/rust/registry/src/index.crates.io-6f17d22bba15001f/zune-inflate-0.2.54/src/decoder.rs
Line | Count | Source (jump to first uncovered line) |
1 | | #![allow(unused_imports)] |
2 | | |
3 | | use alloc::vec::Vec; |
4 | | use alloc::{format, vec}; |
5 | | |
6 | | use crate::bitstream::BitStreamReader; |
7 | | use crate::constants::{ |
8 | | DEFLATE_BLOCKTYPE_DYNAMIC_HUFFMAN, DEFLATE_BLOCKTYPE_RESERVED, DEFLATE_BLOCKTYPE_STATIC, |
9 | | DEFLATE_BLOCKTYPE_UNCOMPRESSED, DEFLATE_MAX_CODEWORD_LENGTH, |
10 | | DEFLATE_MAX_LITLEN_CODEWORD_LENGTH, DEFLATE_MAX_NUM_SYMS, DEFLATE_MAX_OFFSET_CODEWORD_LENGTH, |
11 | | DEFLATE_MAX_PRE_CODEWORD_LEN, DEFLATE_NUM_LITLEN_SYMS, DEFLATE_NUM_OFFSET_SYMS, |
12 | | DEFLATE_NUM_PRECODE_SYMS, DEFLATE_PRECODE_LENS_PERMUTATION, DELFATE_MAX_LENS_OVERRUN, |
13 | | FASTCOPY_BYTES, FASTLOOP_MAX_BYTES_WRITTEN, HUFFDEC_END_OF_BLOCK, HUFFDEC_EXCEPTIONAL, |
14 | | HUFFDEC_LITERAL, HUFFDEC_SUITABLE_POINTER, LITLEN_DECODE_BITS, LITLEN_DECODE_RESULTS, |
15 | | LITLEN_ENOUGH, LITLEN_TABLE_BITS, OFFSET_DECODE_RESULTS, OFFSET_ENOUGH, OFFSET_TABLEBITS, |
16 | | PRECODE_DECODE_RESULTS, PRECODE_ENOUGH, PRECODE_TABLE_BITS |
17 | | }; |
18 | | use crate::errors::{DecodeErrorStatus, InflateDecodeErrors}; |
19 | | #[cfg(feature = "gzip")] |
20 | | use crate::gzip_constants::{ |
21 | | GZIP_CM_DEFLATE, GZIP_FCOMMENT, GZIP_FEXTRA, GZIP_FHCRC, GZIP_FNAME, GZIP_FOOTER_SIZE, |
22 | | GZIP_FRESERVED, GZIP_ID1, GZIP_ID2 |
23 | | }; |
24 | | use crate::utils::{copy_rep_matches, fixed_copy_within, make_decode_table_entry}; |
25 | | |
26 | | struct DeflateHeaderTables |
27 | | { |
28 | | litlen_decode_table: [u32; LITLEN_ENOUGH], |
29 | | offset_decode_table: [u32; OFFSET_ENOUGH] |
30 | | } |
31 | | |
32 | | impl Default for DeflateHeaderTables |
33 | | { |
34 | 2 | fn default() -> Self |
35 | 2 | { |
36 | 2 | DeflateHeaderTables { |
37 | 2 | litlen_decode_table: [0; LITLEN_ENOUGH], |
38 | 2 | offset_decode_table: [0; OFFSET_ENOUGH] |
39 | 2 | } |
40 | 2 | } |
41 | | } |
42 | | |
43 | | /// Options that can influence decompression |
44 | | /// in Deflate/Zlib/Gzip |
45 | | /// |
46 | | /// To use them, pass a customized options to |
47 | | /// the deflate decoder. |
48 | | #[derive(Copy, Clone)] |
49 | | pub struct DeflateOptions |
50 | | { |
51 | | limit: usize, |
52 | | confirm_checksum: bool, |
53 | | size_hint: usize |
54 | | } |
55 | | |
56 | | impl Default for DeflateOptions |
57 | | { |
58 | 2 | fn default() -> Self |
59 | 2 | { |
60 | 2 | DeflateOptions { |
61 | 2 | limit: 1 << 30, |
62 | 2 | confirm_checksum: true, |
63 | 2 | size_hint: 37000 |
64 | 2 | } |
65 | 2 | } |
66 | | } |
67 | | |
68 | | impl DeflateOptions |
69 | | { |
70 | | /// Get deflate/zlib limit option |
71 | | /// |
72 | | /// The decoder won't extend the inbuilt limit and will |
73 | | /// return an error if the limit is exceeded |
74 | | /// |
75 | | /// # Returns |
76 | | /// The currently set limit of the instance |
77 | | /// # Note |
78 | | /// This is provided as a best effort, correctly quiting |
79 | | /// is detrimental to speed and hence this should not be relied too much. |
80 | 0 | pub const fn get_limit(&self) -> usize |
81 | 0 | { |
82 | 0 | self.limit |
83 | 0 | } |
84 | | /// Set a limit to the internal vector |
85 | | /// used to store decoded zlib/deflate output. |
86 | | /// |
87 | | /// # Arguments |
88 | | /// limit: The new decompressor limit |
89 | | /// # Returns |
90 | | /// A modified version of DeflateDecoder |
91 | | /// |
92 | | /// # Note |
93 | | /// This is provided as a best effort, correctly quiting |
94 | | /// is detrimental to speed and hence this should not be relied too much |
95 | | #[must_use] |
96 | 2 | pub fn set_limit(mut self, limit: usize) -> Self |
97 | 2 | { |
98 | 2 | self.limit = limit; |
99 | 2 | self |
100 | 2 | } |
101 | | |
102 | | /// Get whether the decoder will confirm a checksum |
103 | | /// after decoding |
104 | 0 | pub const fn get_confirm_checksum(&self) -> bool |
105 | 0 | { |
106 | 0 | self.confirm_checksum |
107 | 0 | } |
108 | | /// Set whether the decoder should confirm a checksum |
109 | | /// after decoding |
110 | | /// |
111 | | /// Note, you should definitely confirm your checksum, use |
112 | | /// this with caution, otherwise data returned may be corrupt |
113 | | /// |
114 | | /// # Arguments |
115 | | /// - yes: When true, the decoder will confirm checksum |
116 | | /// when false, the decoder will skip checksum verification |
117 | | /// # Notes |
118 | | /// This does not have an influence for deflate decoding as |
119 | | /// it does not have a checksum |
120 | 0 | pub fn set_confirm_checksum(mut self, yes: bool) -> Self |
121 | 0 | { |
122 | 0 | self.confirm_checksum = yes; |
123 | 0 | self |
124 | 0 | } |
125 | | |
126 | | /// Get the default set size hint for the decompressor |
127 | | /// |
128 | | /// The decompressor initializes the internal storage for decompressed bytes |
129 | | /// with this size and will reallocate the vec if the decompressed size becomes bigger |
130 | | /// than this, but when the user currently knows how big the output will be, can be used |
131 | | /// to prevent unnecessary re-allocations |
132 | 0 | pub const fn get_size_hint(&self) -> usize |
133 | 0 | { |
134 | 0 | self.size_hint |
135 | 0 | } |
136 | | /// Set the size hint for the decompressor |
137 | | /// |
138 | | /// This can be used to prevent multiple re-allocations |
139 | | #[must_use] |
140 | 2 | pub const fn set_size_hint(mut self, hint: usize) -> Self |
141 | 2 | { |
142 | 2 | self.size_hint = hint; |
143 | 2 | self |
144 | 2 | } |
145 | | } |
146 | | |
147 | | /// A deflate decoder instance. |
148 | | /// |
149 | | /// The decoder manages output buffer as opposed to requiring the caller to provide a pre-allocated buffer |
150 | | /// it tracks number of bytes written and on successfully reaching the |
151 | | /// end of the block, will return a vector with exactly |
152 | | /// the number of decompressed bytes. |
153 | | /// |
154 | | /// This means that it may use up huge amounts of memory if not checked, but |
155 | | /// there are [options] that can prevent that |
156 | | /// |
157 | | /// [options]: DeflateOptions |
158 | | pub struct DeflateDecoder<'a> |
159 | | { |
160 | | data: &'a [u8], |
161 | | position: usize, |
162 | | stream: BitStreamReader<'a>, |
163 | | is_last_block: bool, |
164 | | static_codes_loaded: bool, |
165 | | deflate_header_tables: DeflateHeaderTables, |
166 | | options: DeflateOptions |
167 | | } |
168 | | |
169 | | impl<'a> DeflateDecoder<'a> |
170 | | { |
171 | | /// Create a new decompressor that will read compressed |
172 | | /// data from `data` and return a new vector containing new data |
173 | | /// |
174 | | /// # Arguments |
175 | | /// - `data`: The compressed data. Data can be of any type |
176 | | /// gzip,zlib or raw deflate. |
177 | | /// |
178 | | /// # Returns |
179 | | /// A decoder instance which will pull compressed data from `data` to inflate the output output |
180 | | /// |
181 | | /// # Note |
182 | | /// |
183 | | /// The default output size limit is **1 GiB.** |
184 | | /// this is to protect the end user against ddos attacks as deflate does not specify it's |
185 | | /// output size upfront |
186 | | /// |
187 | | /// The checksum will be verified depending on the called function. |
188 | | /// this only works for zlib and gzip since deflate does not have a checksum |
189 | | /// |
190 | | /// These defaults can be overridden via [new_with_options()](Self::new_with_options). |
191 | 0 | pub fn new(data: &'a [u8]) -> DeflateDecoder<'a> |
192 | 0 | { |
193 | 0 | let options = DeflateOptions::default(); |
194 | 0 |
|
195 | 0 | Self::new_with_options(data, options) |
196 | 0 | } |
197 | | /// Create new decoder with specified options |
198 | | /// |
199 | | /// This can be used to fine tune the decoder to the user's |
200 | | /// needs. |
201 | | /// |
202 | | /// |
203 | | /// # Arguments |
204 | | /// - `data`: The compressed data. Data can be of any format i.e |
205 | | /// gzip, zlib or raw deflate. |
206 | | /// - `options` : A set of user defined options which tune how the decompressor |
207 | | /// |
208 | | /// # Returns |
209 | | /// A decoder instance which will pull compressed data from `data` to inflate output |
210 | | /// |
211 | | /// # Example |
212 | | /// ```no_run |
213 | | /// use zune_inflate::{DeflateDecoder, DeflateOptions}; |
214 | | /// let data = [37]; |
215 | | /// let options = DeflateOptions::default() |
216 | | /// .set_confirm_checksum(true) // confirm the checksum for zlib and gzip |
217 | | /// .set_limit(1000); // how big I think the input will be |
218 | | /// let mut decoder = DeflateDecoder::new_with_options(&data,options); |
219 | | /// // do some stuff and then call decode |
220 | | /// let data = decoder.decode_zlib(); |
221 | | /// |
222 | | /// ``` |
223 | 2 | pub fn new_with_options(data: &'a [u8], options: DeflateOptions) -> DeflateDecoder<'a> |
224 | 2 | { |
225 | 2 | // create stream |
226 | 2 | DeflateDecoder { |
227 | 2 | data, |
228 | 2 | position: 0, |
229 | 2 | stream: BitStreamReader::new(data), |
230 | 2 | is_last_block: false, |
231 | 2 | static_codes_loaded: false, |
232 | 2 | deflate_header_tables: DeflateHeaderTables::default(), |
233 | 2 | options |
234 | 2 | } |
235 | 2 | } |
236 | | /// Decode zlib-encoded data returning the uncompressed in a `Vec<u8>` |
237 | | /// or an error if something went wrong. |
238 | | /// |
239 | | /// Bytes consumed will be from the data passed when the |
240 | | /// `new` method was called. |
241 | | /// |
242 | | /// # Arguments |
243 | | /// - None |
244 | | /// # Returns |
245 | | /// Result type containing the decoded data. |
246 | | /// |
247 | | /// - `Ok(Vec<u8>)`: Decoded vector containing the uncompressed bytes |
248 | | /// - `Err(InflateDecodeErrors)`: Error that occurred during decoding |
249 | | /// |
250 | | /// It's possible to recover bytes even after an error occurred, bytes up |
251 | | /// to when error was encountered are stored in [InflateDecodeErrors] |
252 | | /// |
253 | | /// |
254 | | /// # Note |
255 | | /// This needs the `zlib` feature enabled to be available otherwise it's a |
256 | | /// compile time error |
257 | | /// |
258 | | /// [InflateDecodeErrors]:crate::errors::InflateDecodeErrors |
259 | | /// |
260 | | #[cfg(feature = "zlib")] |
261 | 2 | pub fn decode_zlib(&mut self) -> Result<Vec<u8>, InflateDecodeErrors> |
262 | 2 | { |
263 | | use crate::utils::calc_adler_hash; |
264 | | |
265 | 2 | if self.data.len() |
266 | 2 | < 2 /* zlib header */ |
267 | 2 | + 4 |
268 | | /* Deflate */ |
269 | | { |
270 | 2 | return Err(InflateDecodeErrors::new_with_error( |
271 | 2 | DecodeErrorStatus::InsufficientData |
272 | 2 | )); |
273 | 0 | } |
274 | 0 |
|
275 | 0 | // Zlib flags |
276 | 0 | // See https://www.ietf.org/rfc/rfc1950.txt for |
277 | 0 | // the RFC |
278 | 0 | let cmf = self.data[0]; |
279 | 0 | let flg = self.data[1]; |
280 | 0 |
|
281 | 0 | let cm = cmf & 0xF; |
282 | 0 | let cinfo = cmf >> 4; |
283 | 0 |
|
284 | 0 | // let fcheck = flg & 0xF; |
285 | 0 | // let fdict = (flg >> 4) & 1; |
286 | 0 | // let flevel = flg >> 5; |
287 | 0 |
|
288 | 0 | // confirm we have the right deflate methods |
289 | 0 | if cm != 8 |
290 | | { |
291 | 0 | if cm == 15 |
292 | | { |
293 | 0 | return Err(InflateDecodeErrors::new_with_error(DecodeErrorStatus::Generic( |
294 | 0 | "CM of 15 is preserved by the standard,currently don't know how to handle it" |
295 | 0 | ))); |
296 | 0 | } |
297 | 0 | return Err(InflateDecodeErrors::new_with_error( |
298 | 0 | DecodeErrorStatus::GenericStr(format!("Unknown zlib compression method {cm}")) |
299 | 0 | )); |
300 | 0 | } |
301 | 0 | if cinfo > 7 |
302 | | { |
303 | 0 | return Err(InflateDecodeErrors::new_with_error( |
304 | 0 | DecodeErrorStatus::GenericStr(format!( |
305 | 0 | "Unknown cinfo `{cinfo}` greater than 7, not allowed" |
306 | 0 | )) |
307 | 0 | )); |
308 | 0 | } |
309 | 0 | let flag_checks = (u16::from(cmf) * 256) + u16::from(flg); |
310 | 0 |
|
311 | 0 | if flag_checks % 31 != 0 |
312 | | { |
313 | 0 | return Err(InflateDecodeErrors::new_with_error( |
314 | 0 | DecodeErrorStatus::Generic("FCHECK integrity not preserved") |
315 | 0 | )); |
316 | 0 | } |
317 | 0 |
|
318 | 0 | self.position = 2; |
319 | | |
320 | 0 | let data = self.decode_deflate()?; |
321 | | |
322 | 0 | if self.options.confirm_checksum |
323 | | { |
324 | | // Get number of consumed bytes from the input |
325 | 0 | let out_pos = self.stream.get_position() + self.position + self.stream.over_read; |
326 | | |
327 | | // read adler |
328 | 0 | if let Some(adler) = self.data.get(out_pos..out_pos + 4) |
329 | | { |
330 | 0 | let adler_bits: [u8; 4] = adler.try_into().unwrap(); |
331 | 0 |
|
332 | 0 | let adler32_expected = u32::from_be_bytes(adler_bits); |
333 | 0 |
|
334 | 0 | let adler32_found = calc_adler_hash(&data); |
335 | 0 |
|
336 | 0 | if adler32_expected != adler32_found |
337 | | { |
338 | 0 | let err_msg = |
339 | 0 | DecodeErrorStatus::MismatchedAdler(adler32_expected, adler32_found); |
340 | 0 | let err = InflateDecodeErrors::new(err_msg, data); |
341 | 0 |
|
342 | 0 | return Err(err); |
343 | 0 | } |
344 | | } |
345 | | else |
346 | | { |
347 | 0 | let err = InflateDecodeErrors::new(DecodeErrorStatus::InsufficientData, data); |
348 | 0 |
|
349 | 0 | return Err(err); |
350 | | } |
351 | 0 | } |
352 | | |
353 | 0 | Ok(data) |
354 | 2 | } |
355 | | |
356 | | /// Decode a gzip encoded data and return the uncompressed data in a |
357 | | /// `Vec<u8>` or an error if something went wrong |
358 | | /// |
359 | | /// Bytes consumed will be from the data passed when the |
360 | | /// `new` method was called. |
361 | | /// |
362 | | /// # Arguments |
363 | | /// - None |
364 | | /// # Returns |
365 | | /// Result type containing the decoded data. |
366 | | /// |
367 | | /// - `Ok(Vec<u8>)`: Decoded vector containing the uncompressed bytes |
368 | | /// - `Err(InflateDecodeErrors)`: Error that occurred during decoding |
369 | | /// |
370 | | /// It's possible to recover bytes even after an error occurred, bytes up |
371 | | /// to when error was encountered are stored in [InflateDecodeErrors] |
372 | | /// |
373 | | /// # Note |
374 | | /// This needs the `gzip` feature enabled to be available, otherwise it's a |
375 | | /// compile time error |
376 | | /// |
377 | | /// [InflateDecodeErrors]:crate::errors::InflateDecodeErrors |
378 | | /// |
379 | | #[cfg(feature = "gzip")] |
380 | | pub fn decode_gzip(&mut self) -> Result<Vec<u8>, InflateDecodeErrors> |
381 | | { |
382 | | if self.data.len() < 18 |
383 | | { |
384 | | return Err(InflateDecodeErrors::new_with_error( |
385 | | DecodeErrorStatus::InsufficientData |
386 | | )); |
387 | | } |
388 | | |
389 | | if self.data[self.position] != GZIP_ID1 |
390 | | { |
391 | | return Err(InflateDecodeErrors::new_with_error( |
392 | | DecodeErrorStatus::CorruptData |
393 | | )); |
394 | | } |
395 | | self.position += 1; |
396 | | if self.data[self.position] != GZIP_ID2 |
397 | | { |
398 | | return Err(InflateDecodeErrors::new_with_error( |
399 | | DecodeErrorStatus::CorruptData |
400 | | )); |
401 | | } |
402 | | self.position += 1; |
403 | | |
404 | | if self.data[self.position] != GZIP_CM_DEFLATE |
405 | | { |
406 | | return Err(InflateDecodeErrors::new_with_error( |
407 | | DecodeErrorStatus::CorruptData |
408 | | )); |
409 | | } |
410 | | self.position += 1; |
411 | | |
412 | | let flg = self.data[self.position]; |
413 | | self.position += 1; |
414 | | |
415 | | // skip mtime |
416 | | self.position += 4; |
417 | | // skip xfl |
418 | | self.position += 1; |
419 | | // skip os |
420 | | self.position += 1; |
421 | | |
422 | | if (flg & GZIP_FRESERVED) != 0 |
423 | | { |
424 | | return Err(InflateDecodeErrors::new_with_error( |
425 | | DecodeErrorStatus::CorruptData |
426 | | )); |
427 | | } |
428 | | // extra field |
429 | | if (flg & GZIP_FEXTRA) != 0 |
430 | | { |
431 | | let len_bytes = self.data[self.position..self.position + 2] |
432 | | .try_into() |
433 | | .unwrap(); |
434 | | let xlen = usize::from(u16::from_le_bytes(len_bytes)); |
435 | | |
436 | | self.position += 2; |
437 | | |
438 | | if self.data.len().saturating_sub(self.position) < xlen + GZIP_FOOTER_SIZE |
439 | | { |
440 | | return Err(InflateDecodeErrors::new_with_error( |
441 | | DecodeErrorStatus::CorruptData |
442 | | )); |
443 | | } |
444 | | self.position += xlen; |
445 | | } |
446 | | // original file name zero terminated |
447 | | if (flg & GZIP_FNAME) != 0 |
448 | | { |
449 | | loop |
450 | | { |
451 | | if let Some(byte) = self.data.get(self.position) |
452 | | { |
453 | | self.position += 1; |
454 | | |
455 | | if *byte == 0 |
456 | | { |
457 | | break; |
458 | | } |
459 | | } |
460 | | else |
461 | | { |
462 | | return Err(InflateDecodeErrors::new_with_error( |
463 | | DecodeErrorStatus::InsufficientData |
464 | | )); |
465 | | } |
466 | | } |
467 | | } |
468 | | // File comment zero terminated |
469 | | if (flg & GZIP_FCOMMENT) != 0 |
470 | | { |
471 | | loop |
472 | | { |
473 | | if let Some(byte) = self.data.get(self.position) |
474 | | { |
475 | | self.position += 1; |
476 | | |
477 | | if *byte == 0 |
478 | | { |
479 | | break; |
480 | | } |
481 | | } |
482 | | else |
483 | | { |
484 | | return Err(InflateDecodeErrors::new_with_error( |
485 | | DecodeErrorStatus::InsufficientData |
486 | | )); |
487 | | } |
488 | | } |
489 | | } |
490 | | // crc16 for gzip header |
491 | | if (flg & GZIP_FHCRC) != 0 |
492 | | { |
493 | | self.position += 2; |
494 | | } |
495 | | |
496 | | if self.position + GZIP_FOOTER_SIZE > self.data.len() |
497 | | { |
498 | | return Err(InflateDecodeErrors::new_with_error( |
499 | | DecodeErrorStatus::InsufficientData |
500 | | )); |
501 | | } |
502 | | |
503 | | let data = self.decode_deflate()?; |
504 | | |
505 | | let mut out_pos = self.stream.get_position() + self.position + self.stream.over_read; |
506 | | |
507 | | if self.options.confirm_checksum |
508 | | { |
509 | | // Get number of consumed bytes from the input |
510 | | |
511 | | if let Some(crc) = self.data.get(out_pos..out_pos + 4) |
512 | | { |
513 | | let crc_bits: [u8; 4] = crc.try_into().unwrap(); |
514 | | |
515 | | let crc32_expected = u32::from_le_bytes(crc_bits); |
516 | | |
517 | | let crc32_found = !crate::crc::crc32(&data, !0); |
518 | | |
519 | | if crc32_expected != crc32_found |
520 | | { |
521 | | let err_msg = DecodeErrorStatus::MismatchedCRC(crc32_expected, crc32_found); |
522 | | let err = InflateDecodeErrors::new(err_msg, data); |
523 | | |
524 | | return Err(err); |
525 | | } |
526 | | } |
527 | | else |
528 | | { |
529 | | let err = InflateDecodeErrors::new(DecodeErrorStatus::InsufficientData, data); |
530 | | |
531 | | return Err(err); |
532 | | } |
533 | | } |
534 | | //checksum |
535 | | out_pos += 4; |
536 | | |
537 | | if let Some(val) = self.data.get(out_pos..out_pos + 4) |
538 | | { |
539 | | let actual_bytes: [u8; 4] = val.try_into().unwrap(); |
540 | | let ac = u32::from_le_bytes(actual_bytes) as usize; |
541 | | |
542 | | if data.len() != ac |
543 | | { |
544 | | let err = DecodeErrorStatus::Generic("ISIZE does not match actual bytes"); |
545 | | |
546 | | let err = InflateDecodeErrors::new(err, data); |
547 | | |
548 | | return Err(err); |
549 | | } |
550 | | } |
551 | | else |
552 | | { |
553 | | let err = InflateDecodeErrors::new(DecodeErrorStatus::InsufficientData, data); |
554 | | |
555 | | return Err(err); |
556 | | } |
557 | | |
558 | | Ok(data) |
559 | | } |
560 | | /// Decode a deflate stream returning the data as `Vec<u8>` or an error |
561 | | /// indicating what went wrong. |
562 | | /// # Arguments |
563 | | /// - None |
564 | | /// # Returns |
565 | | /// Result type containing the decoded data. |
566 | | /// |
567 | | /// - `Ok(Vec<u8>)`: Decoded vector containing the uncompressed bytes |
568 | | /// - `Err(InflateDecodeErrors)`: Error that occurred during decoding |
569 | | /// |
570 | | /// It's possible to recover bytes even after an error occurred, bytes up |
571 | | /// to when error was encountered are stored in [InflateDecodeErrors] |
572 | | /// |
573 | | /// |
574 | | /// # Example |
575 | | /// ```no_run |
576 | | /// let data = [42]; // answer to life, the universe and everything |
577 | | /// |
578 | | /// let mut decoder = zune_inflate::DeflateDecoder::new(&data); |
579 | | /// let bytes = decoder.decode_deflate().unwrap(); |
580 | | /// ``` |
581 | | /// |
582 | | /// [InflateDecodeErrors]:crate::errors::InflateDecodeErrors |
583 | 0 | pub fn decode_deflate(&mut self) -> Result<Vec<u8>, InflateDecodeErrors> |
584 | 0 | { |
585 | 0 | self.start_deflate_block() |
586 | 0 | } |
587 | | /// Main inner loop for decompressing deflate data |
588 | | #[allow(unused_assignments)] |
589 | 0 | fn start_deflate_block(&mut self) -> Result<Vec<u8>, InflateDecodeErrors> |
590 | 0 | { |
591 | 0 | // start deflate decode |
592 | 0 | // re-read the stream so that we can remove code read by zlib |
593 | 0 | self.stream = BitStreamReader::new(&self.data[self.position..]); |
594 | 0 |
|
595 | 0 | self.stream.refill(); |
596 | 0 |
|
597 | 0 | // Output space for our decoded bytes. |
598 | 0 | let mut out_block = vec![0; self.options.size_hint]; |
599 | 0 | // bits used |
600 | 0 |
|
601 | 0 | let mut src_offset = 0; |
602 | 0 | let mut dest_offset = 0; |
603 | | |
604 | | loop |
605 | | { |
606 | 0 | self.stream.refill(); |
607 | 0 |
|
608 | 0 | self.is_last_block = self.stream.get_bits(1) == 1; |
609 | 0 | let block_type = self.stream.get_bits(2); |
610 | 0 |
|
611 | 0 | if block_type == DEFLATE_BLOCKTYPE_UNCOMPRESSED |
612 | | { |
613 | | /* |
614 | | * Uncompressed block: copy 'len' bytes literally from the input |
615 | | * buffer to the output buffer. |
616 | | */ |
617 | | /* |
618 | | * The RFC says that |
619 | | * skip any remaining bits in current partially |
620 | | * processed byte |
621 | | * read LEN and NLEN (see next section) |
622 | | * copy LEN bytes of data to output |
623 | | */ |
624 | | |
625 | 0 | if self.stream.over_read > usize::from(self.stream.get_bits_left() >> 3) |
626 | | { |
627 | 0 | out_block.truncate(dest_offset); |
628 | 0 |
|
629 | 0 | let err_msg = DecodeErrorStatus::Generic("over-read stream"); |
630 | 0 | let error = InflateDecodeErrors::new(err_msg, out_block); |
631 | 0 |
|
632 | 0 | return Err(error); |
633 | 0 | } |
634 | 0 | let partial_bits = self.stream.get_bits_left() & 7; |
635 | 0 |
|
636 | 0 | self.stream.drop_bits(partial_bits); |
637 | 0 |
|
638 | 0 | let len = self.stream.get_bits(16) as u16; |
639 | 0 | let nlen = self.stream.get_bits(16) as u16; |
640 | 0 |
|
641 | 0 | // copy to deflate |
642 | 0 | if len != !nlen |
643 | | { |
644 | 0 | out_block.truncate(dest_offset); |
645 | 0 |
|
646 | 0 | let err_msg = DecodeErrorStatus::Generic("Len and nlen do not match"); |
647 | 0 | let error = InflateDecodeErrors::new(err_msg, out_block); |
648 | 0 |
|
649 | 0 | return Err(error); |
650 | 0 | } |
651 | 0 | let len = len as usize; |
652 | 0 |
|
653 | 0 | let start = self.stream.get_position() + self.position + self.stream.over_read; |
654 | 0 |
|
655 | 0 | // ensure there is enough space for a fast copy |
656 | 0 | if dest_offset + len + FASTCOPY_BYTES > out_block.len() |
657 | 0 | { |
658 | 0 | // and if there is not, resize |
659 | 0 | let new_len = out_block.len() + RESIZE_BY + len; |
660 | 0 |
|
661 | 0 | out_block.resize(new_len, 0); |
662 | 0 | } |
663 | | |
664 | 0 | if self.data.get((start + len).saturating_sub(1)).is_none() |
665 | | { |
666 | 0 | out_block.truncate(dest_offset); |
667 | 0 |
|
668 | 0 | let err_msg = DecodeErrorStatus::CorruptData; |
669 | 0 | let error = InflateDecodeErrors::new(err_msg, out_block); |
670 | 0 |
|
671 | 0 | return Err(error); |
672 | 0 | } |
673 | 0 | if dest_offset > self.options.limit |
674 | | { |
675 | 0 | out_block.truncate(dest_offset); |
676 | 0 |
|
677 | 0 | let err_msg = |
678 | 0 | DecodeErrorStatus::OutputLimitExceeded(self.options.limit, out_block.len()); |
679 | 0 | let error = InflateDecodeErrors::new(err_msg, out_block); |
680 | 0 |
|
681 | 0 | return Err(error); |
682 | 0 | } |
683 | 0 |
|
684 | 0 | out_block[dest_offset..dest_offset + len] |
685 | 0 | .copy_from_slice(&self.data[start..start + len]); |
686 | 0 |
|
687 | 0 | dest_offset += len; |
688 | 0 |
|
689 | 0 | // get the new position to write. |
690 | 0 | self.stream.position = |
691 | 0 | len + (self.stream.position - usize::from(self.stream.bits_left >> 3)); |
692 | 0 |
|
693 | 0 | self.stream.reset(); |
694 | 0 |
|
695 | 0 | if self.is_last_block |
696 | | { |
697 | 0 | break; |
698 | 0 | } |
699 | 0 |
|
700 | 0 | continue; |
701 | | } |
702 | 0 | else if block_type == DEFLATE_BLOCKTYPE_RESERVED |
703 | | { |
704 | 0 | out_block.truncate(dest_offset); |
705 | 0 |
|
706 | 0 | let err_msg = DecodeErrorStatus::Generic("Reserved block type 0b11 encountered"); |
707 | 0 | let error = InflateDecodeErrors::new(err_msg, out_block); |
708 | 0 |
|
709 | 0 | return Err(error); |
710 | 0 | } |
711 | 0 |
|
712 | 0 | // build decode tables for static and dynamic tables |
713 | 0 | match self.build_decode_table(block_type) |
714 | | { |
715 | 0 | Ok(_) => (), |
716 | 0 | Err(value) => |
717 | 0 | { |
718 | 0 | out_block.truncate(dest_offset); |
719 | 0 |
|
720 | 0 | let err_msg = value; |
721 | 0 | let error = InflateDecodeErrors::new(err_msg, out_block); |
722 | 0 |
|
723 | 0 | return Err(error); |
724 | | } |
725 | | }; |
726 | | |
727 | | // Tables are mutated into the struct, so at this point we know the tables |
728 | | // are loaded, take a reference to them |
729 | 0 | let litlen_decode_table = &self.deflate_header_tables.litlen_decode_table; |
730 | 0 | let offset_decode_table = &self.deflate_header_tables.offset_decode_table; |
731 | 0 |
|
732 | 0 | /* |
733 | 0 | * This is the "fast loop" for decoding literals and matches. It does |
734 | 0 | * bounds checks on in_next and out_next in the loop conditions so that |
735 | 0 | * additional bounds checks aren't needed inside the loop body. |
736 | 0 | * |
737 | 0 | * To reduce latency, the bit-buffer is refilled and the next litlen |
738 | 0 | * decode table entry is preloaded before each loop iteration. |
739 | 0 | */ |
740 | 0 | let (mut literal, mut length, mut offset, mut entry) = (0, 0, 0, 0); |
741 | 0 |
|
742 | 0 | let mut saved_bitbuf; |
743 | 0 |
|
744 | 0 | 'decode: loop |
745 | 0 | { |
746 | 0 | let close_src = 3 * FASTCOPY_BYTES < self.stream.remaining_bytes(); |
747 | 0 |
|
748 | 0 | if close_src |
749 | | { |
750 | 0 | self.stream.refill_inner_loop(); |
751 | 0 |
|
752 | 0 | let lit_mask = self.stream.peek_bits::<LITLEN_DECODE_BITS>(); |
753 | 0 |
|
754 | 0 | entry = litlen_decode_table[lit_mask]; |
755 | | |
756 | | 'sequence: loop |
757 | | { |
758 | | // Resize the output vector here to ensure we can always have |
759 | | // enough space for sloppy copies |
760 | 0 | if dest_offset + FASTLOOP_MAX_BYTES_WRITTEN > out_block.len() |
761 | | { |
762 | 0 | let curr_len = out_block.len(); |
763 | 0 | out_block.resize(curr_len + FASTLOOP_MAX_BYTES_WRITTEN + RESIZE_BY, 0) |
764 | 0 | } |
765 | | // At this point entry contains the next value of the litlen |
766 | | // This will always be the case so meaning all our exit paths need |
767 | | // to load in the next entry. |
768 | | |
769 | | // recheck after every sequence |
770 | | // when we hit continue, we need to recheck this |
771 | | // as we are trying to emulate a do while |
772 | 0 | let new_check = self.stream.src.len() < self.stream.position + 8; |
773 | 0 |
|
774 | 0 | if new_check |
775 | | { |
776 | 0 | break 'sequence; |
777 | 0 | } |
778 | 0 |
|
779 | 0 | self.stream.refill_inner_loop(); |
780 | 0 | /* |
781 | 0 | * Consume the bits for the litlen decode table entry. Save the |
782 | 0 | * original bit-buf for later, in case the extra match length |
783 | 0 | * bits need to be extracted from it. |
784 | 0 | */ |
785 | 0 | saved_bitbuf = self.stream.buffer; |
786 | 0 |
|
787 | 0 | self.stream.drop_bits((entry & 0xFF) as u8); |
788 | 0 |
|
789 | 0 | /* |
790 | 0 | * Begin by checking for a "fast" literal, i.e. a literal that |
791 | 0 | * doesn't need a subtable. |
792 | 0 | */ |
793 | 0 | if (entry & HUFFDEC_LITERAL) != 0 |
794 | | { |
795 | | /* |
796 | | * On 64-bit platforms, we decode up to 2 extra fast |
797 | | * literals in addition to the primary item, as this |
798 | | * increases performance and still leaves enough bits |
799 | | * remaining for what follows. We could actually do 3, |
800 | | * assuming LITLEN_TABLEBITS=11, but that actually |
801 | | * decreases performance slightly (perhaps by messing |
802 | | * with the branch prediction of the conditional refill |
803 | | * that happens later while decoding the match offset). |
804 | | */ |
805 | | |
806 | 0 | literal = entry >> 16; |
807 | 0 |
|
808 | 0 | let new_pos = self.stream.peek_bits::<LITLEN_DECODE_BITS>(); |
809 | 0 |
|
810 | 0 | entry = litlen_decode_table[new_pos]; |
811 | 0 | saved_bitbuf = self.stream.buffer; |
812 | 0 |
|
813 | 0 | self.stream.drop_bits(entry as u8); |
814 | 0 |
|
815 | 0 | let out: &mut [u8; 2] = out_block |
816 | 0 | .get_mut(dest_offset..dest_offset + 2) |
817 | 0 | .unwrap() |
818 | 0 | .try_into() |
819 | 0 | .unwrap(); |
820 | 0 |
|
821 | 0 | out[0] = literal as u8; |
822 | 0 | dest_offset += 1; |
823 | 0 |
|
824 | 0 | if (entry & HUFFDEC_LITERAL) != 0 |
825 | | { |
826 | | /* |
827 | | * Another fast literal, but this one is in lieu of the |
828 | | * primary item, so it doesn't count as one of the extras. |
829 | | */ |
830 | | |
831 | | // load in the next entry. |
832 | 0 | literal = entry >> 16; |
833 | 0 |
|
834 | 0 | let new_pos = self.stream.peek_bits::<LITLEN_DECODE_BITS>(); |
835 | 0 |
|
836 | 0 | entry = litlen_decode_table[new_pos]; |
837 | 0 |
|
838 | 0 | out[1] = literal as u8; |
839 | 0 | dest_offset += 1; |
840 | 0 |
|
841 | 0 | continue; |
842 | 0 | } |
843 | 0 | } |
844 | | /* |
845 | | * It's not a literal entry, so it can be a length entry, a |
846 | | * subtable pointer entry, or an end-of-block entry. Detect the |
847 | | * two unlikely cases by testing the HUFFDEC_EXCEPTIONAL flag. |
848 | | */ |
849 | 0 | if (entry & HUFFDEC_EXCEPTIONAL) != 0 |
850 | | { |
851 | | // Subtable pointer or end of block entry |
852 | 0 | if (entry & HUFFDEC_END_OF_BLOCK) != 0 |
853 | | { |
854 | | // block done |
855 | 0 | break 'decode; |
856 | 0 | } |
857 | 0 | /* |
858 | 0 | * A subtable is required. Load and consume the |
859 | 0 | * subtable entry. The subtable entry can be of any |
860 | 0 | * type: literal, length, or end-of-block. |
861 | 0 | */ |
862 | 0 | let entry_position = ((entry >> 8) & 0x3F) as usize; |
863 | 0 | let mut pos = (entry >> 16) as usize; |
864 | 0 |
|
865 | 0 | saved_bitbuf = self.stream.buffer; |
866 | 0 |
|
867 | 0 | pos += self.stream.peek_var_bits(entry_position); |
868 | 0 | entry = litlen_decode_table[pos.min(LITLEN_ENOUGH - 1)]; |
869 | 0 |
|
870 | 0 | self.stream.drop_bits(entry as u8); |
871 | 0 |
|
872 | 0 | if (entry & HUFFDEC_LITERAL) != 0 |
873 | | { |
874 | | // decode a literal that required a sub table |
875 | 0 | let new_pos = self.stream.peek_bits::<LITLEN_DECODE_BITS>(); |
876 | 0 |
|
877 | 0 | literal = entry >> 16; |
878 | 0 | entry = litlen_decode_table[new_pos]; |
879 | 0 |
|
880 | 0 | *out_block.get_mut(dest_offset).unwrap_or(&mut 0) = |
881 | 0 | (literal & 0xFF) as u8; |
882 | 0 |
|
883 | 0 | dest_offset += 1; |
884 | 0 |
|
885 | 0 | continue; |
886 | 0 | } |
887 | 0 |
|
888 | 0 | if (entry & HUFFDEC_END_OF_BLOCK) != 0 |
889 | | { |
890 | 0 | break 'decode; |
891 | 0 | } |
892 | 0 | } |
893 | | |
894 | | // At this point,we dropped at most 22 bits(LITLEN_DECODE is 11 and we |
895 | | // can do it twice), we now just have 34 bits min remaining. |
896 | | |
897 | | /* |
898 | | * Decode the match length: the length base value associated |
899 | | * with the litlen symbol (which we extract from the decode |
900 | | * table entry), plus the extra length bits. We don't need to |
901 | | * consume the extra length bits here, as they were included in |
902 | | * the bits consumed by the entry earlier. We also don't need |
903 | | * to check for too-long matches here, as this is inside the |
904 | | * fast loop where it's already been verified that the output |
905 | | * buffer has enough space remaining to copy a max-length match. |
906 | | */ |
907 | 0 | let entry_dup = entry; |
908 | 0 |
|
909 | 0 | entry = offset_decode_table[self.stream.peek_bits::<OFFSET_TABLEBITS>()]; |
910 | 0 | length = (entry_dup >> 16) as usize; |
911 | 0 |
|
912 | 0 | let mask = (1 << entry_dup as u8) - 1; |
913 | 0 |
|
914 | 0 | length += (saved_bitbuf & mask) as usize >> ((entry_dup >> 8) as u8); |
915 | 0 |
|
916 | 0 | // offset requires a subtable |
917 | 0 | if (entry & HUFFDEC_EXCEPTIONAL) != 0 |
918 | 0 | { |
919 | 0 | self.stream.drop_bits(OFFSET_TABLEBITS as u8); |
920 | 0 | let extra = self.stream.peek_var_bits(((entry >> 8) & 0x3F) as usize); |
921 | 0 | entry = offset_decode_table[((entry >> 16) as usize + extra) & 511]; |
922 | 0 | // refill to handle some weird edge case where we have |
923 | 0 | // less bits than needed for reading the lit-len |
924 | 0 | } |
925 | 0 | saved_bitbuf = self.stream.buffer; |
926 | 0 |
|
927 | 0 | self.stream.drop_bits((entry & 0xFF) as u8); |
928 | 0 |
|
929 | 0 | let mask = (1 << entry as u8) - 1; |
930 | 0 |
|
931 | 0 | offset = (entry >> 16) as usize; |
932 | 0 | offset += (saved_bitbuf & mask) as usize >> (((entry >> 8) & 0xFF) as u8); |
933 | 0 |
|
934 | 0 | if offset > dest_offset |
935 | | { |
936 | 0 | out_block.truncate(dest_offset); |
937 | 0 |
|
938 | 0 | let err_msg = DecodeErrorStatus::CorruptData; |
939 | 0 | let error = InflateDecodeErrors::new(err_msg, out_block); |
940 | 0 |
|
941 | 0 | return Err(error); |
942 | 0 | } |
943 | 0 |
|
944 | 0 | src_offset = dest_offset - offset; |
945 | 0 |
|
946 | 0 | if self.stream.bits_left < 11 |
947 | 0 | { |
948 | 0 | self.stream.refill_inner_loop(); |
949 | 0 | } |
950 | | // Copy some bytes unconditionally |
951 | | // This makes us copy smaller match lengths quicker because we don't need |
952 | | // a loop + don't send too much pressure to the Memory unit. |
953 | 0 | fixed_copy_within::<FASTCOPY_BYTES>( |
954 | 0 | &mut out_block, |
955 | 0 | src_offset, |
956 | 0 | dest_offset |
957 | 0 | ); |
958 | 0 |
|
959 | 0 | entry = litlen_decode_table[self.stream.peek_bits::<LITLEN_DECODE_BITS>()]; |
960 | 0 |
|
961 | 0 | let mut current_position = dest_offset; |
962 | 0 |
|
963 | 0 | dest_offset += length; |
964 | 0 |
|
965 | 0 | if offset == 1 |
966 | 0 | { |
967 | 0 | // RLE fill with a single byte |
968 | 0 | let byte_to_repeat = out_block[src_offset]; |
969 | 0 | out_block[current_position..dest_offset].fill(byte_to_repeat); |
970 | 0 | } |
971 | 0 | else if offset <= FASTCOPY_BYTES |
972 | 0 | && current_position + offset < dest_offset |
973 | | { |
974 | | // The second conditional ensures we only come |
975 | | // here if the first copy didn't succeed to copy just enough bytes for a rep |
976 | | // match to be valid, i.e we want this path to be taken the least amount |
977 | | // of times possible |
978 | | |
979 | | // the unconditional copy above copied some bytes |
980 | | // don't let it go into waste |
981 | | // Increment the position we are in by the number of correct bytes |
982 | | // currently copied |
983 | 0 | let mut src_position = src_offset + offset; |
984 | 0 | let mut dest_position = current_position + offset; |
985 | | |
986 | | // loop copying offset bytes in place |
987 | | // notice this loop does fixed copies but increments in offset bytes :) |
988 | | // that is intentional. |
989 | | loop |
990 | | { |
991 | 0 | fixed_copy_within::<FASTCOPY_BYTES>( |
992 | 0 | &mut out_block, |
993 | 0 | src_position, |
994 | 0 | dest_position |
995 | 0 | ); |
996 | 0 |
|
997 | 0 | src_position += offset; |
998 | 0 | dest_position += offset; |
999 | 0 |
|
1000 | 0 | if dest_position > dest_offset |
1001 | | { |
1002 | 0 | break; |
1003 | 0 | } |
1004 | | } |
1005 | | } |
1006 | 0 | else if length > FASTCOPY_BYTES |
1007 | | { |
1008 | 0 | current_position += FASTCOPY_BYTES; |
1009 | 0 | // fast non-overlapping copy |
1010 | 0 | // |
1011 | 0 | // We have enough space to write the ML+FAST_COPY bytes ahead |
1012 | 0 | // so we know this won't come to shoot us in the foot. |
1013 | 0 | // |
1014 | 0 | // An optimization is to copy FAST_COPY_BITS per invocation |
1015 | 0 | // Currently FASTCOPY_BYTES is 16, this fits in nicely as we |
1016 | 0 | // it's a single SIMD instruction on a lot of things, i.e x86,Arm and even |
1017 | 0 | // wasm. |
1018 | 0 |
|
1019 | 0 | // current position of the match |
1020 | 0 | let mut dest_src_offset = src_offset + FASTCOPY_BYTES; |
1021 | | |
1022 | | // Number of bytes we are to copy |
1023 | | // copy in batches of FAST_BYTES |
1024 | | 'match_lengths: loop |
1025 | | { |
1026 | | // Safety: We resized out_block hence we know it can handle |
1027 | | // sloppy copies without it being out of bounds |
1028 | | // |
1029 | | // Reason: This is a latency critical loop, even branches start |
1030 | | // to matter |
1031 | 0 | fixed_copy_within::<FASTCOPY_BYTES>( |
1032 | 0 | &mut out_block, |
1033 | 0 | dest_src_offset, |
1034 | 0 | current_position |
1035 | 0 | ); |
1036 | 0 |
|
1037 | 0 | dest_src_offset += FASTCOPY_BYTES; |
1038 | 0 | current_position += FASTCOPY_BYTES; |
1039 | 0 |
|
1040 | 0 | if current_position > dest_offset |
1041 | | { |
1042 | 0 | break 'match_lengths; |
1043 | 0 | } |
1044 | | } |
1045 | 0 | } |
1046 | | |
1047 | 0 | if dest_offset > self.options.limit |
1048 | | { |
1049 | 0 | out_block.truncate(dest_offset); |
1050 | 0 |
|
1051 | 0 | let err_msg = DecodeErrorStatus::OutputLimitExceeded( |
1052 | 0 | self.options.limit, |
1053 | 0 | dest_offset |
1054 | 0 | ); |
1055 | 0 | let error = InflateDecodeErrors::new(err_msg, out_block); |
1056 | 0 |
|
1057 | 0 | return Err(error); |
1058 | 0 | } |
1059 | 0 |
|
1060 | 0 | if self.stream.src.len() < self.stream.position + 8 |
1061 | | { |
1062 | | // close to input end, move to the slower one |
1063 | 0 | break 'sequence; |
1064 | 0 | } |
1065 | | } |
1066 | 0 | } |
1067 | | // generic loop that does things a bit slower but it's okay since it doesn't |
1068 | | // deal with a lot of things |
1069 | | // We can afford to be more careful here, checking that we do |
1070 | | // not drop non-existent bits etc etc as we do not have the |
1071 | | // assurances of the fast loop bits above. |
1072 | | loop |
1073 | | { |
1074 | 0 | self.stream.refill(); |
1075 | 0 |
|
1076 | 0 | if self.stream.over_read > usize::from(self.stream.bits_left >> 3) |
1077 | | { |
1078 | 0 | out_block.truncate(dest_offset); |
1079 | 0 |
|
1080 | 0 | let err_msg = DecodeErrorStatus::CorruptData; |
1081 | 0 | let error = InflateDecodeErrors::new(err_msg, out_block); |
1082 | 0 |
|
1083 | 0 | return Err(error); |
1084 | 0 | } |
1085 | 0 |
|
1086 | 0 | let literal_mask = self.stream.peek_bits::<LITLEN_DECODE_BITS>(); |
1087 | 0 |
|
1088 | 0 | entry = litlen_decode_table[literal_mask]; |
1089 | 0 |
|
1090 | 0 | saved_bitbuf = self.stream.buffer; |
1091 | 0 |
|
1092 | 0 | self.stream.drop_bits((entry & 0xFF) as u8); |
1093 | 0 |
|
1094 | 0 | if (entry & HUFFDEC_SUITABLE_POINTER) != 0 |
1095 | 0 | { |
1096 | 0 | let extra = self.stream.peek_var_bits(((entry >> 8) & 0x3F) as usize); |
1097 | 0 |
|
1098 | 0 | entry = litlen_decode_table[(entry >> 16) as usize + extra]; |
1099 | 0 | saved_bitbuf = self.stream.buffer; |
1100 | 0 |
|
1101 | 0 | self.stream.drop_bits((entry & 0xFF) as u8); |
1102 | 0 | } |
1103 | | |
1104 | 0 | length = (entry >> 16) as usize; |
1105 | 0 |
|
1106 | 0 | if (entry & HUFFDEC_LITERAL) != 0 |
1107 | | { |
1108 | 0 | resize_and_push(&mut out_block, dest_offset, length as u8); |
1109 | 0 |
|
1110 | 0 | dest_offset += 1; |
1111 | 0 |
|
1112 | 0 | continue; |
1113 | 0 | } |
1114 | 0 |
|
1115 | 0 | if (entry & HUFFDEC_END_OF_BLOCK) != 0 |
1116 | | { |
1117 | 0 | break 'decode; |
1118 | 0 | } |
1119 | 0 |
|
1120 | 0 | let mask = (1 << entry as u8) - 1; |
1121 | 0 |
|
1122 | 0 | length += (saved_bitbuf & mask) as usize >> ((entry >> 8) as u8); |
1123 | 0 |
|
1124 | 0 | self.stream.refill(); |
1125 | 0 |
|
1126 | 0 | entry = offset_decode_table[self.stream.peek_bits::<OFFSET_TABLEBITS>()]; |
1127 | 0 |
|
1128 | 0 | if (entry & HUFFDEC_EXCEPTIONAL) != 0 |
1129 | 0 | { |
1130 | 0 | // offset requires a subtable |
1131 | 0 | self.stream.drop_bits(OFFSET_TABLEBITS as u8); |
1132 | 0 |
|
1133 | 0 | let extra = self.stream.peek_var_bits(((entry >> 8) & 0x3F) as usize); |
1134 | 0 |
|
1135 | 0 | entry = offset_decode_table[((entry >> 16) as usize + extra) & 511]; |
1136 | 0 | } |
1137 | | |
1138 | | // ensure there is enough space for a fast copy |
1139 | 0 | if dest_offset + length + FASTCOPY_BYTES > out_block.len() |
1140 | 0 | { |
1141 | 0 | let new_len = out_block.len() + RESIZE_BY + length; |
1142 | 0 | out_block.resize(new_len, 0); |
1143 | 0 | } |
1144 | 0 | saved_bitbuf = self.stream.buffer; |
1145 | 0 |
|
1146 | 0 | let mask = (1 << (entry & 0xFF) as u8) - 1; |
1147 | 0 |
|
1148 | 0 | offset = (entry >> 16) as usize; |
1149 | 0 | offset += (saved_bitbuf & mask) as usize >> ((entry >> 8) as u8); |
1150 | 0 |
|
1151 | 0 | if offset > dest_offset |
1152 | | { |
1153 | 0 | out_block.truncate(dest_offset); |
1154 | 0 |
|
1155 | 0 | let err_msg = DecodeErrorStatus::CorruptData; |
1156 | 0 | let error = InflateDecodeErrors::new(err_msg, out_block); |
1157 | 0 |
|
1158 | 0 | return Err(error); |
1159 | 0 | } |
1160 | 0 |
|
1161 | 0 | src_offset = dest_offset - offset; |
1162 | 0 |
|
1163 | 0 | self.stream.drop_bits(entry as u8); |
1164 | 0 |
|
1165 | 0 | let (dest_src, dest_ptr) = out_block.split_at_mut(dest_offset); |
1166 | 0 |
|
1167 | 0 | if src_offset + length + FASTCOPY_BYTES > dest_offset |
1168 | 0 | { |
1169 | 0 | // overlapping copy |
1170 | 0 | // do a simple rep match |
1171 | 0 | copy_rep_matches(&mut out_block, src_offset, dest_offset, length); |
1172 | 0 | } |
1173 | | else |
1174 | 0 | { |
1175 | 0 | dest_ptr[0..length] |
1176 | 0 | .copy_from_slice(&dest_src[src_offset..src_offset + length]); |
1177 | 0 | } |
1178 | | |
1179 | 0 | dest_offset += length; |
1180 | 0 |
|
1181 | 0 | if dest_offset > self.options.limit |
1182 | | { |
1183 | 0 | out_block.truncate(dest_offset); |
1184 | 0 |
|
1185 | 0 | let err_msg = |
1186 | 0 | DecodeErrorStatus::OutputLimitExceeded(self.options.limit, dest_offset); |
1187 | 0 | let error = InflateDecodeErrors::new(err_msg, out_block); |
1188 | 0 |
|
1189 | 0 | return Err(error); |
1190 | 0 | } |
1191 | | } |
1192 | | } |
1193 | | /* |
1194 | | * If any of the implicit appended zero bytes were consumed (not just |
1195 | | * refilled) before hitting end of stream, then the data is bad. |
1196 | | */ |
1197 | 0 | if self.stream.over_read > usize::from(self.stream.bits_left >> 3) |
1198 | | { |
1199 | 0 | out_block.truncate(dest_offset); |
1200 | 0 |
|
1201 | 0 | let err_msg = DecodeErrorStatus::CorruptData; |
1202 | 0 | let error = InflateDecodeErrors::new(err_msg, out_block); |
1203 | 0 |
|
1204 | 0 | return Err(error); |
1205 | 0 | } |
1206 | 0 |
|
1207 | 0 | if self.is_last_block |
1208 | | { |
1209 | 0 | break; |
1210 | 0 | } |
1211 | | } |
1212 | | |
1213 | | // decompression. DONE |
1214 | | // Truncate data to match the number of actual |
1215 | | // bytes written. |
1216 | 0 | out_block.truncate(dest_offset); |
1217 | 0 |
|
1218 | 0 | Ok(out_block) |
1219 | 0 | } |
1220 | | |
1221 | | /// Build decode tables for static and dynamic |
1222 | | /// huffman blocks. |
1223 | 0 | fn build_decode_table(&mut self, block_type: u64) -> Result<(), DecodeErrorStatus> |
1224 | 0 | { |
1225 | | const COUNT: usize = |
1226 | | DEFLATE_NUM_LITLEN_SYMS + DEFLATE_NUM_OFFSET_SYMS + DELFATE_MAX_LENS_OVERRUN; |
1227 | | |
1228 | 0 | let mut lens = [0_u8; COUNT]; |
1229 | 0 | let mut precode_lens = [0; DEFLATE_NUM_PRECODE_SYMS]; |
1230 | 0 | let mut precode_decode_table = [0_u32; PRECODE_ENOUGH]; |
1231 | 0 | let mut litlen_decode_table = [0_u32; LITLEN_ENOUGH]; |
1232 | 0 | let mut offset_decode_table = [0; OFFSET_ENOUGH]; |
1233 | 0 |
|
1234 | 0 | let mut num_litlen_syms = 0; |
1235 | 0 | let mut num_offset_syms = 0; |
1236 | 0 |
|
1237 | 0 | if block_type == DEFLATE_BLOCKTYPE_DYNAMIC_HUFFMAN |
1238 | | { |
1239 | | const SINGLE_PRECODE: usize = 3; |
1240 | | |
1241 | 0 | self.static_codes_loaded = false; |
1242 | 0 |
|
1243 | 0 | // Dynamic Huffman block |
1244 | 0 | // Read codeword lengths |
1245 | 0 | if !self.stream.has(5 + 5 + 4) |
1246 | | { |
1247 | 0 | return Err(DecodeErrorStatus::InsufficientData); |
1248 | 0 | } |
1249 | 0 |
|
1250 | 0 | num_litlen_syms = 257 + (self.stream.get_bits(5)) as usize; |
1251 | 0 | num_offset_syms = 1 + (self.stream.get_bits(5)) as usize; |
1252 | 0 |
|
1253 | 0 | let num_explicit_precode_lens = 4 + (self.stream.get_bits(4)) as usize; |
1254 | 0 |
|
1255 | 0 | self.stream.refill(); |
1256 | 0 |
|
1257 | 0 | if !self.stream.has(3) |
1258 | | { |
1259 | 0 | return Err(DecodeErrorStatus::InsufficientData); |
1260 | 0 | } |
1261 | 0 |
|
1262 | 0 | let first_precode = self.stream.get_bits(3) as u8; |
1263 | 0 | let expected = (SINGLE_PRECODE * num_explicit_precode_lens.saturating_sub(1)) as u8; |
1264 | 0 |
|
1265 | 0 | precode_lens[usize::from(DEFLATE_PRECODE_LENS_PERMUTATION[0])] = first_precode; |
1266 | 0 |
|
1267 | 0 | self.stream.refill(); |
1268 | 0 |
|
1269 | 0 | if !self.stream.has(expected) |
1270 | | { |
1271 | 0 | return Err(DecodeErrorStatus::InsufficientData); |
1272 | 0 | } |
1273 | | |
1274 | 0 | for i in DEFLATE_PRECODE_LENS_PERMUTATION[1..] |
1275 | 0 | .iter() |
1276 | 0 | .take(num_explicit_precode_lens - 1) |
1277 | 0 | { |
1278 | 0 | let bits = self.stream.get_bits(3) as u8; |
1279 | 0 |
|
1280 | 0 | precode_lens[usize::from(*i)] = bits; |
1281 | 0 | } |
1282 | | |
1283 | 0 | self.build_decode_table_inner( |
1284 | 0 | &precode_lens, |
1285 | 0 | &PRECODE_DECODE_RESULTS, |
1286 | 0 | &mut precode_decode_table, |
1287 | 0 | PRECODE_TABLE_BITS, |
1288 | 0 | DEFLATE_NUM_PRECODE_SYMS, |
1289 | 0 | DEFLATE_MAX_CODEWORD_LENGTH |
1290 | 0 | )?; |
1291 | | |
1292 | | /* Decode the litlen and offset codeword lengths. */ |
1293 | | |
1294 | 0 | let mut i = 0; |
1295 | | |
1296 | | loop |
1297 | | { |
1298 | 0 | if i >= num_litlen_syms + num_offset_syms |
1299 | | { |
1300 | | // confirm here since with a continue loop stuff |
1301 | | // breaks |
1302 | 0 | break; |
1303 | 0 | } |
1304 | 0 |
|
1305 | 0 | let rep_val: u8; |
1306 | 0 | let rep_count: u64; |
1307 | 0 |
|
1308 | 0 | if !self.stream.has(DEFLATE_MAX_PRE_CODEWORD_LEN + 7) |
1309 | 0 | { |
1310 | 0 | self.stream.refill(); |
1311 | 0 | } |
1312 | | // decode next pre-code symbol |
1313 | 0 | let entry_pos = self |
1314 | 0 | .stream |
1315 | 0 | .peek_bits::<{ DEFLATE_MAX_PRE_CODEWORD_LEN as usize }>(); |
1316 | 0 |
|
1317 | 0 | let entry = precode_decode_table[entry_pos]; |
1318 | 0 | let presym = entry >> 16; |
1319 | 0 |
|
1320 | 0 | if !self.stream.has(entry as u8) |
1321 | | { |
1322 | 0 | return Err(DecodeErrorStatus::InsufficientData); |
1323 | 0 | } |
1324 | 0 |
|
1325 | 0 | self.stream.drop_bits(entry as u8); |
1326 | 0 |
|
1327 | 0 | if presym < 16 |
1328 | | { |
1329 | | // explicit codeword length |
1330 | 0 | lens[i] = presym as u8; |
1331 | 0 | i += 1; |
1332 | 0 | continue; |
1333 | 0 | } |
1334 | 0 |
|
1335 | 0 | /* Run-length encoded codeword lengths */ |
1336 | 0 |
|
1337 | 0 | /* |
1338 | 0 | * Note: we don't need verify that the repeat count |
1339 | 0 | * doesn't overflow the number of elements, since we've |
1340 | 0 | * sized the lens array to have enough extra space to |
1341 | 0 | * allow for the worst-case overrun (138 zeroes when |
1342 | 0 | * only 1 length was remaining). |
1343 | 0 | * |
1344 | 0 | * In the case of the small repeat counts (presyms 16 |
1345 | 0 | * and 17), it is fastest to always write the maximum |
1346 | 0 | * number of entries. That gets rid of branches that |
1347 | 0 | * would otherwise be required. |
1348 | 0 | * |
1349 | 0 | * It is not just because of the numerical order that |
1350 | 0 | * our checks go in the order 'presym < 16', 'presym == |
1351 | 0 | * 16', and 'presym == 17'. For typical data this is |
1352 | 0 | * ordered from most frequent to least frequent case. |
1353 | 0 | */ |
1354 | 0 | if presym == 16 |
1355 | | { |
1356 | 0 | if i == 0 |
1357 | | { |
1358 | 0 | return Err(DecodeErrorStatus::CorruptData); |
1359 | 0 | } |
1360 | 0 |
|
1361 | 0 | if !self.stream.has(2) |
1362 | | { |
1363 | 0 | return Err(DecodeErrorStatus::InsufficientData); |
1364 | 0 | } |
1365 | 0 |
|
1366 | 0 | // repeat previous length three to 6 times |
1367 | 0 | rep_val = lens[i - 1]; |
1368 | 0 | rep_count = 3 + self.stream.get_bits(2); |
1369 | 0 | lens[i..i + 6].fill(rep_val); |
1370 | 0 | i += rep_count as usize; |
1371 | | } |
1372 | 0 | else if presym == 17 |
1373 | | { |
1374 | 0 | if !self.stream.has(3) |
1375 | | { |
1376 | 0 | return Err(DecodeErrorStatus::InsufficientData); |
1377 | 0 | } |
1378 | 0 | /* Repeat zero 3 - 10 times. */ |
1379 | 0 | rep_count = 3 + self.stream.get_bits(3); |
1380 | 0 | lens[i..i + 10].fill(0); |
1381 | 0 | i += rep_count as usize; |
1382 | | } |
1383 | | else |
1384 | | { |
1385 | 0 | if !self.stream.has(7) |
1386 | | { |
1387 | 0 | return Err(DecodeErrorStatus::InsufficientData); |
1388 | 0 | } |
1389 | 0 | // repeat zero 11-138 times. |
1390 | 0 | rep_count = 11 + self.stream.get_bits(7); |
1391 | 0 | lens[i..i + rep_count as usize].fill(0); |
1392 | 0 | i += rep_count as usize; |
1393 | | } |
1394 | | |
1395 | 0 | if i >= num_litlen_syms + num_offset_syms |
1396 | | { |
1397 | 0 | break; |
1398 | 0 | } |
1399 | | } |
1400 | | } |
1401 | 0 | else if block_type == DEFLATE_BLOCKTYPE_STATIC |
1402 | | { |
1403 | 0 | if self.static_codes_loaded |
1404 | | { |
1405 | 0 | return Ok(()); |
1406 | 0 | } |
1407 | 0 |
|
1408 | 0 | self.static_codes_loaded = true; |
1409 | 0 |
|
1410 | 0 | lens[000..144].fill(8); |
1411 | 0 | lens[144..256].fill(9); |
1412 | 0 | lens[256..280].fill(7); |
1413 | 0 | lens[280..288].fill(8); |
1414 | 0 | lens[288..].fill(5); |
1415 | 0 |
|
1416 | 0 | num_litlen_syms = 288; |
1417 | 0 | num_offset_syms = 32; |
1418 | 0 | } |
1419 | | // build offset decode table |
1420 | 0 | self.build_decode_table_inner( |
1421 | 0 | &lens[num_litlen_syms..], |
1422 | 0 | &OFFSET_DECODE_RESULTS, |
1423 | 0 | &mut offset_decode_table, |
1424 | 0 | OFFSET_TABLEBITS, |
1425 | 0 | num_offset_syms, |
1426 | 0 | DEFLATE_MAX_OFFSET_CODEWORD_LENGTH |
1427 | 0 | )?; |
1428 | | |
1429 | 0 | self.build_decode_table_inner( |
1430 | 0 | &lens, |
1431 | 0 | &LITLEN_DECODE_RESULTS, |
1432 | 0 | &mut litlen_decode_table, |
1433 | 0 | LITLEN_TABLE_BITS, |
1434 | 0 | num_litlen_syms, |
1435 | 0 | DEFLATE_MAX_LITLEN_CODEWORD_LENGTH |
1436 | 0 | )?; |
1437 | | |
1438 | 0 | self.deflate_header_tables.offset_decode_table = offset_decode_table; |
1439 | 0 | self.deflate_header_tables.litlen_decode_table = litlen_decode_table; |
1440 | 0 |
|
1441 | 0 | Ok(()) |
1442 | 0 | } |
1443 | | /// Build the decode table for the precode |
1444 | | #[allow(clippy::needless_range_loop)] |
1445 | 0 | fn build_decode_table_inner( |
1446 | 0 | &mut self, lens: &[u8], decode_results: &[u32], decode_table: &mut [u32], |
1447 | 0 | table_bits: usize, num_syms: usize, mut max_codeword_len: usize |
1448 | 0 | ) -> Result<(), DecodeErrorStatus> |
1449 | 0 | { |
1450 | | const BITS: u32 = usize::BITS - 1; |
1451 | | |
1452 | 0 | let mut len_counts: [u32; DEFLATE_MAX_CODEWORD_LENGTH + 1] = |
1453 | 0 | [0; DEFLATE_MAX_CODEWORD_LENGTH + 1]; |
1454 | 0 | let mut offsets: [u32; DEFLATE_MAX_CODEWORD_LENGTH + 1] = |
1455 | 0 | [0; DEFLATE_MAX_CODEWORD_LENGTH + 1]; |
1456 | 0 | let mut sorted_syms: [u16; DEFLATE_MAX_NUM_SYMS] = [0; DEFLATE_MAX_NUM_SYMS]; |
1457 | | |
1458 | | let mut i; |
1459 | | |
1460 | | // count how many codewords have each length, including 0. |
1461 | 0 | for sym in 0..num_syms |
1462 | 0 | { |
1463 | 0 | len_counts[usize::from(lens[sym])] += 1; |
1464 | 0 | } |
1465 | | |
1466 | | /* |
1467 | | * Determine the actual maximum codeword length that was used, and |
1468 | | * decrease table_bits to it if allowed. |
1469 | | */ |
1470 | 0 | while max_codeword_len > 1 && len_counts[max_codeword_len] == 0 |
1471 | 0 | { |
1472 | 0 | max_codeword_len -= 1; |
1473 | 0 | } |
1474 | | /* |
1475 | | * Sort the symbols primarily by increasing codeword length and |
1476 | | * A temporary array of length @num_syms. |
1477 | | * secondarily by increasing symbol value; or equivalently by their |
1478 | | * codewords in lexicographic order, since a canonical code is assumed. |
1479 | | * |
1480 | | * For efficiency, also compute 'codespace_used' in the same pass over |
1481 | | * 'len_counts[]' used to build 'offsets[]' for sorting. |
1482 | | */ |
1483 | 0 | offsets[0] = 0; |
1484 | 0 | offsets[1] = len_counts[0]; |
1485 | 0 |
|
1486 | 0 | let mut codespace_used = 0_u32; |
1487 | | |
1488 | 0 | for len in 1..max_codeword_len |
1489 | 0 | { |
1490 | 0 | offsets[len + 1] = offsets[len] + len_counts[len]; |
1491 | 0 | codespace_used = (codespace_used << 1) + len_counts[len]; |
1492 | 0 | } |
1493 | 0 | codespace_used = (codespace_used << 1) + len_counts[max_codeword_len]; |
1494 | | |
1495 | 0 | for sym in 0..num_syms |
1496 | 0 | { |
1497 | 0 | let pos = usize::from(lens[sym]); |
1498 | 0 | sorted_syms[offsets[pos] as usize] = sym as u16; |
1499 | 0 | offsets[pos] += 1; |
1500 | 0 | } |
1501 | 0 | i = (offsets[0]) as usize; |
1502 | 0 |
|
1503 | 0 | /* |
1504 | 0 | * Check whether the lengths form a complete code (exactly fills the |
1505 | 0 | * codespace), an incomplete code (doesn't fill the codespace), or an |
1506 | 0 | * overfull code (overflows the codespace). A codeword of length 'n' |
1507 | 0 | * uses proportion '1/(2^n)' of the codespace. An overfull code is |
1508 | 0 | * nonsensical, so is considered invalid. An incomplete code is |
1509 | 0 | * considered valid only in two specific cases; see below. |
1510 | 0 | */ |
1511 | 0 |
|
1512 | 0 | // Overfull code |
1513 | 0 | if codespace_used > 1 << max_codeword_len |
1514 | | { |
1515 | 0 | return Err(DecodeErrorStatus::Generic("Overflown code")); |
1516 | 0 | } |
1517 | 0 | // incomplete code |
1518 | 0 | if codespace_used < 1 << max_codeword_len |
1519 | | { |
1520 | 0 | let entry = if codespace_used == 0 |
1521 | | { |
1522 | | /* |
1523 | | * An empty code is allowed. This can happen for the |
1524 | | * offset code in DEFLATE, since a dynamic Huffman block |
1525 | | * need not contain any matches. |
1526 | | */ |
1527 | | |
1528 | | /* sym=0, len=1 (arbitrary) */ |
1529 | 0 | make_decode_table_entry(decode_results, 0, 1) |
1530 | | } |
1531 | | else |
1532 | | { |
1533 | | /* |
1534 | | * Allow codes with a single used symbol, with codeword |
1535 | | * length 1. The DEFLATE RFC is unclear regarding this |
1536 | | * case. What zlib's decompressor does is permit this |
1537 | | * for the litlen and offset codes and assume the |
1538 | | * codeword is '0' rather than '1'. We do the same |
1539 | | * except we allow this for precodes too, since there's |
1540 | | * no convincing reason to treat the codes differently. |
1541 | | * We also assign both codewords '0' and '1' to the |
1542 | | * symbol to avoid having to handle '1' specially. |
1543 | | */ |
1544 | 0 | if codespace_used != 1 << (max_codeword_len - 1) || len_counts[1] != 1 |
1545 | | { |
1546 | 0 | return Err(DecodeErrorStatus::Generic( |
1547 | 0 | "Cannot work with empty pre-code table" |
1548 | 0 | )); |
1549 | 0 | } |
1550 | 0 | make_decode_table_entry(decode_results, usize::from(sorted_syms[i]), 1) |
1551 | | }; |
1552 | | /* |
1553 | | * Note: the decode table still must be fully initialized, in |
1554 | | * case the stream is malformed and contains bits from the part |
1555 | | * of the codespace the incomplete code doesn't use. |
1556 | | */ |
1557 | 0 | decode_table.fill(entry); |
1558 | 0 | return Ok(()); |
1559 | 0 | } |
1560 | 0 |
|
1561 | 0 | /* |
1562 | 0 | * The lengths form a complete code. Now, enumerate the codewords in |
1563 | 0 | * lexicographic order and fill the decode table entries for each one. |
1564 | 0 | * |
1565 | 0 | * First, process all codewords with len <= table_bits. Each one gets |
1566 | 0 | * '2^(table_bits-len)' direct entries in the table. |
1567 | 0 | * |
1568 | 0 | * Since DEFLATE uses bit-reversed codewords, these entries aren't |
1569 | 0 | * consecutive but rather are spaced '2^len' entries apart. This makes |
1570 | 0 | * filling them naively somewhat awkward and inefficient, since strided |
1571 | 0 | * stores are less cache-friendly and preclude the use of word or |
1572 | 0 | * vector-at-a-time stores to fill multiple entries per instruction. |
1573 | 0 | * |
1574 | 0 | * To optimize this, we incrementally double the table size. When |
1575 | 0 | * processing codewords with length 'len', the table is treated as |
1576 | 0 | * having only '2^len' entries, so each codeword uses just one entry. |
1577 | 0 | * Then, each time 'len' is incremented, the table size is doubled and |
1578 | 0 | * the first half is copied to the second half. This significantly |
1579 | 0 | * improves performance over naively doing strided stores. |
1580 | 0 | * |
1581 | 0 | * Note that some entries copied for each table doubling may not have |
1582 | 0 | * been initialized yet, but it doesn't matter since they're guaranteed |
1583 | 0 | * to be initialized later (because the Huffman code is complete). |
1584 | 0 | */ |
1585 | 0 | let mut codeword = 0; |
1586 | 0 | let mut len = 1; |
1587 | 0 | let mut count = len_counts[1]; |
1588 | | |
1589 | 0 | while count == 0 |
1590 | | { |
1591 | 0 | len += 1; |
1592 | 0 |
|
1593 | 0 | if len >= len_counts.len() |
1594 | | { |
1595 | 0 | break; |
1596 | 0 | } |
1597 | 0 | count = len_counts[len]; |
1598 | | } |
1599 | | |
1600 | 0 | let mut curr_table_end = 1 << len; |
1601 | | |
1602 | 0 | while len <= table_bits |
1603 | | { |
1604 | | // Process all count codewords with length len |
1605 | | loop |
1606 | | { |
1607 | 0 | let entry = make_decode_table_entry( |
1608 | 0 | decode_results, |
1609 | 0 | usize::from(sorted_syms[i]), |
1610 | 0 | len as u32 |
1611 | 0 | ); |
1612 | 0 | i += 1; |
1613 | 0 | // fill first entry for current codeword |
1614 | 0 | decode_table[codeword] = entry; |
1615 | 0 |
|
1616 | 0 | if codeword == curr_table_end - 1 |
1617 | | { |
1618 | | // last codeword (all 1's) |
1619 | 0 | for _ in len..table_bits |
1620 | 0 | { |
1621 | 0 | decode_table.copy_within(0..curr_table_end, curr_table_end); |
1622 | 0 |
|
1623 | 0 | curr_table_end <<= 1; |
1624 | 0 | } |
1625 | 0 | return Ok(()); |
1626 | 0 | } |
1627 | 0 | /* |
1628 | 0 | * To advance to the lexicographically next codeword in |
1629 | 0 | * the canonical code, the codeword must be incremented, |
1630 | 0 | * then 0's must be appended to the codeword as needed |
1631 | 0 | * to match the next codeword's length. |
1632 | 0 | * |
1633 | 0 | * Since the codeword is bit-reversed, appending 0's is |
1634 | 0 | * a no-op. However, incrementing it is nontrivial. To |
1635 | 0 | * do so efficiently, use the 'bsr' instruction to find |
1636 | 0 | * the last (highest order) 0 bit in the codeword, set |
1637 | 0 | * it, and clear any later (higher order) 1 bits. But |
1638 | 0 | * 'bsr' actually finds the highest order 1 bit, so to |
1639 | 0 | * use it first flip all bits in the codeword by XOR' ing |
1640 | 0 | * it with (1U << len) - 1 == cur_table_end - 1. |
1641 | 0 | */ |
1642 | 0 |
|
1643 | 0 | let adv = BITS - (codeword ^ (curr_table_end - 1)).leading_zeros(); |
1644 | 0 | let bit = 1 << adv; |
1645 | 0 |
|
1646 | 0 | codeword &= bit - 1; |
1647 | 0 | codeword |= bit; |
1648 | 0 | count -= 1; |
1649 | 0 |
|
1650 | 0 | if count == 0 |
1651 | | { |
1652 | 0 | break; |
1653 | 0 | } |
1654 | | } |
1655 | | // advance to the next codeword length |
1656 | | loop |
1657 | | { |
1658 | 0 | len += 1; |
1659 | 0 |
|
1660 | 0 | if len <= table_bits |
1661 | 0 | { |
1662 | 0 | // dest is decode_table[curr_table_end] |
1663 | 0 | // source is decode_table(start of table); |
1664 | 0 | // size is curr_table; |
1665 | 0 |
|
1666 | 0 | decode_table.copy_within(0..curr_table_end, curr_table_end); |
1667 | 0 |
|
1668 | 0 | //decode_table.copy_within(range, curr_table_end); |
1669 | 0 | curr_table_end <<= 1; |
1670 | 0 | } |
1671 | 0 | count = len_counts[len]; |
1672 | 0 |
|
1673 | 0 | if count != 0 |
1674 | | { |
1675 | 0 | break; |
1676 | 0 | } |
1677 | | } |
1678 | | } |
1679 | | // process codewords with len > table_bits. |
1680 | | // Require sub-tables |
1681 | 0 | curr_table_end = 1 << table_bits; |
1682 | 0 |
|
1683 | 0 | let mut subtable_prefix = usize::MAX; |
1684 | 0 | let mut subtable_start = 0; |
1685 | | let mut subtable_bits; |
1686 | | |
1687 | | loop |
1688 | | { |
1689 | | /* |
1690 | | * Start a new sub-table if the first 'table_bits' bits of the |
1691 | | * codeword don't match the prefix of the current subtable. |
1692 | | */ |
1693 | 0 | if codeword & ((1_usize << table_bits) - 1) != subtable_prefix |
1694 | | { |
1695 | 0 | subtable_prefix = codeword & ((1 << table_bits) - 1); |
1696 | 0 | subtable_start = curr_table_end; |
1697 | 0 |
|
1698 | 0 | /* |
1699 | 0 | * Calculate the subtable length. If the codeword has |
1700 | 0 | * length 'table_bits + n', then the subtable needs |
1701 | 0 | * '2^n' entries. But it may need more; if fewer than |
1702 | 0 | * '2^n' codewords of length 'table_bits + n' remain, |
1703 | 0 | * then the length will need to be incremented to bring |
1704 | 0 | * in longer codewords until the subtable can be |
1705 | 0 | * completely filled. Note that because the Huffman |
1706 | 0 | * code is complete, it will always be possible to fill |
1707 | 0 | * the sub-table eventually. |
1708 | 0 | */ |
1709 | 0 | subtable_bits = len - table_bits; |
1710 | 0 | codespace_used = count; |
1711 | | |
1712 | 0 | while codespace_used < (1 << subtable_bits) |
1713 | | { |
1714 | 0 | subtable_bits += 1; |
1715 | 0 |
|
1716 | 0 | if subtable_bits + table_bits > 15 |
1717 | | { |
1718 | 0 | return Err(DecodeErrorStatus::CorruptData); |
1719 | 0 | } |
1720 | 0 |
|
1721 | 0 | codespace_used = (codespace_used << 1) + len_counts[table_bits + subtable_bits]; |
1722 | | } |
1723 | | |
1724 | | /* |
1725 | | * Create the entry that points from the main table to |
1726 | | * the subtable. |
1727 | | */ |
1728 | 0 | decode_table[subtable_prefix] = (subtable_start as u32) << 16 |
1729 | 0 | | HUFFDEC_EXCEPTIONAL |
1730 | 0 | | HUFFDEC_SUITABLE_POINTER |
1731 | 0 | | (subtable_bits as u32) << 8 |
1732 | 0 | | table_bits as u32; |
1733 | 0 |
|
1734 | 0 | curr_table_end = subtable_start + (1 << subtable_bits); |
1735 | 0 | } |
1736 | | |
1737 | | /* Fill the sub-table entries for the current codeword. */ |
1738 | | |
1739 | 0 | let stride = 1 << (len - table_bits); |
1740 | 0 |
|
1741 | 0 | let mut j = subtable_start + (codeword >> table_bits); |
1742 | 0 |
|
1743 | 0 | let entry = make_decode_table_entry( |
1744 | 0 | decode_results, |
1745 | 0 | sorted_syms[i] as usize, |
1746 | 0 | (len - table_bits) as u32 |
1747 | 0 | ); |
1748 | 0 | i += 1; |
1749 | | |
1750 | 0 | while j < curr_table_end |
1751 | 0 | { |
1752 | 0 | decode_table[j] = entry; |
1753 | 0 | j += stride; |
1754 | 0 | } |
1755 | | //advance to the next codeword |
1756 | 0 | if codeword == (1 << len) - 1 |
1757 | | { |
1758 | | // last codeword |
1759 | 0 | return Ok(()); |
1760 | 0 | } |
1761 | 0 |
|
1762 | 0 | let adv = BITS - (codeword ^ ((1 << len) - 1)).leading_zeros(); |
1763 | 0 | let bit = 1 << adv; |
1764 | 0 |
|
1765 | 0 | codeword &= bit - 1; |
1766 | 0 | codeword |= bit; |
1767 | 0 | count -= 1; |
1768 | | |
1769 | 0 | while count == 0 |
1770 | 0 | { |
1771 | 0 | len += 1; |
1772 | 0 | count = len_counts[len]; |
1773 | 0 | } |
1774 | | } |
1775 | 0 | } |
1776 | | } |
1777 | | |
1778 | | const RESIZE_BY: usize = 1024 * 4; // 4 kb |
1779 | | |
1780 | | /// Resize vector if its current space wont |
1781 | | /// be able to store a new byte and then push an element to that new space |
1782 | | #[inline(always)] |
1783 | 0 | fn resize_and_push(buf: &mut Vec<u8>, position: usize, elm: u8) |
1784 | 0 | { |
1785 | 0 | if buf.len() <= position |
1786 | 0 | { |
1787 | 0 | let new_len = buf.len() + RESIZE_BY; |
1788 | 0 | buf.resize(new_len, 0); |
1789 | 0 | } |
1790 | 0 | buf[position] = elm; |
1791 | 0 | } |