | | /// This operation is lossy. If the 64-bit value is to large to fit in 16-bits, ±∞ will result. |
110 | | /// NaN values are preserved. 64-bit subnormal values are too tiny to be represented in 16-bits |
111 | | /// and result in ±0. Exponents that underflow the minimum 16-bit exponent will result in 16-bit |
112 | | /// subnormals or ±0. All other values are truncated and rounded to the nearest representable |
113 | | /// 16-bit value. |
114 | | #[inline] |
115 | | #[must_use] |
116 | 0 | pub const fn from_f64_const(value: f64) -> f16 { |
117 | 0 | f16(arch::f64_to_f16_fallback(value)) |
118 | 0 | } |
119 | | |
120 | | /// Converts a [`struct@f16`] into the underlying bit representation. |
121 | | #[inline] |
122 | | #[must_use] |
123 | 0 | pub const fn to_bits(self) -> u16 { |
124 | 0 | self.0 |
125 | 0 | } Unexecuted instantiation: <half::binary16::f16>::to_bits Unexecuted instantiation: <half::binary16::f16>::to_bits Unexecuted instantiation: <half::binary16::f16>::to_bits |
126 | | |
127 | | /// Returns the memory representation of the underlying bit representation as a byte array in |
128 | | /// little-endian byte order. |
129 | | /// |
130 | | /// # Examples |
131 | | /// |
132 | | /// ```rust |
133 | | /// # use half::prelude::*; |
134 | | /// let bytes = f16::from_f32(12.5).to_le_bytes(); |
135 | | /// assert_eq!(bytes, [0x40, 0x4A]); |
136 | | /// ``` |
137 | | #[inline] |
138 | | #[must_use] |
139 | 0 | pub const fn to_le_bytes(self) -> [u8; 2] { |
140 | 0 | self.0.to_le_bytes() |
141 | 0 | } |
142 | | |
143 | | /// Returns the memory representation of the underlying bit representation as a byte array in |
144 | | /// big-endian (network) byte order. |
145 | | /// |
146 | | /// # Examples |
147 | | /// |
148 | | /// ```rust |
149 | | /// # use half::prelude::*; |
150 | | /// let bytes = f16::from_f32(12.5).to_be_bytes(); |
151 | | /// assert_eq!(bytes, [0x4A, 0x40]); |
152 | | /// ``` |
153 | | #[inline] |
154 | | #[must_use] |
155 | 0 | pub const fn to_be_bytes(self) -> [u8; 2] { |
156 | 0 | self.0.to_be_bytes() |
157 | 0 | } |
158 | | |
159 | | /// Returns the memory representation of the underlying bit representation as a byte array in |
160 | | /// native byte order. |
161 | | /// |
162 | | /// As the target platform's native endianness is used, portable code should use |
163 | | /// [`to_be_bytes`][Self::to_be_bytes] or [`to_le_bytes`][Self::to_le_bytes], as appropriate, |
164 | | /// instead. |
165 | | /// |
166 | | /// # Examples |
167 | | /// |
168 | | /// ```rust |
169 | | /// # use half::prelude::*; |
170 | | /// let bytes = f16::from_f32(12.5).to_ne_bytes(); |
171 | | /// assert_eq!(bytes, if cfg!(target_endian = "big") { |
172 | | /// [0x4A, 0x40] |
173 | | /// } else { |
174 | | /// [0x40, 0x4A] |
175 | | /// }); |
176 | | /// ``` |
177 | | #[inline] |
178 | | #[must_use] |
179 | 0 | pub const fn to_ne_bytes(self) -> [u8; 2] { |
180 | 0 | self.0.to_ne_bytes() |
181 | 0 | } |
182 | | |
183 | | /// Creates a floating point value from its representation as a byte array in little endian. |
184 | | /// |
185 | | /// # Examples |
186 | | /// |
187 | | /// ```rust |
188 | | /// # use half::prelude::*; |
189 | | /// let value = f16::from_le_bytes([0x40, 0x4A]); |
190 | | /// assert_eq!(value, f16::from_f32(12.5)); |
191 | | /// ``` |
192 | | #[inline] |
193 | | #[must_use] |
194 | 0 | pub const fn from_le_bytes(bytes: [u8; 2]) -> f16 { |
195 | 0 | f16::from_bits(u16::from_le_bytes(bytes)) |
196 | 0 | } |
197 | | |
198 | | /// Creates a floating point value from its representation as a byte array in big endian. |
199 | | /// |
200 | | /// # Examples |
201 | | /// |
202 | | /// ```rust |
203 | | /// # use half::prelude::*; |
204 | | /// let value = f16::from_be_bytes([0x4A, 0x40]); |
205 | | /// assert_eq!(value, f16::from_f32(12.5)); |
206 | | /// ``` |
207 | | #[inline] |
208 | | #[must_use] |
209 | 0 | pub const fn from_be_bytes(bytes: [u8; 2]) -> f16 { |
210 | 0 | f16::from_bits(u16::from_be_bytes(bytes)) |
211 | 0 | } |
212 | | |
213 | | /// Creates a floating point value from its representation as a byte array in native endian. |
214 | | /// |
215 | | /// As the target platform's native endianness is used, portable code likely wants to use |
216 | | /// [`from_be_bytes`][Self::from_be_bytes] or [`from_le_bytes`][Self::from_le_bytes], as |
217 | | /// appropriate instead. |
218 | | /// |
219 | | /// # Examples |
220 | | /// |
221 | | /// ```rust |
222 | | /// # use half::prelude::*; |
223 | | /// let value = f16::from_ne_bytes(if cfg!(target_endian = "big") { |
224 | | /// [0x4A, 0x40] |
225 | | /// } else { |
226 | | /// [0x40, 0x4A] |
227 | | /// }); |
228 | | /// assert_eq!(value, f16::from_f32(12.5)); |
229 | | /// ``` |
230 | | #[inline] |
231 | | #[must_use] |
232 | 0 | pub const fn from_ne_bytes(bytes: [u8; 2]) -> f16 { |
233 | 0 | f16::from_bits(u16::from_ne_bytes(bytes)) |
234 | 0 | } |
235 | | |
236 | | /// Converts a [`struct@f16`] value into a `f32` value. |
237 | | /// |
238 | | /// This conversion is lossless as all 16-bit floating point values can be represented exactly |
239 | | /// in 32-bit floating point. |
240 | | #[inline] |
241 | | #[must_use] |
242 | 0 | pub fn to_f32(self) -> f32 { |
243 | 0 | arch::f16_to_f32(self.0) |
244 | 0 | } Unexecuted instantiation: <half::binary16::f16>::to_f32 Unexecuted instantiation: <half::binary16::f16>::to_f32 |
245 | | |
246 | | /// Converts a [`struct@f16`] value into a `f32` value. |
247 | | /// |
248 | | /// This function is identical to [`to_f32`][Self::to_f32] except it never uses hardware |
249 | | /// intrinsics, which allows it to be `const`. [`to_f32`][Self::to_f32] should be preferred |
250 | | /// in any non-`const` context. |
251 | | /// |
252 | | /// This conversion is lossless as all 16-bit floating point values can be represented exactly |
253 | | /// in 32-bit floating point. |
254 | | #[inline] |
255 | | #[must_use] |
256 | 0 | pub const fn to_f32_const(self) -> f32 { |
257 | 0 | arch::f16_to_f32_fallback(self.0) |
258 | 0 | } |
259 | | |
260 | | /// Converts a [`struct@f16`] value into a `f64` value. |
261 | | /// |
262 | | /// This conversion is lossless as all 16-bit floating point values can be represented exactly |
263 | | /// in 64-bit floating point. |
264 | | #[inline] |
265 | | #[must_use] |
266 | 0 | pub fn to_f64(self) -> f64 { |
267 | 0 | arch::f16_to_f64(self.0) |
268 | 0 | } |
269 | | |
270 | | /// Converts a [`struct@f16`] value into a `f64` value. |
271 | | /// |
272 | | /// This function is identical to [`to_f64`][Self::to_f64] except it never uses hardware |
273 | | /// intrinsics, which allows it to be `const`. [`to_f64`][Self::to_f64] should be preferred |
274 | | /// in any non-`const` context. |
275 | | /// |
276 | | /// This conversion is lossless as all 16-bit floating point values can be represented exactly |
277 | | /// in 64-bit floating point. |
278 | | #[inline] |
279 | | #[must_use] |
280 | 0 | pub const fn to_f64_const(self) -> f64 { |
281 | 0 | arch::f16_to_f64_fallback(self.0) |
282 | 0 | } |
283 | | |
284 | | /// Returns `true` if this value is `NaN` and `false` otherwise. |
285 | | /// |
286 | | /// # Examples |
287 | | /// |
288 | | /// ```rust |
289 | | /// # use half::prelude::*; |
290 | | /// |
291 | | /// let nan = f16::NAN; |
292 | | /// let f = f16::from_f32(7.0_f32); |
293 | | /// |
294 | | /// assert!(nan.is_nan()); |
295 | | /// assert!(!f.is_nan()); |
296 | | /// ``` |
297 | | #[inline] |
298 | | #[must_use] |
299 | 0 | pub const fn is_nan(self) -> bool { |
300 | 0 | self.0 & 0x7FFFu16 > 0x7C00u16 |
301 | 0 | } |
302 | | |
303 | | /// Returns `true` if this value is ±∞ and `false`. |
304 | | /// otherwise. |
305 | | /// |
306 | | /// # Examples |
307 | | /// |
308 | | /// ```rust |
309 | | /// # use half::prelude::*; |
310 | | /// |
311 | | /// let f = f16::from_f32(7.0f32); |
312 | | /// let inf = f16::INFINITY; |
313 | | /// let neg_inf = f16::NEG_INFINITY; |
314 | | /// let nan = f16::NAN; |
315 | | /// |
316 | | /// assert!(!f.is_infinite()); |
317 | | /// assert!(!nan.is_infinite()); |
318 | | /// |
319 | | /// assert!(inf.is_infinite()); |
320 | | /// assert!(neg_inf.is_infinite()); |
321 | | /// ``` |
322 | | #[inline] |
323 | | #[must_use] |
324 | 0 | pub const fn is_infinite(self) -> bool { |
325 | 0 | self.0 & 0x7FFFu16 == 0x7C00u16 |
326 | 0 | } |
327 | | |
328 | | /// Returns `true` if this number is neither infinite nor `NaN`. |
329 | | /// |
330 | | /// # Examples |
331 | | /// |
332 | | /// ```rust |
333 | | /// # use half::prelude::*; |
334 | | /// |
335 | | /// let f = f16::from_f32(7.0f32); |
336 | | /// let inf = f16::INFINITY; |
337 | | /// let neg_inf = f16::NEG_INFINITY; |
338 | | /// let nan = f16::NAN; |
339 | | /// |
340 | | /// assert!(f.is_finite()); |
341 | | /// |
342 | | /// assert!(!nan.is_finite()); |
343 | | /// assert!(!inf.is_finite()); |
344 | | /// assert!(!neg_inf.is_finite()); |
345 | | /// ``` |
346 | | #[inline] |
347 | | #[must_use] |
348 | 0 | pub const fn is_finite(self) -> bool { |
349 | 0 | self.0 & 0x7C00u16 != 0x7C00u16 |
350 | 0 | } |
351 | | |
352 | | /// Returns `true` if the number is neither zero, infinite, subnormal, or `NaN`. |
353 | | /// |
354 | | /// # Examples |
355 | | /// |
356 | | /// ```rust |
357 | | /// # use half::prelude::*; |
358 | | /// |
359 | | /// let min = f16::MIN_POSITIVE; |
360 | | /// let max = f16::MAX; |
361 | | /// let lower_than_min = f16::from_f32(1.0e-10_f32); |
362 | | /// let zero = f16::from_f32(0.0_f32); |
363 | | /// |
364 | | /// assert!(min.is_normal()); |
365 | | /// assert!(max.is_normal()); |
366 | | /// |
367 | | /// assert!(!zero.is_normal()); |
368 | | /// assert!(!f16::NAN.is_normal()); |
369 | | /// assert!(!f16::INFINITY.is_normal()); |
370 | | /// // Values between `0` and `min` are Subnormal. |
371 | | /// assert!(!lower_than_min.is_normal()); |
372 | | /// ``` |
373 | | #[inline] |
374 | | #[must_use] |
375 | 0 | pub const fn is_normal(self) -> bool { |
376 | 0 | let exp = self.0 & 0x7C00u16; |
377 | 0 | exp != 0x7C00u16 && exp != 0 |
378 | 0 | } |
379 | | |
380 | | /// Returns the floating point category of the number. |
381 | | /// |
382 | | /// If only one property is going to be tested, it is generally faster to use the specific |
383 | | /// predicate instead. |
384 | | /// |
385 | | /// # Examples |
386 | | /// |
387 | | /// ```rust |
388 | | /// use std::num::FpCategory; |
389 | | /// # use half::prelude::*; |
390 | | /// |
391 | | /// let num = f16::from_f32(12.4_f32); |
392 | | /// let inf = f16::INFINITY; |
393 | | /// |
394 | | /// assert_eq!(num.classify(), FpCategory::Normal); |
395 | | /// assert_eq!(inf.classify(), FpCategory::Infinite); |
396 | | /// ``` |
397 | | #[must_use] |
398 | 0 | pub const fn classify(self) -> FpCategory { |
399 | 0 | let exp = self.0 & 0x7C00u16; |
400 | 0 | let man = self.0 & 0x03FFu16; |
401 | 0 | match (exp, man) { |
402 | 0 | (0, 0) => FpCategory::Zero, |
403 | 0 | (0, _) => FpCategory::Subnormal, |
404 | 0 | (0x7C00u16, 0) => FpCategory::Infinite, |
405 | 0 | (0x7C00u16, _) => FpCategory::Nan, |
406 | 0 | _ => FpCategory::Normal, |
407 | | } |
408 | 0 | } |
409 | | |
410 | | /// Returns a number that represents the sign of `self`. |
411 | | /// |
412 | | /// * `1.0` if the number is positive, `+0.0` or [`INFINITY`][f16::INFINITY] |
413 | | /// * `-1.0` if the number is negative, `-0.0` or [`NEG_INFINITY`][f16::NEG_INFINITY] |
414 | | /// * [`NAN`][f16::NAN] if the number is `NaN` |
415 | | /// |
416 | | /// # Examples |
417 | | /// |
418 | | /// ```rust |
419 | | /// # use half::prelude::*; |
420 | | /// |
421 | | /// let f = f16::from_f32(3.5_f32); |
422 | | /// |
423 | | /// assert_eq!(f.signum(), f16::from_f32(1.0)); |
424 | | /// assert_eq!(f16::NEG_INFINITY.signum(), f16::from_f32(-1.0)); |
425 | | /// |
426 | | /// assert!(f16::NAN.signum().is_nan()); |
427 | | /// ``` |
428 | | #[must_use] |
429 | 0 | pub const fn signum(self) -> f16 { |
430 | 0 | if self.is_nan() { |
431 | 0 | self |
432 | 0 | } else if self.0 & 0x8000u16 != 0 { |
433 | 0 | Self::NEG_ONE |
434 | | } else { |
435 | 0 | Self::ONE |
436 | | } |
437 | 0 | } |
438 | | |
439 | | /// Returns `true` if and only if `self` has a positive sign, including `+0.0`, `NaNs` with a |
440 | | /// positive sign bit and +∞. |
441 | | /// |
442 | | /// # Examples |
443 | | /// |
444 | | /// ```rust |
445 | | /// # use half::prelude::*; |
446 | | /// |
447 | | /// let nan = f16::NAN; |
448 | | /// let f = f16::from_f32(7.0_f32); |
449 | | /// let g = f16::from_f32(-7.0_f32); |
450 | | /// |
451 | | /// assert!(f.is_sign_positive()); |
452 | | /// assert!(!g.is_sign_positive()); |
453 | | /// // `NaN` can be either positive or negative |
454 | | /// assert!(nan.is_sign_positive() != nan.is_sign_negative()); |
455 | | /// ``` |
456 | | #[inline] |
457 | | #[must_use] |
458 | 0 | pub const fn is_sign_positive(self) -> bool { |
459 | 0 | self.0 & 0x8000u16 == 0 |
460 | 0 | } |
461 | | |
462 | | /// Returns `true` if and only if `self` has a negative sign, including `-0.0`, `NaNs` with a |
463 | | /// negative sign bit and −∞. |
464 | | /// |
465 | | /// # Examples |
466 | | /// |
467 | | /// ```rust |
468 | | /// # use half::prelude::*; |
469 | | /// |
470 | | /// let nan = f16::NAN; |
471 | | /// let f = f16::from_f32(7.0f32); |
472 | | /// let g = f16::from_f32(-7.0f32); |
473 | | /// |
474 | | /// assert!(!f.is_sign_negative()); |
475 | | /// assert!(g.is_sign_negative()); |
476 | | /// // `NaN` can be either positive or negative |
477 | | /// assert!(nan.is_sign_positive() != nan.is_sign_negative()); |
478 | | /// ``` |
479 | | #[inline] |
480 | | #[must_use] |
481 | 0 | pub const fn is_sign_negative(self) -> bool { |
482 | 0 | self.0 & 0x8000u16 != 0 |
483 | 0 | } |
484 | | |
485 | | /// Returns a number composed of the magnitude of `self` and the sign of `sign`. |
486 | | /// |
487 | | /// Equal to `self` if the sign of `self` and `sign` are the same, otherwise equal to `-self`. |
488 | | /// If `self` is NaN, then NaN with the sign of `sign` is returned. |
489 | | /// |
490 | | /// # Examples |
491 | | /// |
492 | | /// ``` |
493 | | /// # use half::prelude::*; |
494 | | /// let f = f16::from_f32(3.5); |
495 | | /// |
496 | | /// assert_eq!(f.copysign(f16::from_f32(0.42)), f16::from_f32(3.5)); |
497 | | /// assert_eq!(f.copysign(f16::from_f32(-0.42)), f16::from_f32(-3.5)); |
498 | | /// assert_eq!((-f).copysign(f16::from_f32(0.42)), f16::from_f32(3.5)); |
499 | | /// assert_eq!((-f).copysign(f16::from_f32(-0.42)), f16::from_f32(-3.5)); |
500 | | /// |
501 | | /// assert!(f16::NAN.copysign(f16::from_f32(1.0)).is_nan()); |
502 | | /// ``` |
503 | | #[inline] |
504 | | #[must_use] |
505 | 0 | pub const fn copysign(self, sign: f16) -> f16 { |
506 | 0 | f16((sign.0 & 0x8000u16) | (self.0 & 0x7FFFu16)) |
507 | 0 | } |
508 | | |
509 | | /// Returns the maximum of the two numbers. |
510 | | /// |
511 | | /// If one of the arguments is NaN, then the other argument is returned. |
512 | | /// |
513 | | /// # Examples |
514 | | /// |
515 | | /// ``` |
516 | | /// # use half::prelude::*; |
517 | | /// let x = f16::from_f32(1.0); |
518 | | /// let y = f16::from_f32(2.0); |
519 | | /// |
520 | | /// assert_eq!(x.max(y), y); |
521 | | /// ``` |
522 | | #[inline] |
523 | | #[must_use] |
524 | 0 | pub fn max(self, other: f16) -> f16 { |
525 | 0 | if other > self && !other.is_nan() { |
526 | 0 | other |
527 | | } else { |
528 | 0 | self |
529 | | } |
530 | 0 | } |
531 | | |
532 | | /// Returns the minimum of the two numbers. |
533 | | /// |
534 | | /// If one of the arguments is NaN, then the other argument is returned. |
535 | | /// |
536 | | /// # Examples |
537 | | /// |
538 | | /// ``` |
539 | | /// # use half::prelude::*; |
540 | | /// let x = f16::from_f32(1.0); |
541 | | /// let y = f16::from_f32(2.0); |
542 | | /// |
543 | | /// assert_eq!(x.min(y), x); |
544 | | /// ``` |
545 | | #[inline] |
546 | | #[must_use] |
547 | 0 | pub fn min(self, other: f16) -> f16 { |
548 | 0 | if other < self && !other.is_nan() { |
549 | 0 | other |
550 | | } else { |
551 | 0 | self |
552 | | } |
553 | 0 | } |
554 | | |
555 | | /// Restrict a value to a certain interval unless it is NaN. |
556 | | /// |
557 | | /// Returns `max` if `self` is greater than `max`, and `min` if `self` is less than `min`. |
558 | | /// Otherwise this returns `self`. |
559 | | /// |
560 | | /// Note that this function returns NaN if the initial value was NaN as well. |
561 | | /// |
562 | | /// # Panics |
563 | | /// Panics if `min > max`, `min` is NaN, or `max` is NaN. |
564 | | /// |
565 | | /// # Examples |
566 | | /// |
567 | | /// ``` |
568 | | /// # use half::prelude::*; |
569 | | /// assert!(f16::from_f32(-3.0).clamp(f16::from_f32(-2.0), f16::from_f32(1.0)) == f16::from_f32(-2.0)); |
570 | | /// assert!(f16::from_f32(0.0).clamp(f16::from_f32(-2.0), f16::from_f32(1.0)) == f16::from_f32(0.0)); |
571 | | /// assert!(f16::from_f32(2.0).clamp(f16::from_f32(-2.0), f16::from_f32(1.0)) == f16::from_f32(1.0)); |
572 | | /// assert!(f16::NAN.clamp(f16::from_f32(-2.0), f16::from_f32(1.0)).is_nan()); |
573 | | /// ``` |
574 | | #[inline] |
575 | | #[must_use] |
576 | 0 | pub fn clamp(self, min: f16, max: f16) -> f16 { |
577 | 0 | assert!(min <= max); |
578 | 0 | let mut x = self; |
579 | 0 | if x < min { |
580 | 0 | x = min; |
581 | 0 | } |
582 | 0 | if x > max { |
583 | 0 | x = max; |
584 | 0 | } |
585 | 0 | x |
586 | 0 | } |
587 | | |
588 | | /// Returns the ordering between `self` and `other`. |
589 | | /// |
590 | | /// Unlike the standard partial comparison between floating point numbers, |
591 | | /// this comparison always produces an ordering in accordance to |
592 | | /// the `totalOrder` predicate as defined in the IEEE 754 (2008 revision) |
593 | | /// floating point standard. The values are ordered in the following sequence: |
594 | | /// |
595 | | /// - negative quiet NaN |
596 | | /// - negative signaling NaN |
597 | | /// - negative infinity |
598 | | /// - negative numbers |
599 | | /// - negative subnormal numbers |
600 | | /// - negative zero |
601 | | /// - positive zero |
602 | | /// - positive subnormal numbers |
603 | | /// - positive numbers |
604 | | /// - positive infinity |
605 | | /// - positive signaling NaN |
606 | | /// - positive quiet NaN. |
607 | | /// |
608 | | /// The ordering established by this function does not always agree with the |
609 | | /// [`PartialOrd`] and [`PartialEq`] implementations of `f16`. For example, |
610 | | /// they consider negative and positive zero equal, while `total_cmp` |
611 | | /// doesn't. |
612 | | /// |
613 | | /// The interpretation of the signaling NaN bit follows the definition in |
614 | | /// the IEEE 754 standard, which may not match the interpretation by some of |
615 | | /// the older, non-conformant (e.g. MIPS) hardware implementations. |
616 | | /// |
617 | | /// # Examples |
618 | | /// ``` |
619 | | /// # use half::f16; |
620 | | /// let mut v: Vec<f16> = vec![]; |
621 | | /// v.push(f16::ONE); |
622 | | /// v.push(f16::INFINITY); |
623 | | /// v.push(f16::NEG_INFINITY); |
624 | | /// v.push(f16::NAN); |
625 | | /// v.push(f16::MAX_SUBNORMAL); |
626 | | /// v.push(-f16::MAX_SUBNORMAL); |
627 | | /// v.push(f16::ZERO); |
628 | | /// v.push(f16::NEG_ZERO); |
629 | | /// v.push(f16::NEG_ONE); |
630 | | /// v.push(f16::MIN_POSITIVE); |
631 | | /// |
632 | | /// v.sort_by(|a, b| a.total_cmp(&b)); |
633 | | /// |
634 | | /// assert!(v |
635 | | /// .into_iter() |
636 | | /// .zip( |
637 | | /// [ |
638 | | /// f16::NEG_INFINITY, |
639 | | /// f16::NEG_ONE, |
640 | | /// -f16::MAX_SUBNORMAL, |
641 | | /// f16::NEG_ZERO, |
642 | | /// f16::ZERO, |
643 | | /// f16::MAX_SUBNORMAL, |
644 | | /// f16::MIN_POSITIVE, |
645 | | /// f16::ONE, |
646 | | /// f16::INFINITY, |
647 | | /// f16::NAN |
648 | | /// ] |
649 | | /// .iter() |
650 | | /// ) |
651 | | /// .all(|(a, b)| a.to_bits() == b.to_bits())); |
652 | | /// ``` |
653 | | // Implementation based on: https://doc.rust-lang.org/std/primitive.f32.html#method.total_cmp |
654 | | #[inline] |
655 | | #[must_use] |
656 | 0 | pub fn total_cmp(&self, other: &Self) -> Ordering { |
657 | 0 | let mut left = self.to_bits() as i16; |
658 | 0 | let mut right = other.to_bits() as i16; |
659 | 0 | left ^= (((left >> 15) as u16) >> 1) as i16; |
660 | 0 | right ^= (((right >> 15) as u16) >> 1) as i16; |
661 | 0 | left.cmp(&right) |
662 | 0 | } |
663 | | |
664 | | /// Alternate serialize adapter for serializing as a float. |
665 | | /// |
666 | | /// By default, [`struct@f16`] serializes as a newtype of [`u16`]. This is an alternate serialize |
667 | | /// implementation that serializes as an [`f32`] value. It is designed for use with |
668 | | /// `serialize_with` serde attributes. Deserialization from `f32` values is already supported by |
669 | | /// the default deserialize implementation. |
670 | | /// |
671 | | /// # Examples |
672 | | /// |
673 | | /// A demonstration on how to use this adapater: |
674 | | /// |
675 | | /// ``` |
676 | | /// use serde::{Serialize, Deserialize}; |
677 | | /// use half::f16; |
678 | | /// |
679 | | /// #[derive(Serialize, Deserialize)] |
680 | | /// struct MyStruct { |
681 | | /// #[serde(serialize_with = "f16::serialize_as_f32")] |
682 | | /// value: f16 // Will be serialized as f32 instead of u16 |
683 | | /// } |
684 | | /// ``` |
685 | | #[cfg(feature = "serde")] |
686 | | pub fn serialize_as_f32<S: serde::Serializer>(&self, serializer: S) -> Result<S::Ok, S::Error> { |
687 | | serializer.serialize_f32(self.to_f32()) |
688 | | } |
689 | | |
690 | | /// Alternate serialize adapter for serializing as a string. |
691 | | /// |
692 | | /// By default, [`struct@f16`] serializes as a newtype of [`u16`]. This is an alternate serialize |
693 | | /// implementation that serializes as a string value. It is designed for use with |
694 | | /// `serialize_with` serde attributes. Deserialization from string values is already supported |
695 | | /// by the default deserialize implementation. |
696 | | /// |
697 | | /// # Examples |
698 | | /// |
699 | | /// A demonstration on how to use this adapater: |
700 | | /// |
701 | | /// ``` |
702 | | /// use serde::{Serialize, Deserialize}; |
703 | | /// use half::f16; |
704 | | /// |
705 | | /// #[derive(Serialize, Deserialize)] |
706 | | /// struct MyStruct { |
707 | | /// #[serde(serialize_with = "f16::serialize_as_string")] |
708 | | /// value: f16 // Will be serialized as a string instead of u16 |
709 | | /// } |
710 | | /// ``` |
711 | | #[cfg(all(feature = "serde", feature = "alloc"))] |
712 | | pub fn serialize_as_string<S: serde::Serializer>( |
713 | | &self, |
714 | | serializer: S, |
715 | | ) -> Result<S::Ok, S::Error> { |
716 | | serializer.serialize_str(&self.to_string()) |
717 | | } |
718 | | |
719 | | /// Approximate number of [`struct@f16`] significant digits in base 10 |
720 | | pub const DIGITS: u32 = 3; |
721 | | /// [`struct@f16`] |
722 | | /// [machine epsilon](https://en.wikipedia.org/wiki/Machine_epsilon) value |
723 | | /// |
724 | | /// This is the difference between 1.0 and the next largest representable number. |
725 | | pub const EPSILON: f16 = f16(0x1400u16); |
726 | | /// [`struct@f16`] positive Infinity (+∞) |
727 | | pub const INFINITY: f16 = f16(0x7C00u16); |
728 | | /// Number of [`struct@f16`] significant digits in base 2 |
729 | | pub const MANTISSA_DIGITS: u32 = 11; |
730 | | /// Largest finite [`struct@f16`] value |
731 | | pub const MAX: f16 = f16(0x7BFF); |
732 | | /// Maximum possible [`struct@f16`] power of 10 exponent |
733 | | pub const MAX_10_EXP: i32 = 4; |
734 | | /// Maximum possible [`struct@f16`] power of 2 exponent |
735 | | pub const MAX_EXP: i32 = 16; |
736 | | /// Smallest finite [`struct@f16`] value |
737 | | pub const MIN: f16 = f16(0xFBFF); |
738 | | /// Minimum possible normal [`struct@f16`] power of 10 exponent |
739 | | pub const MIN_10_EXP: i32 = -4; |
740 | | /// One greater than the minimum possible normal [`struct@f16`] power of 2 exponent |
741 | | pub const MIN_EXP: i32 = -13; |
742 | | /// Smallest positive normal [`struct@f16`] value |
743 | | pub const MIN_POSITIVE: f16 = f16(0x0400u16); |
744 | | /// [`struct@f16`] Not a Number (NaN) |
745 | | pub const NAN: f16 = f16(0x7E00u16); |
746 | | /// [`struct@f16`] negative infinity (-∞) |
747 | | pub const NEG_INFINITY: f16 = f16(0xFC00u16); |
748 | | /// The radix or base of the internal representation of [`struct@f16`] |
749 | | pub const RADIX: u32 = 2; |
750 | | |
751 | | /// Minimum positive subnormal [`struct@f16`] value |
752 | | pub const MIN_POSITIVE_SUBNORMAL: f16 = f16(0x0001u16); |
753 | | /// Maximum subnormal [`struct@f16`] value |
754 | | pub const MAX_SUBNORMAL: f16 = f16(0x03FFu16); |
755 | | |
756 | | /// [`struct@f16`] 1 |
757 | | pub const ONE: f16 = f16(0x3C00u16); |
758 | | /// [`struct@f16`] 0 |
759 | | pub const ZERO: f16 = f16(0x0000u16); |
760 | | /// [`struct@f16`] -0 |
761 | | pub const NEG_ZERO: f16 = f16(0x8000u16); |
762 | | /// [`struct@f16`] -1 |
763 | | pub const NEG_ONE: f16 = f16(0xBC00u16); |
764 | | |
765 | | /// [`struct@f16`] Euler's number (ℯ) |
766 | | pub const E: f16 = f16(0x4170u16); |
767 | | /// [`struct@f16`] Archimedes' constant (π) |
768 | | pub const PI: f16 = f16(0x4248u16); |
769 | | /// [`struct@f16`] 1/π |
770 | | pub const FRAC_1_PI: f16 = f16(0x3518u16); |
771 | | /// [`struct@f16`] 1/√2 |
772 | | pub const FRAC_1_SQRT_2: f16 = f16(0x39A8u16); |
773 | | /// [`struct@f16`] 2/π |
774 | | pub const FRAC_2_PI: f16 = f16(0x3918u16); |
775 | | /// [`struct@f16`] 2/√π |
776 | | pub const FRAC_2_SQRT_PI: f16 = f16(0x3C83u16); |
777 | | /// [`struct@f16`] π/2 |
778 | | pub const FRAC_PI_2: f16 = f16(0x3E48u16); |
779 | | /// [`struct@f16`] π/3 |
780 | | pub const FRAC_PI_3: f16 = f16(0x3C30u16); |
781 | | /// [`struct@f16`] π/4 |
782 | | pub const FRAC_PI_4: f16 = f16(0x3A48u16); |
783 | | /// [`struct@f16`] π/6 |
784 | | pub const FRAC_PI_6: f16 = f16(0x3830u16); |
785 | | /// [`struct@f16`] π/8 |
786 | | pub const FRAC_PI_8: f16 = f16(0x3648u16); |
787 | | /// [`struct@f16`] 𝗅𝗇 10 |
788 | | pub const LN_10: f16 = f16(0x409Bu16); |
789 | | /// [`struct@f16`] 𝗅𝗇 2 |
790 | | pub const LN_2: f16 = f16(0x398Cu16); |
791 | | /// [`struct@f16`] 𝗅𝗈𝗀₁₀ℯ |
792 | | pub const LOG10_E: f16 = f16(0x36F3u16); |
793 | | /// [`struct@f16`] 𝗅𝗈𝗀₁₀2 |
794 | | pub const LOG10_2: f16 = f16(0x34D1u16); |
795 | | /// [`struct@f16`] 𝗅𝗈𝗀₂ℯ |
796 | | pub const LOG2_E: f16 = f16(0x3DC5u16); |
797 | | /// [`struct@f16`] 𝗅𝗈𝗀₂10 |
798 | | pub const LOG2_10: f16 = f16(0x42A5u16); |
799 | | /// [`struct@f16`] √2 |
800 | | pub const SQRT_2: f16 = f16(0x3DA8u16); |
801 | | } |
802 | | |
803 | | impl From<f16> for f32 { |
804 | | #[inline] |
805 | 0 | fn from(x: f16) -> f32 { |
806 | 0 | x.to_f32() |
807 | 0 | } |
808 | | } |
809 | | |
810 | | impl From<f16> for f64 { |
811 | | #[inline] |
812 | 0 | fn from(x: f16) -> f64 { |
813 | 0 | x.to_f64() |
814 | 0 | } |
815 | | } |
816 | | |
817 | | impl From<i8> for f16 { |
818 | | #[inline] |
819 | 0 | fn from(x: i8) -> f16 { |
820 | 0 | // Convert to f32, then to f16 |
821 | 0 | f16::from_f32(f32::from(x)) |
822 | 0 | } |
823 | | } |
824 | | |
825 | | impl From<u8> for f16 { |
826 | | #[inline] |
827 | 0 | fn from(x: u8) -> f16 { |
828 | 0 | // Convert to f32, then to f16 |
829 | 0 | f16::from_f32(f32::from(x)) |
830 | 0 | } |
831 | | } |
832 | | |
833 | | impl PartialEq for f16 { |
834 | 0 | fn eq(&self, other: &f16) -> bool { |
835 | 0 | if self.is_nan() || other.is_nan() { |
836 | 0 | false |
837 | | } else { |
838 | 0 | (self.0 == other.0) || ((self.0 | other.0) & 0x7FFFu16 == 0) |
839 | | } |
840 | 0 | } |
841 | | } |
842 | | |
843 | | impl PartialOrd for f16 { |
844 | 0 | fn partial_cmp(&self, other: &f16) -> Option<Ordering> { |
845 | 0 | if self.is_nan() || other.is_nan() { |
846 | 0 | None |
847 | | } else { |
848 | 0 | let neg = self.0 & 0x8000u16 != 0; |
849 | 0 | let other_neg = other.0 & 0x8000u16 != 0; |
850 | 0 | match (neg, other_neg) { |
851 | 0 | (false, false) => Some(self.0.cmp(&other.0)), |
852 | | (false, true) => { |
853 | 0 | if (self.0 | other.0) & 0x7FFFu16 == 0 { |
854 | 0 | Some(Ordering::Equal) |
855 | | } else { |
856 | 0 | Some(Ordering::Greater) |
857 | | } |
858 | | } |
859 | | (true, false) => { |
860 | 0 | if (self.0 | other.0) & 0x7FFFu16 == 0 { |
861 | 0 | Some(Ordering::Equal) |
862 | | } else { |
863 | 0 | Some(Ordering::Less) |
864 | | } |
865 | | } |
866 | 0 | (true, true) => Some(other.0.cmp(&self.0)), |
867 | | } |
868 | | } |
869 | 0 | } |
870 | | |
871 | 0 | fn lt(&self, other: &f16) -> bool { |
872 | 0 | if self.is_nan() || other.is_nan() { |
873 | 0 | false |
874 | | } else { |
875 | 0 | let neg = self.0 & 0x8000u16 != 0; |
876 | 0 | let other_neg = other.0 & 0x8000u16 != 0; |
877 | 0 | match (neg, other_neg) { |
878 | 0 | (false, false) => self.0 < other.0, |
879 | 0 | (false, true) => false, |
880 | 0 | (true, false) => (self.0 | other.0) & 0x7FFFu16 != 0, |
881 | 0 | (true, true) => self.0 > other.0, |
882 | | } |
883 | | } |
884 | 0 | } |
885 | | |
886 | 0 | fn le(&self, other: &f16) -> bool { |
887 | 0 | if self.is_nan() || other.is_nan() { |
888 | 0 | false |
889 | | } else { |
890 | 0 | let neg = self.0 & 0x8000u16 != 0; |
891 | 0 | let other_neg = other.0 & 0x8000u16 != 0; |
892 | 0 | match (neg, other_neg) { |
893 | 0 | (false, false) => self.0 <= other.0, |
894 | 0 | (false, true) => (self.0 | other.0) & 0x7FFFu16 == 0, |
895 | 0 | (true, false) => true, |
896 | 0 | (true, true) => self.0 >= other.0, |
897 | | } |
898 | | } |
899 | 0 | } |
900 | | |
901 | 0 | fn gt(&self, other: &f16) -> bool { |
902 | 0 | if self.is_nan() || other.is_nan() { |
903 | 0 | false |
904 | | } else { |
905 | 0 | let neg = self.0 & 0x8000u16 != 0; |
906 | 0 | let other_neg = other.0 & 0x8000u16 != 0; |
907 | 0 | match (neg, other_neg) { |
908 | 0 | (false, false) => self.0 > other.0, |
909 | 0 | (false, true) => (self.0 | other.0) & 0x7FFFu16 != 0, |
910 | 0 | (true, false) => false, |
911 | 0 | (true, true) => self.0 < other.0, |
912 | | } |
913 | | } |
914 | 0 | } |
915 | | |
916 | 0 | fn ge(&self, other: &f16) -> bool { |
917 | 0 | if self.is_nan() || other.is_nan() { |
918 | 0 | false |
919 | | } else { |
920 | 0 | let neg = self.0 & 0x8000u16 != 0; |
921 | 0 | let other_neg = other.0 & 0x8000u16 != 0; |
922 | 0 | match (neg, other_neg) { |
923 | 0 | (false, false) => self.0 >= other.0, |
924 | 0 | (false, true) => true, |
925 | 0 | (true, false) => (self.0 | other.0) & 0x7FFFu16 == 0, |
926 | 0 | (true, true) => self.0 <= other.0, |
927 | | } |
928 | | } |
929 | 0 | } |
930 | | } |
931 | | |
932 | | #[cfg(not(target_arch = "spirv"))] |
933 | | impl FromStr for f16 { |
934 | | type Err = ParseFloatError; |
935 | 0 | fn from_str(src: &str) -> Result<f16, ParseFloatError> { |
936 | 0 | f32::from_str(src).map(f16::from_f32) |
937 | 0 | } |
938 | | } |
939 | | |
940 | | #[cfg(not(target_arch = "spirv"))] |
941 | | impl Debug for f16 { |
942 | 0 | fn fmt(&self, f: &mut Formatter<'_>) -> Result<(), Error> { |
943 | 0 | Debug::fmt(&self.to_f32(), f) |
944 | 0 | } |
945 | | } |
946 | | |
947 | | #[cfg(not(target_arch = "spirv"))] |
948 | | impl Display for f16 { |
949 | 0 | fn fmt(&self, f: &mut Formatter<'_>) -> Result<(), Error> { |
950 | 0 | Display::fmt(&self.to_f32(), f) |
951 | 0 | } |
952 | | } |
953 | | |
954 | | #[cfg(not(target_arch = "spirv"))] |
955 | | impl LowerExp for f16 { |
956 | 0 | fn fmt(&self, f: &mut Formatter<'_>) -> Result<(), Error> { |
957 | 0 | write!(f, "{:e}", self.to_f32()) |
958 | 0 | } |
959 | | } |
960 | | |
961 | | #[cfg(not(target_arch = "spirv"))] |
962 | | impl UpperExp for f16 { |
963 | 0 | fn fmt(&self, f: &mut Formatter<'_>) -> Result<(), Error> { |
964 | 0 | write!(f, "{:E}", self.to_f32()) |
965 | 0 | } |
966 | | } |
967 | | |
968 | | #[cfg(not(target_arch = "spirv"))] |
969 | | impl Binary for f16 { |
970 | 0 | fn fmt(&self, f: &mut Formatter<'_>) -> Result<(), Error> { |
971 | 0 | write!(f, "{:b}", self.0) |
972 | 0 | } |
973 | | } |
974 | | |
975 | | #[cfg(not(target_arch = "spirv"))] |
976 | | impl Octal for f16 { |
977 | 0 | fn fmt(&self, f: &mut Formatter<'_>) -> Result<(), Error> { |
978 | 0 | write!(f, "{:o}", self.0) |
979 | 0 | } |
980 | | } |
981 | | |
982 | | #[cfg(not(target_arch = "spirv"))] |
983 | | impl LowerHex for f16 { |
984 | 0 | fn fmt(&self, f: &mut Formatter<'_>) -> Result<(), Error> { |
985 | 0 | write!(f, "{:x}", self.0) |
986 | 0 | } |
987 | | } |
988 | | |
989 | | #[cfg(not(target_arch = "spirv"))] |
990 | | impl UpperHex for f16 { |
991 | 0 | fn fmt(&self, f: &mut Formatter<'_>) -> Result<(), Error> { |
992 | 0 | write!(f, "{:X}", self.0) |
993 | 0 | } |
994 | | } |
995 | | |
996 | | impl Neg for f16 { |
997 | | type Output = Self; |
998 | | |
999 | | #[inline] |
1000 | 0 | fn neg(self) -> Self::Output { |
1001 | 0 | Self(self.0 ^ 0x8000) |
1002 | 0 | } |
1003 | | } |
1004 | | |
1005 | | impl Neg for &f16 { |
1006 | | type Output = <f16 as Neg>::Output; |
1007 | | |
1008 | | #[inline] |
1009 | 0 | fn neg(self) -> Self::Output { |
1010 | 0 | Neg::neg(*self) |
1011 | 0 | } |
1012 | | } |
1013 | | |
1014 | | impl Add for f16 { |
1015 | | type Output = Self; |
1016 | | |
1017 | | #[inline] |
1018 | 0 | fn add(self, rhs: Self) -> Self::Output { |
1019 | 0 | f16(arch::add_f16(self.0, rhs.0)) |
1020 | 0 | } |
1021 | | } |
1022 | | |
1023 | | impl Add<&f16> for f16 { |
1024 | | type Output = <f16 as Add<f16>>::Output; |
1025 | | |
1026 | | #[inline] |
1027 | 0 | fn add(self, rhs: &f16) -> Self::Output { |
1028 | 0 | self.add(*rhs) |
1029 | 0 | } |
1030 | | } |
1031 | | |
1032 | | impl Add<&f16> for &f16 { |
1033 | | type Output = <f16 as Add<f16>>::Output; |
1034 | | |
1035 | | #[inline] |
1036 | 0 | fn add(self, rhs: &f16) -> Self::Output { |
1037 | 0 | (*self).add(*rhs) |
1038 | 0 | } |
1039 | | } |
1040 | | |
1041 | | impl Add<f16> for &f16 { |
1042 | | type Output = <f16 as Add<f16>>::Output; |
1043 | | |
1044 | | #[inline] |
1045 | 0 | fn add(self, rhs: f16) -> Self::Output { |
1046 | 0 | (*self).add(rhs) |
1047 | 0 | } |
1048 | | } |
1049 | | |
1050 | | impl AddAssign for f16 { |
1051 | | #[inline] |
1052 | 0 | fn add_assign(&mut self, rhs: Self) { |
1053 | 0 | *self = (*self).add(rhs); |
1054 | 0 | } |
1055 | | } |
1056 | | |
1057 | | impl AddAssign<&f16> for f16 { |
1058 | | #[inline] |
1059 | 0 | fn add_assign(&mut self, rhs: &f16) { |
1060 | 0 | *self = (*self).add(rhs); |
1061 | 0 | } |
1062 | | } |
1063 | | |
1064 | | impl Sub for f16 { |
1065 | | type Output = Self; |
1066 | | |
1067 | | #[inline] |
1068 | 0 | fn sub(self, rhs: Self) -> Self::Output { |
1069 | 0 | f16(arch::subtract_f16(self.0, rhs.0)) |
1070 | 0 | } |
1071 | | } |
1072 | | |
1073 | | impl Sub<&f16> for f16 { |
1074 | | type Output = <f16 as Sub<f16>>::Output; |
1075 | | |
1076 | | #[inline] |
1077 | 0 | fn sub(self, rhs: &f16) -> Self::Output { |
1078 | 0 | self.sub(*rhs) |
1079 | 0 | } |
1080 | | } |
1081 | | |
1082 | | impl Sub<&f16> for &f16 { |
1083 | | type Output = <f16 as Sub<f16>>::Output; |
1084 | | |
1085 | | #[inline] |
1086 | 0 | fn sub(self, rhs: &f16) -> Self::Output { |
1087 | 0 | (*self).sub(*rhs) |
1088 | 0 | } |
1089 | | } |
1090 | | |
1091 | | impl Sub<f16> for &f16 { |
1092 | | type Output = <f16 as Sub<f16>>::Output; |
1093 | | |
1094 | | #[inline] |
1095 | 0 | fn sub(self, rhs: f16) -> Self::Output { |
1096 | 0 | (*self).sub(rhs) |
1097 | 0 | } |
1098 | | } |
1099 | | |
1100 | | impl SubAssign for f16 { |
1101 | | #[inline] |
1102 | 0 | fn sub_assign(&mut self, rhs: Self) { |
1103 | 0 | *self = (*self).sub(rhs); |
1104 | 0 | } |
1105 | | } |
1106 | | |
1107 | | impl SubAssign<&f16> for f16 { |
1108 | | #[inline] |
1109 | 0 | fn sub_assign(&mut self, rhs: &f16) { |
1110 | 0 | *self = (*self).sub(rhs); |
1111 | 0 | } |
1112 | | } |
1113 | | |
1114 | | impl Mul for f16 { |
1115 | | type Output = Self; |
1116 | | |
1117 | | #[inline] |
1118 | 0 | fn mul(self, rhs: Self) -> Self::Output { |
1119 | 0 | f16(arch::multiply_f16(self.0, rhs.0)) |
1120 | 0 | } |
1121 | | } |
1122 | | |
1123 | | impl Mul<&f16> for f16 { |
1124 | | type Output = <f16 as Mul<f16>>::Output; |
1125 | | |
1126 | | #[inline] |
1127 | 0 | fn mul(self, rhs: &f16) -> Self::Output { |
1128 | 0 | self.mul(*rhs) |
1129 | 0 | } |
1130 | | } |
1131 | | |
1132 | | impl Mul<&f16> for &f16 { |
1133 | | type Output = <f16 as Mul<f16>>::Output; |
1134 | | |
1135 | | #[inline] |
1136 | 0 | fn mul(self, rhs: &f16) -> Self::Output { |
1137 | 0 | (*self).mul(*rhs) |
1138 | 0 | } |
1139 | | } |
1140 | | |
1141 | | impl Mul<f16> for &f16 { |
1142 | | type Output = <f16 as Mul<f16>>::Output; |
1143 | | |
1144 | | #[inline] |
1145 | 0 | fn mul(self, rhs: f16) -> Self::Output { |
1146 | 0 | (*self).mul(rhs) |
1147 | 0 | } |
1148 | | } |
1149 | | |
1150 | | impl MulAssign for f16 { |
1151 | | #[inline] |
1152 | 0 | fn mul_assign(&mut self, rhs: Self) { |
1153 | 0 | *self = (*self).mul(rhs); |
1154 | 0 | } |
1155 | | } |
1156 | | |
1157 | | impl MulAssign<&f16> for f16 { |
1158 | | #[inline] |
1159 | 0 | fn mul_assign(&mut self, rhs: &f16) { |
1160 | 0 | *self = (*self).mul(rhs); |
1161 | 0 | } |
1162 | | } |
1163 | | |
1164 | | impl Div for f16 { |
1165 | | type Output = Self; |
1166 | | |
1167 | | #[inline] |
1168 | 0 | fn div(self, rhs: Self) -> Self::Output { |
1169 | 0 | f16(arch::divide_f16(self.0, rhs.0)) |
1170 | 0 | } |
1171 | | } |
1172 | | |
1173 | | impl Div<&f16> for f16 { |
1174 | | type Output = <f16 as Div<f16>>::Output; |
1175 | | |
1176 | | #[inline] |
1177 | 0 | fn div(self, rhs: &f16) -> Self::Output { |
1178 | 0 | self.div(*rhs) |
1179 | 0 | } |
1180 | | } |
1181 | | |
1182 | | impl Div<&f16> for &f16 { |
1183 | | type Output = <f16 as Div<f16>>::Output; |
1184 | | |
1185 | | #[inline] |
1186 | 0 | fn div(self, rhs: &f16) -> Self::Output { |
1187 | 0 | (*self).div(*rhs) |
1188 | 0 | } |
1189 | | } |
1190 | | |
1191 | | impl Div<f16> for &f16 { |
1192 | | type Output = <f16 as Div<f16>>::Output; |
1193 | | |
1194 | | #[inline] |
1195 | 0 | fn div(self, rhs: f16) -> Self::Output { |
1196 | 0 | (*self).div(rhs) |
1197 | 0 | } |
1198 | | } |
1199 | | |
1200 | | impl DivAssign for f16 { |
1201 | | #[inline] |
1202 | 0 | fn div_assign(&mut self, rhs: Self) { |
1203 | 0 | *self = (*self).div(rhs); |
1204 | 0 | } |
1205 | | } |
1206 | | |
1207 | | impl DivAssign<&f16> for f16 { |
1208 | | #[inline] |
1209 | 0 | fn div_assign(&mut self, rhs: &f16) { |
1210 | 0 | *self = (*self).div(rhs); |
1211 | 0 | } |
1212 | | } |
1213 | | |
1214 | | impl Rem for f16 { |
1215 | | type Output = Self; |
1216 | | |
1217 | | #[inline] |
1218 | 0 | fn rem(self, rhs: Self) -> Self::Output { |
1219 | 0 | f16(arch::remainder_f16(self.0, rhs.0)) |
1220 | 0 | } |
1221 | | } |
1222 | | |
1223 | | impl Rem<&f16> for f16 { |
1224 | | type Output = <f16 as Rem<f16>>::Output; |
1225 | | |
1226 | | #[inline] |
1227 | 0 | fn rem(self, rhs: &f16) -> Self::Output { |
1228 | 0 | self.rem(*rhs) |
1229 | 0 | } |
1230 | | } |
1231 | | |
1232 | | impl Rem<&f16> for &f16 { |
1233 | | type Output = <f16 as Rem<f16>>::Output; |
1234 | | |
1235 | | #[inline] |
1236 | 0 | fn rem(self, rhs: &f16) -> Self::Output { |
1237 | 0 | (*self).rem(*rhs) |
1238 | 0 | } |
1239 | | } |
1240 | | |
1241 | | impl Rem<f16> for &f16 { |
1242 | | type Output = <f16 as Rem<f16>>::Output; |
1243 | | |
1244 | | #[inline] |
1245 | 0 | fn rem(self, rhs: f16) -> Self::Output { |
1246 | 0 | (*self).rem(rhs) |
1247 | 0 | } |
1248 | | } |
1249 | | |
1250 | | impl RemAssign for f16 { |
1251 | | #[inline] |
1252 | 0 | fn rem_assign(&mut self, rhs: Self) { |
1253 | 0 | *self = (*self).rem(rhs); |
1254 | 0 | } |
1255 | | } |
1256 | | |
1257 | | impl RemAssign<&f16> for f16 { |
1258 | | #[inline] |
1259 | 0 | fn rem_assign(&mut self, rhs: &f16) { |
1260 | 0 | *self = (*self).rem(rhs); |
1261 | 0 | } |
1262 | | } |
1263 | | |
1264 | | impl Product for f16 { |
1265 | | #[inline] |
1266 | 0 | fn product<I: Iterator<Item = Self>>(iter: I) -> Self { |
1267 | 0 | f16(arch::product_f16(iter.map(|f| f.to_bits()))) |
1268 | 0 | } |
1269 | | } |
1270 | | |
1271 | | impl<'a> Product<&'a f16> for f16 { |
1272 | | #[inline] |
1273 | 0 | fn product<I: Iterator<Item = &'a f16>>(iter: I) -> Self { |
1274 | 0 | f16(arch::product_f16(iter.map(|f| f.to_bits()))) |
1275 | 0 | } |
1276 | | } |
1277 | | |
1278 | | impl Sum for f16 { |
1279 | | #[inline] |
1280 | 0 | fn sum<I: Iterator<Item = Self>>(iter: I) -> Self { |
1281 | 0 | f16(arch::sum_f16(iter.map(|f| f.to_bits()))) |
1282 | 0 | } |
1283 | | } |
1284 | | |
1285 | | impl<'a> Sum<&'a f16> for f16 { |
1286 | | #[inline] |
1287 | 0 | fn sum<I: Iterator<Item = &'a f16>>(iter: I) -> Self { |
1288 | 0 | f16(arch::sum_f16(iter.map(|f| f.to_bits()))) |
1289 | 0 | } |
1290 | | } |
1291 | | |
1292 | | #[cfg(feature = "serde")] |
1293 | | struct Visitor; |
1294 | | |
1295 | | #[cfg(feature = "serde")] |
1296 | | impl<'de> Deserialize<'de> for f16 { |
1297 | | fn deserialize<D>(deserializer: D) -> Result<f16, D::Error> |
1298 | | where |
1299 | | D: serde::de::Deserializer<'de>, |
1300 | | { |
1301 | | deserializer.deserialize_newtype_struct("f16", Visitor) |
1302 | | } |
1303 | | } |
1304 | | |
1305 | | #[cfg(feature = "serde")] |
1306 | | impl<'de> serde::de::Visitor<'de> for Visitor { |
1307 | | type Value = f16; |
1308 | | |
1309 | | fn expecting(&self, formatter: &mut core::fmt::Formatter) -> core::fmt::Result { |
1310 | | write!(formatter, "tuple struct f16") |
1311 | | } |
1312 | | |
1313 | | fn visit_newtype_struct<D>(self, deserializer: D) -> Result<Self::Value, D::Error> |
1314 | | where |
1315 | | D: serde::Deserializer<'de>, |
1316 | | { |
1317 | | Ok(f16(<u16 as Deserialize>::deserialize(deserializer)?)) |
1318 | | } |
1319 | | |
1320 | | fn visit_str<E>(self, v: &str) -> Result<Self::Value, E> |
1321 | | where |
1322 | | E: serde::de::Error, |
1323 | | { |
1324 | | v.parse().map_err(|_| { |
1325 | | serde::de::Error::invalid_value(serde::de::Unexpected::Str(v), &"a float string") |
1326 | | }) |
1327 | | } |
1328 | | |
1329 | | fn visit_f32<E>(self, v: f32) -> Result<Self::Value, E> |
1330 | | where |
1331 | | E: serde::de::Error, |
1332 | | { |
1333 | | Ok(f16::from_f32(v)) |
1334 | | } |
1335 | | |
1336 | | fn visit_f64<E>(self, v: f64) -> Result<Self::Value, E> |
1337 | | where |
1338 | | E: serde::de::Error, |
1339 | | { |
1340 | | Ok(f16::from_f64(v)) |
1341 | | } |
1342 | | } |
1343 | | |
1344 | | #[allow( |
1345 | | clippy::cognitive_complexity, |
1346 | | clippy::float_cmp, |
1347 | | clippy::neg_cmp_op_on_partial_ord |
1348 | | )] |
1349 | | #[cfg(test)] |
1350 | | mod test { |
1351 | | use super::*; |
1352 | | #[allow(unused_imports)] |
1353 | | use core::cmp::Ordering; |
1354 | | #[cfg(feature = "num-traits")] |
1355 | | use num_traits::{AsPrimitive, FromBytes, FromPrimitive, ToBytes, ToPrimitive}; |
1356 | | use quickcheck_macros::quickcheck; |
1357 | | |
1358 | | #[cfg(feature = "num-traits")] |
1359 | | #[test] |
1360 | | fn as_primitive() { |
1361 | | let two = f16::from_f32(2.0); |
1362 | | assert_eq!(<i32 as AsPrimitive<f16>>::as_(2), two); |
1363 | | assert_eq!(<f16 as AsPrimitive<i32>>::as_(two), 2); |
1364 | | |
1365 | | assert_eq!(<f32 as AsPrimitive<f16>>::as_(2.0), two); |
1366 | | assert_eq!(<f16 as AsPrimitive<f32>>::as_(two), 2.0); |
1367 | | |
1368 | | assert_eq!(<f64 as AsPrimitive<f16>>::as_(2.0), two); |
1369 | | assert_eq!(<f16 as AsPrimitive<f64>>::as_(two), 2.0); |
1370 | | } |
1371 | | |
1372 | | #[cfg(feature = "num-traits")] |
1373 | | #[test] |
1374 | | fn to_primitive() { |
1375 | | let two = f16::from_f32(2.0); |
1376 | | assert_eq!(ToPrimitive::to_i32(&two).unwrap(), 2i32); |
1377 | | assert_eq!(ToPrimitive::to_f32(&two).unwrap(), 2.0f32); |
1378 | | assert_eq!(ToPrimitive::to_f64(&two).unwrap(), 2.0f64); |
1379 | | } |
1380 | | |
1381 | | #[cfg(feature = "num-traits")] |
1382 | | #[test] |
1383 | | fn from_primitive() { |
1384 | | let two = f16::from_f32(2.0); |
1385 | | assert_eq!(<f16 as FromPrimitive>::from_i32(2).unwrap(), two); |
1386 | | assert_eq!(<f16 as FromPrimitive>::from_f32(2.0).unwrap(), two); |
1387 | | assert_eq!(<f16 as FromPrimitive>::from_f64(2.0).unwrap(), two); |
1388 | | } |
1389 | | |
1390 | | #[cfg(feature = "num-traits")] |
1391 | | #[test] |
1392 | | fn to_and_from_bytes() { |
1393 | | let two = f16::from_f32(2.0); |
1394 | | assert_eq!(<f16 as ToBytes>::to_le_bytes(&two), [0, 64]); |
1395 | | assert_eq!(<f16 as FromBytes>::from_le_bytes(&[0, 64]), two); |
1396 | | assert_eq!(<f16 as ToBytes>::to_be_bytes(&two), [64, 0]); |
1397 | | assert_eq!(<f16 as FromBytes>::from_be_bytes(&[64, 0]), two); |
1398 | | } |
1399 | | |
1400 | | #[test] |
1401 | | fn test_f16_consts() { |
1402 | | // DIGITS |
1403 | | let digits = ((f16::MANTISSA_DIGITS as f32 - 1.0) * 2f32.log10()).floor() as u32; |
1404 | | assert_eq!(f16::DIGITS, digits); |
1405 | | // sanity check to show test is good |
1406 | | let digits32 = ((core::f32::MANTISSA_DIGITS as f32 - 1.0) * 2f32.log10()).floor() as u32; |
1407 | | assert_eq!(core::f32::DIGITS, digits32); |
1408 | | |
1409 | | // EPSILON |
1410 | | let one = f16::from_f32(1.0); |
1411 | | let one_plus_epsilon = f16::from_bits(one.to_bits() + 1); |
1412 | | let epsilon = f16::from_f32(one_plus_epsilon.to_f32() - 1.0); |
1413 | | assert_eq!(f16::EPSILON, epsilon); |
1414 | | // sanity check to show test is good |
1415 | | let one_plus_epsilon32 = f32::from_bits(1.0f32.to_bits() + 1); |
1416 | | let epsilon32 = one_plus_epsilon32 - 1f32; |
1417 | | assert_eq!(core::f32::EPSILON, epsilon32); |
1418 | | |
1419 | | // MAX, MIN and MIN_POSITIVE |
1420 | | let max = f16::from_bits(f16::INFINITY.to_bits() - 1); |
1421 | | let min = f16::from_bits(f16::NEG_INFINITY.to_bits() - 1); |
1422 | | let min_pos = f16::from_f32(2f32.powi(f16::MIN_EXP - 1)); |
1423 | | assert_eq!(f16::MAX, max); |
1424 | | assert_eq!(f16::MIN, min); |
1425 | | assert_eq!(f16::MIN_POSITIVE, min_pos); |
1426 | | // sanity check to show test is good |
1427 | | let max32 = f32::from_bits(core::f32::INFINITY.to_bits() - 1); |
1428 | | let min32 = f32::from_bits(core::f32::NEG_INFINITY.to_bits() - 1); |
1429 | | let min_pos32 = 2f32.powi(core::f32::MIN_EXP - 1); |
1430 | | assert_eq!(core::f32::MAX, max32); |
1431 | | assert_eq!(core::f32::MIN, min32); |
1432 | | assert_eq!(core::f32::MIN_POSITIVE, min_pos32); |
1433 | | |
1434 | | // MIN_10_EXP and MAX_10_EXP |
1435 | | let ten_to_min = 10f32.powi(f16::MIN_10_EXP); |
1436 | | assert!(ten_to_min / 10.0 < f16::MIN_POSITIVE.to_f32()); |
1437 | | assert!(ten_to_min > f16::MIN_POSITIVE.to_f32()); |
1438 | | let ten_to_max = 10f32.powi(f16::MAX_10_EXP); |
1439 | | assert!(ten_to_max < f16::MAX.to_f32()); |
1440 | | assert!(ten_to_max * 10.0 > f16::MAX.to_f32()); |
1441 | | // sanity check to show test is good |
1442 | | let ten_to_min32 = 10f64.powi(core::f32::MIN_10_EXP); |
1443 | | assert!(ten_to_min32 / 10.0 < f64::from(core::f32::MIN_POSITIVE)); |
1444 | | assert!(ten_to_min32 > f64::from(core::f32::MIN_POSITIVE)); |
1445 | | let ten_to_max32 = 10f64.powi(core::f32::MAX_10_EXP); |
1446 | | assert!(ten_to_max32 < f64::from(core::f32::MAX)); |
1447 | | assert!(ten_to_max32 * 10.0 > f64::from(core::f32::MAX)); |
1448 | | } |
1449 | | |
1450 | | #[test] |
1451 | | fn test_f16_consts_from_f32() { |
1452 | | let one = f16::from_f32(1.0); |
1453 | | let zero = f16::from_f32(0.0); |
1454 | | let neg_zero = f16::from_f32(-0.0); |
1455 | | let neg_one = f16::from_f32(-1.0); |
1456 | | let inf = f16::from_f32(core::f32::INFINITY); |
1457 | | let neg_inf = f16::from_f32(core::f32::NEG_INFINITY); |
1458 | | let nan = f16::from_f32(core::f32::NAN); |
1459 | | |
1460 | | assert_eq!(f16::ONE, one); |
1461 | | assert_eq!(f16::ZERO, zero); |
1462 | | assert!(zero.is_sign_positive()); |
1463 | | assert_eq!(f16::NEG_ZERO, neg_zero); |
1464 | | assert!(neg_zero.is_sign_negative()); |
1465 | | assert_eq!(f16::NEG_ONE, neg_one); |
1466 | | assert!(neg_one.is_sign_negative()); |
1467 | | assert_eq!(f16::INFINITY, inf); |
1468 | | assert_eq!(f16::NEG_INFINITY, neg_inf); |
1469 | | assert!(nan.is_nan()); |
1470 | | assert!(f16::NAN.is_nan()); |
1471 | | |
1472 | | let e = f16::from_f32(core::f32::consts::E); |
1473 | | let pi = f16::from_f32(core::f32::consts::PI); |
1474 | | let frac_1_pi = f16::from_f32(core::f32::consts::FRAC_1_PI); |
1475 | | let frac_1_sqrt_2 = f16::from_f32(core::f32::consts::FRAC_1_SQRT_2); |
1476 | | let frac_2_pi = f16::from_f32(core::f32::consts::FRAC_2_PI); |
1477 | | let frac_2_sqrt_pi = f16::from_f32(core::f32::consts::FRAC_2_SQRT_PI); |
1478 | | let frac_pi_2 = f16::from_f32(core::f32::consts::FRAC_PI_2); |
1479 | | let frac_pi_3 = f16::from_f32(core::f32::consts::FRAC_PI_3); |
1480 | | let frac_pi_4 = f16::from_f32(core::f32::consts::FRAC_PI_4); |
1481 | | let frac_pi_6 = f16::from_f32(core::f32::consts::FRAC_PI_6); |
1482 | | let frac_pi_8 = f16::from_f32(core::f32::consts::FRAC_PI_8); |
1483 | | let ln_10 = f16::from_f32(core::f32::consts::LN_10); |
1484 | | let ln_2 = f16::from_f32(core::f32::consts::LN_2); |
1485 | | let log10_e = f16::from_f32(core::f32::consts::LOG10_E); |
1486 | | // core::f32::consts::LOG10_2 requires rustc 1.43.0 |
1487 | | let log10_2 = f16::from_f32(2f32.log10()); |
1488 | | let log2_e = f16::from_f32(core::f32::consts::LOG2_E); |
1489 | | // core::f32::consts::LOG2_10 requires rustc 1.43.0 |
1490 | | let log2_10 = f16::from_f32(10f32.log2()); |
1491 | | let sqrt_2 = f16::from_f32(core::f32::consts::SQRT_2); |
1492 | | |
1493 | | assert_eq!(f16::E, e); |
1494 | | assert_eq!(f16::PI, pi); |
1495 | | assert_eq!(f16::FRAC_1_PI, frac_1_pi); |
1496 | | assert_eq!(f16::FRAC_1_SQRT_2, frac_1_sqrt_2); |
1497 | | assert_eq!(f16::FRAC_2_PI, frac_2_pi); |
1498 | | assert_eq!(f16::FRAC_2_SQRT_PI, frac_2_sqrt_pi); |
1499 | | assert_eq!(f16::FRAC_PI_2, frac_pi_2); |
1500 | | assert_eq!(f16::FRAC_PI_3, frac_pi_3); |
1501 | | assert_eq!(f16::FRAC_PI_4, frac_pi_4); |
1502 | | assert_eq!(f16::FRAC_PI_6, frac_pi_6); |
1503 | | assert_eq!(f16::FRAC_PI_8, frac_pi_8); |
1504 | | assert_eq!(f16::LN_10, ln_10); |
1505 | | assert_eq!(f16::LN_2, ln_2); |
1506 | | assert_eq!(f16::LOG10_E, log10_e); |
1507 | | assert_eq!(f16::LOG10_2, log10_2); |
1508 | | assert_eq!(f16::LOG2_E, log2_e); |
1509 | | assert_eq!(f16::LOG2_10, log2_10); |
1510 | | assert_eq!(f16::SQRT_2, sqrt_2); |
1511 | | } |
1512 | | |
1513 | | #[test] |
1514 | | fn test_f16_consts_from_f64() { |
1515 | | let one = f16::from_f64(1.0); |
1516 | | let zero = f16::from_f64(0.0); |
1517 | | let neg_zero = f16::from_f64(-0.0); |
1518 | | let inf = f16::from_f64(core::f64::INFINITY); |
1519 | | let neg_inf = f16::from_f64(core::f64::NEG_INFINITY); |
1520 | | let nan = f16::from_f64(core::f64::NAN); |
1521 | | |
1522 | | assert_eq!(f16::ONE, one); |
1523 | | assert_eq!(f16::ZERO, zero); |
1524 | | assert!(zero.is_sign_positive()); |
1525 | | assert_eq!(f16::NEG_ZERO, neg_zero); |
1526 | | assert!(neg_zero.is_sign_negative()); |
1527 | | assert_eq!(f16::INFINITY, inf); |
1528 | | assert_eq!(f16::NEG_INFINITY, neg_inf); |
1529 | | assert!(nan.is_nan()); |
1530 | | assert!(f16::NAN.is_nan()); |
1531 | | |
1532 | | let e = f16::from_f64(core::f64::consts::E); |
1533 | | let pi = f16::from_f64(core::f64::consts::PI); |
1534 | | let frac_1_pi = f16::from_f64(core::f64::consts::FRAC_1_PI); |
1535 | | let frac_1_sqrt_2 = f16::from_f64(core::f64::consts::FRAC_1_SQRT_2); |
1536 | | let frac_2_pi = f16::from_f64(core::f64::consts::FRAC_2_PI); |
1537 | | let frac_2_sqrt_pi = f16::from_f64(core::f64::consts::FRAC_2_SQRT_PI); |
1538 | | let frac_pi_2 = f16::from_f64(core::f64::consts::FRAC_PI_2); |
1539 | | let frac_pi_3 = f16::from_f64(core::f64::consts::FRAC_PI_3); |
1540 | | let frac_pi_4 = f16::from_f64(core::f64::consts::FRAC_PI_4); |
1541 | | let frac_pi_6 = f16::from_f64(core::f64::consts::FRAC_PI_6); |
1542 | | let frac_pi_8 = f16::from_f64(core::f64::consts::FRAC_PI_8); |
1543 | | let ln_10 = f16::from_f64(core::f64::consts::LN_10); |
1544 | | let ln_2 = f16::from_f64(core::f64::consts::LN_2); |
1545 | | let log10_e = f16::from_f64(core::f64::consts::LOG10_E); |
1546 | | // core::f64::consts::LOG10_2 requires rustc 1.43.0 |
1547 | | let log10_2 = f16::from_f64(2f64.log10()); |
1548 | | let log2_e = f16::from_f64(core::f64::consts::LOG2_E); |
1549 | | // core::f64::consts::LOG2_10 requires rustc 1.43.0 |
1550 | | let log2_10 = f16::from_f64(10f64.log2()); |
1551 | | let sqrt_2 = f16::from_f64(core::f64::consts::SQRT_2); |
1552 | | |
1553 | | assert_eq!(f16::E, e); |
1554 | | assert_eq!(f16::PI, pi); |
1555 | | assert_eq!(f16::FRAC_1_PI, frac_1_pi); |
1556 | | assert_eq!(f16::FRAC_1_SQRT_2, frac_1_sqrt_2); |
1557 | | assert_eq!(f16::FRAC_2_PI, frac_2_pi); |
1558 | | assert_eq!(f16::FRAC_2_SQRT_PI, frac_2_sqrt_pi); |
1559 | | assert_eq!(f16::FRAC_PI_2, frac_pi_2); |
1560 | | assert_eq!(f16::FRAC_PI_3, frac_pi_3); |
1561 | | assert_eq!(f16::FRAC_PI_4, frac_pi_4); |
1562 | | assert_eq!(f16::FRAC_PI_6, frac_pi_6); |
1563 | | assert_eq!(f16::FRAC_PI_8, frac_pi_8); |
1564 | | assert_eq!(f16::LN_10, ln_10); |
1565 | | assert_eq!(f16::LN_2, ln_2); |
1566 | | assert_eq!(f16::LOG10_E, log10_e); |
1567 | | assert_eq!(f16::LOG10_2, log10_2); |
1568 | | assert_eq!(f16::LOG2_E, log2_e); |
1569 | | assert_eq!(f16::LOG2_10, log2_10); |
1570 | | assert_eq!(f16::SQRT_2, sqrt_2); |
1571 | | } |
1572 | | |
1573 | | #[test] |
1574 | | fn test_nan_conversion_to_smaller() { |
1575 | | let nan64 = f64::from_bits(0x7FF0_0000_0000_0001u64); |
1576 | | let neg_nan64 = f64::from_bits(0xFFF0_0000_0000_0001u64); |
1577 | | let nan32 = f32::from_bits(0x7F80_0001u32); |
1578 | | let neg_nan32 = f32::from_bits(0xFF80_0001u32); |
1579 | | let nan32_from_64 = nan64 as f32; |
1580 | | let neg_nan32_from_64 = neg_nan64 as f32; |
1581 | | let nan16_from_64 = f16::from_f64(nan64); |
1582 | | let neg_nan16_from_64 = f16::from_f64(neg_nan64); |
1583 | | let nan16_from_32 = f16::from_f32(nan32); |
1584 | | let neg_nan16_from_32 = f16::from_f32(neg_nan32); |
1585 | | |
1586 | | assert!(nan64.is_nan() && nan64.is_sign_positive()); |
1587 | | assert!(neg_nan64.is_nan() && neg_nan64.is_sign_negative()); |
1588 | | assert!(nan32.is_nan() && nan32.is_sign_positive()); |
1589 | | assert!(neg_nan32.is_nan() && neg_nan32.is_sign_negative()); |
1590 | | |
1591 | | // f32/f64 NaN conversion sign is non-deterministic: https://github.com/starkat99/half-rs/issues/103 |
1592 | | assert!(nan32_from_64.is_nan()); |
1593 | | assert!(neg_nan32_from_64.is_nan()); |
1594 | | assert!(nan16_from_64.is_nan()); |
1595 | | assert!(neg_nan16_from_64.is_nan()); |
1596 | | assert!(nan16_from_32.is_nan()); |
1597 | | assert!(neg_nan16_from_32.is_nan()); |
1598 | | } |
1599 | | |
1600 | | #[test] |
1601 | | fn test_nan_conversion_to_larger() { |
1602 | | let nan16 = f16::from_bits(0x7C01u16); |
1603 | | let neg_nan16 = f16::from_bits(0xFC01u16); |
1604 | | let nan32 = f32::from_bits(0x7F80_0001u32); |
1605 | | let neg_nan32 = f32::from_bits(0xFF80_0001u32); |
1606 | | let nan32_from_16 = f32::from(nan16); |
1607 | | let neg_nan32_from_16 = f32::from(neg_nan16); |
1608 | | let nan64_from_16 = f64::from(nan16); |
1609 | | let neg_nan64_from_16 = f64::from(neg_nan16); |
1610 | | let nan64_from_32 = f64::from(nan32); |
1611 | | let neg_nan64_from_32 = f64::from(neg_nan32); |
1612 | | |
1613 | | assert!(nan16.is_nan() && nan16.is_sign_positive()); |
1614 | | assert!(neg_nan16.is_nan() && neg_nan16.is_sign_negative()); |
1615 | | assert!(nan32.is_nan() && nan32.is_sign_positive()); |
1616 | | assert!(neg_nan32.is_nan() && neg_nan32.is_sign_negative()); |
1617 | | |
1618 | | // f32/f64 NaN conversion sign is non-deterministic: https://github.com/starkat99/half-rs/issues/103 |
1619 | | assert!(nan32_from_16.is_nan()); |
1620 | | assert!(neg_nan32_from_16.is_nan()); |
1621 | | assert!(nan64_from_16.is_nan()); |
1622 | | assert!(neg_nan64_from_16.is_nan()); |
1623 | | assert!(nan64_from_32.is_nan()); |
1624 | | assert!(neg_nan64_from_32.is_nan()); |
1625 | | } |
1626 | | |
1627 | | #[test] |
1628 | | fn test_f16_to_f32() { |
1629 | | let f = f16::from_f32(7.0); |
1630 | | assert_eq!(f.to_f32(), 7.0f32); |
1631 | | |
1632 | | // 7.1 is NOT exactly representable in 16-bit, it's rounded |
1633 | | let f = f16::from_f32(7.1); |
1634 | | let diff = (f.to_f32() - 7.1f32).abs(); |
1635 | | // diff must be <= 4 * EPSILON, as 7 has two more significant bits than 1 |
1636 | | assert!(diff <= 4.0 * f16::EPSILON.to_f32()); |
1637 | | |
1638 | | assert_eq!(f16::from_bits(0x0000_0001).to_f32(), 2.0f32.powi(-24)); |
1639 | | assert_eq!(f16::from_bits(0x0000_0005).to_f32(), 5.0 * 2.0f32.powi(-24)); |
1640 | | |
1641 | | assert_eq!(f16::from_bits(0x0000_0001), f16::from_f32(2.0f32.powi(-24))); |
1642 | | assert_eq!( |
1643 | | f16::from_bits(0x0000_0005), |
1644 | | f16::from_f32(5.0 * 2.0f32.powi(-24)) |
1645 | | ); |
1646 | | } |
1647 | | |
1648 | | #[test] |
1649 | | fn test_f16_to_f64() { |
1650 | | let f = f16::from_f64(7.0); |
1651 | | assert_eq!(f.to_f64(), 7.0f64); |
1652 | | |
1653 | | // 7.1 is NOT exactly representable in 16-bit, it's rounded |
1654 | | let f = f16::from_f64(7.1); |
1655 | | let diff = (f.to_f64() - 7.1f64).abs(); |
1656 | | // diff must be <= 4 * EPSILON, as 7 has two more significant bits than 1 |
1657 | | assert!(diff <= 4.0 * f16::EPSILON.to_f64()); |
1658 | | |
1659 | | assert_eq!(f16::from_bits(0x0000_0001).to_f64(), 2.0f64.powi(-24)); |
1660 | | assert_eq!(f16::from_bits(0x0000_0005).to_f64(), 5.0 * 2.0f64.powi(-24)); |
1661 | | |
1662 | | assert_eq!(f16::from_bits(0x0000_0001), f16::from_f64(2.0f64.powi(-24))); |
1663 | | assert_eq!( |
1664 | | f16::from_bits(0x0000_0005), |
1665 | | f16::from_f64(5.0 * 2.0f64.powi(-24)) |
1666 | | ); |
1667 | | } |
1668 | | |
1669 | | #[test] |
1670 | | fn test_comparisons() { |
1671 | | let zero = f16::from_f64(0.0); |
1672 | | let one = f16::from_f64(1.0); |
1673 | | let neg_zero = f16::from_f64(-0.0); |
1674 | | let neg_one = f16::from_f64(-1.0); |
1675 | | |
1676 | | assert_eq!(zero.partial_cmp(&neg_zero), Some(Ordering::Equal)); |
1677 | | assert_eq!(neg_zero.partial_cmp(&zero), Some(Ordering::Equal)); |
1678 | | assert!(zero == neg_zero); |
1679 | | assert!(neg_zero == zero); |
1680 | | assert!(!(zero != neg_zero)); |
1681 | | assert!(!(neg_zero != zero)); |
1682 | | assert!(!(zero < neg_zero)); |
1683 | | assert!(!(neg_zero < zero)); |
1684 | | assert!(zero <= neg_zero); |
1685 | | assert!(neg_zero <= zero); |
1686 | | assert!(!(zero > neg_zero)); |
1687 | | assert!(!(neg_zero > zero)); |
1688 | | assert!(zero >= neg_zero); |
1689 | | assert!(neg_zero >= zero); |
1690 | | |
1691 | | assert_eq!(one.partial_cmp(&neg_zero), Some(Ordering::Greater)); |
1692 | | assert_eq!(neg_zero.partial_cmp(&one), Some(Ordering::Less)); |
1693 | | assert!(!(one == neg_zero)); |
1694 | | assert!(!(neg_zero == one)); |
1695 | | assert!(one != neg_zero); |
1696 | | assert!(neg_zero != one); |
1697 | | assert!(!(one < neg_zero)); |
1698 | | assert!(neg_zero < one); |
1699 | | assert!(!(one <= neg_zero)); |
1700 | | assert!(neg_zero <= one); |
1701 | | assert!(one > neg_zero); |
1702 | | assert!(!(neg_zero > one)); |
1703 | | assert!(one >= neg_zero); |
1704 | | assert!(!(neg_zero >= one)); |
1705 | | |
1706 | | assert_eq!(one.partial_cmp(&neg_one), Some(Ordering::Greater)); |
1707 | | assert_eq!(neg_one.partial_cmp(&one), Some(Ordering::Less)); |
1708 | | assert!(!(one == neg_one)); |
1709 | | assert!(!(neg_one == one)); |
1710 | | assert!(one != neg_one); |
1711 | | assert!(neg_one != one); |
1712 | | assert!(!(one < neg_one)); |
1713 | | assert!(neg_one < one); |
1714 | | assert!(!(one <= neg_one)); |
1715 | | assert!(neg_one <= one); |
1716 | | assert!(one > neg_one); |
1717 | | assert!(!(neg_one > one)); |
1718 | | assert!(one >= neg_one); |
1719 | | assert!(!(neg_one >= one)); |
1720 | | } |
1721 | | |
1722 | | #[test] |
1723 | | #[allow(clippy::erasing_op, clippy::identity_op)] |
1724 | | fn round_to_even_f32() { |
1725 | | // smallest positive subnormal = 0b0.0000_0000_01 * 2^-14 = 2^-24 |
1726 | | let min_sub = f16::from_bits(1); |
1727 | | let min_sub_f = (-24f32).exp2(); |
1728 | | assert_eq!(f16::from_f32(min_sub_f).to_bits(), min_sub.to_bits()); |
1729 | | assert_eq!(f32::from(min_sub).to_bits(), min_sub_f.to_bits()); |
1730 | | |
1731 | | // 0.0000000000_011111 rounded to 0.0000000000 (< tie, no rounding) |
1732 | | // 0.0000000000_100000 rounded to 0.0000000000 (tie and even, remains at even) |
1733 | | // 0.0000000000_100001 rounded to 0.0000000001 (> tie, rounds up) |
1734 | | assert_eq!( |
1735 | | f16::from_f32(min_sub_f * 0.49).to_bits(), |
1736 | | min_sub.to_bits() * 0 |
1737 | | ); |
1738 | | assert_eq!( |
1739 | | f16::from_f32(min_sub_f * 0.50).to_bits(), |
1740 | | min_sub.to_bits() * 0 |
1741 | | ); |
1742 | | assert_eq!( |
1743 | | f16::from_f32(min_sub_f * 0.51).to_bits(), |
1744 | | min_sub.to_bits() * 1 |
1745 | | ); |
1746 | | |
1747 | | // 0.0000000001_011111 rounded to 0.0000000001 (< tie, no rounding) |
1748 | | // 0.0000000001_100000 rounded to 0.0000000010 (tie and odd, rounds up to even) |
1749 | | // 0.0000000001_100001 rounded to 0.0000000010 (> tie, rounds up) |
1750 | | assert_eq!( |
1751 | | f16::from_f32(min_sub_f * 1.49).to_bits(), |
1752 | | min_sub.to_bits() * 1 |
1753 | | ); |
1754 | | assert_eq!( |
1755 | | f16::from_f32(min_sub_f * 1.50).to_bits(), |
1756 | | min_sub.to_bits() * 2 |
1757 | | ); |
1758 | | assert_eq!( |
1759 | | f16::from_f32(min_sub_f * 1.51).to_bits(), |
1760 | | min_sub.to_bits() * 2 |
1761 | | ); |
1762 | | |
1763 | | // 0.0000000010_011111 rounded to 0.0000000010 (< tie, no rounding) |
1764 | | // 0.0000000010_100000 rounded to 0.0000000010 (tie and even, remains at even) |
1765 | | // 0.0000000010_100001 rounded to 0.0000000011 (> tie, rounds up) |
1766 | | assert_eq!( |
1767 | | f16::from_f32(min_sub_f * 2.49).to_bits(), |
1768 | | min_sub.to_bits() * 2 |
1769 | | ); |
1770 | | assert_eq!( |
1771 | | f16::from_f32(min_sub_f * 2.50).to_bits(), |
1772 | | min_sub.to_bits() * 2 |
1773 | | ); |
1774 | | assert_eq!( |
1775 | | f16::from_f32(min_sub_f * 2.51).to_bits(), |
1776 | | min_sub.to_bits() * 3 |
1777 | | ); |
1778 | | |
1779 | | assert_eq!( |
1780 | | f16::from_f32(2000.49f32).to_bits(), |
1781 | | f16::from_f32(2000.0).to_bits() |
1782 | | ); |
1783 | | assert_eq!( |
1784 | | f16::from_f32(2000.50f32).to_bits(), |
1785 | | f16::from_f32(2000.0).to_bits() |
1786 | | ); |
1787 | | assert_eq!( |
1788 | | f16::from_f32(2000.51f32).to_bits(), |
1789 | | f16::from_f32(2001.0).to_bits() |
1790 | | ); |
1791 | | assert_eq!( |
1792 | | f16::from_f32(2001.49f32).to_bits(), |
1793 | | f16::from_f32(2001.0).to_bits() |
1794 | | ); |
1795 | | assert_eq!( |
1796 | | f16::from_f32(2001.50f32).to_bits(), |
1797 | | f16::from_f32(2002.0).to_bits() |
1798 | | ); |
1799 | | assert_eq!( |
1800 | | f16::from_f32(2001.51f32).to_bits(), |
1801 | | f16::from_f32(2002.0).to_bits() |
1802 | | ); |
1803 | | assert_eq!( |
1804 | | f16::from_f32(2002.49f32).to_bits(), |
1805 | | f16::from_f32(2002.0).to_bits() |
1806 | | ); |
1807 | | assert_eq!( |
1808 | | f16::from_f32(2002.50f32).to_bits(), |
1809 | | f16::from_f32(2002.0).to_bits() |
1810 | | ); |
1811 | | assert_eq!( |
1812 | | f16::from_f32(2002.51f32).to_bits(), |
1813 | | f16::from_f32(2003.0).to_bits() |
1814 | | ); |
1815 | | } |
1816 | | |
1817 | | #[test] |
1818 | | #[allow(clippy::erasing_op, clippy::identity_op)] |
1819 | | fn round_to_even_f64() { |
1820 | | // smallest positive subnormal = 0b0.0000_0000_01 * 2^-14 = 2^-24 |
1821 | | let min_sub = f16::from_bits(1); |
1822 | | let min_sub_f = (-24f64).exp2(); |
1823 | | assert_eq!(f16::from_f64(min_sub_f).to_bits(), min_sub.to_bits()); |
1824 | | assert_eq!(f64::from(min_sub).to_bits(), min_sub_f.to_bits()); |
1825 | | |
1826 | | // 0.0000000000_011111 rounded to 0.0000000000 (< tie, no rounding) |
1827 | | // 0.0000000000_100000 rounded to 0.0000000000 (tie and even, remains at even) |
1828 | | // 0.0000000000_100001 rounded to 0.0000000001 (> tie, rounds up) |
1829 | | assert_eq!( |
1830 | | f16::from_f64(min_sub_f * 0.49).to_bits(), |
1831 | | min_sub.to_bits() * 0 |
1832 | | ); |
1833 | | assert_eq!( |
1834 | | f16::from_f64(min_sub_f * 0.50).to_bits(), |
1835 | | min_sub.to_bits() * 0 |
1836 | | ); |
1837 | | assert_eq!( |
1838 | | f16::from_f64(min_sub_f * 0.51).to_bits(), |
1839 | | min_sub.to_bits() * 1 |
1840 | | ); |
1841 | | |
1842 | | // 0.0000000001_011111 rounded to 0.0000000001 (< tie, no rounding) |
1843 | | // 0.0000000001_100000 rounded to 0.0000000010 (tie and odd, rounds up to even) |
1844 | | // 0.0000000001_100001 rounded to 0.0000000010 (> tie, rounds up) |
1845 | | assert_eq!( |
1846 | | f16::from_f64(min_sub_f * 1.49).to_bits(), |
1847 | | min_sub.to_bits() * 1 |
1848 | | ); |
1849 | | assert_eq!( |
1850 | | f16::from_f64(min_sub_f * 1.50).to_bits(), |
1851 | | min_sub.to_bits() * 2 |
1852 | | ); |
1853 | | assert_eq!( |
1854 | | f16::from_f64(min_sub_f * 1.51).to_bits(), |
1855 | | min_sub.to_bits() * 2 |
1856 | | ); |
1857 | | |
1858 | | // 0.0000000010_011111 rounded to 0.0000000010 (< tie, no rounding) |
1859 | | // 0.0000000010_100000 rounded to 0.0000000010 (tie and even, remains at even) |
1860 | | // 0.0000000010_100001 rounded to 0.0000000011 (> tie, rounds up) |
1861 | | assert_eq!( |
1862 | | f16::from_f64(min_sub_f * 2.49).to_bits(), |
1863 | | min_sub.to_bits() * 2 |
1864 | | ); |
1865 | | assert_eq!( |
1866 | | f16::from_f64(min_sub_f * 2.50).to_bits(), |
1867 | | min_sub.to_bits() * 2 |
1868 | | ); |
1869 | | assert_eq!( |
1870 | | f16::from_f64(min_sub_f * 2.51).to_bits(), |
1871 | | min_sub.to_bits() * 3 |
1872 | | ); |
1873 | | |
1874 | | assert_eq!( |
1875 | | f16::from_f64(2000.49f64).to_bits(), |
1876 | | f16::from_f64(2000.0).to_bits() |
1877 | | ); |
1878 | | assert_eq!( |
1879 | | f16::from_f64(2000.50f64).to_bits(), |
1880 | | f16::from_f64(2000.0).to_bits() |
1881 | | ); |
1882 | | assert_eq!( |
1883 | | f16::from_f64(2000.51f64).to_bits(), |
1884 | | f16::from_f64(2001.0).to_bits() |
1885 | | ); |
1886 | | assert_eq!( |
1887 | | f16::from_f64(2001.49f64).to_bits(), |
1888 | | f16::from_f64(2001.0).to_bits() |
1889 | | ); |
1890 | | assert_eq!( |
1891 | | f16::from_f64(2001.50f64).to_bits(), |
1892 | | f16::from_f64(2002.0).to_bits() |
1893 | | ); |
1894 | | assert_eq!( |
1895 | | f16::from_f64(2001.51f64).to_bits(), |
1896 | | f16::from_f64(2002.0).to_bits() |
1897 | | ); |
1898 | | assert_eq!( |
1899 | | f16::from_f64(2002.49f64).to_bits(), |
1900 | | f16::from_f64(2002.0).to_bits() |
1901 | | ); |
1902 | | assert_eq!( |
1903 | | f16::from_f64(2002.50f64).to_bits(), |
1904 | | f16::from_f64(2002.0).to_bits() |
1905 | | ); |
1906 | | assert_eq!( |
1907 | | f16::from_f64(2002.51f64).to_bits(), |
1908 | | f16::from_f64(2003.0).to_bits() |
1909 | | ); |
1910 | | } |
1911 | | |
1912 | | #[test] |
1913 | | fn arithmetic() { |
1914 | | assert_eq!(f16::ONE + f16::ONE, f16::from_f32(2.)); |
1915 | | assert_eq!(f16::ONE - f16::ONE, f16::ZERO); |
1916 | | assert_eq!(f16::ONE * f16::ONE, f16::ONE); |
1917 | | assert_eq!(f16::from_f32(2.) * f16::from_f32(2.), f16::from_f32(4.)); |
1918 | | assert_eq!(f16::ONE / f16::ONE, f16::ONE); |
1919 | | assert_eq!(f16::from_f32(4.) / f16::from_f32(2.), f16::from_f32(2.)); |
1920 | | assert_eq!(f16::from_f32(4.) % f16::from_f32(3.), f16::from_f32(1.)); |
1921 | | } |
1922 | | |
1923 | | #[cfg(feature = "std")] |
1924 | | #[test] |
1925 | | fn formatting() { |
1926 | | let f = f16::from_f32(0.1152344); |
1927 | | |
1928 | | assert_eq!(format!("{:.3}", f), "0.115"); |
1929 | | assert_eq!(format!("{:.4}", f), "0.1152"); |
1930 | | assert_eq!(format!("{:+.4}", f), "+0.1152"); |
1931 | | assert_eq!(format!("{:>+10.4}", f), " +0.1152"); |
1932 | | |
1933 | | assert_eq!(format!("{:.3?}", f), "0.115"); |
1934 | | assert_eq!(format!("{:.4?}", f), "0.1152"); |
1935 | | assert_eq!(format!("{:+.4?}", f), "+0.1152"); |
1936 | | assert_eq!(format!("{:>+10.4?}", f), " +0.1152"); |
1937 | | } |
1938 | | |
1939 | | impl quickcheck::Arbitrary for f16 { |
1940 | | fn arbitrary(g: &mut quickcheck::Gen) -> Self { |
1941 | | f16(u16::arbitrary(g)) |
1942 | | } |
1943 | | } |
1944 | | |
1945 | | #[quickcheck] |
1946 | | fn qc_roundtrip_f16_f32_is_identity(f: f16) -> bool { |
1947 | | let roundtrip = f16::from_f32(f.to_f32()); |
1948 | | if f.is_nan() { |
1949 | | roundtrip.is_nan() && f.is_sign_negative() == roundtrip.is_sign_negative() |
1950 | | } else { |
1951 | | f.0 == roundtrip.0 |
1952 | | } |
1953 | | } |
1954 | | |
1955 | | #[quickcheck] |
1956 | | fn qc_roundtrip_f16_f64_is_identity(f: f16) -> bool { |
1957 | | let roundtrip = f16::from_f64(f.to_f64()); |
1958 | | if f.is_nan() { |
1959 | | roundtrip.is_nan() && f.is_sign_negative() == roundtrip.is_sign_negative() |
1960 | | } else { |
1961 | | f.0 == roundtrip.0 |
1962 | | } |
1963 | | } |
1964 | | } |