Coverage Report

Created: 2025-07-18 06:49

/rust/registry/src/index.crates.io-6f17d22bba15001f/rav1e-0.7.1/src/cdef.rs
Line
Count
Source (jump to first uncovered line)
1
// Copyright (c) 2017-2022, The rav1e contributors. All rights reserved
2
//
3
// This source code is subject to the terms of the BSD 2 Clause License and
4
// the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License
5
// was not distributed with this source code in the LICENSE file, you can
6
// obtain it at www.aomedia.org/license/software. If the Alliance for Open
7
// Media Patent License 1.0 was not distributed with this source code in the
8
// PATENTS file, you can obtain it at www.aomedia.org/license/patent.
9
10
use crate::color::ChromaSampling::Cs400;
11
use crate::context::*;
12
use crate::encoder::FrameInvariants;
13
use crate::frame::*;
14
use crate::tiling::*;
15
use crate::util::{clamp, msb, CastFromPrimitive, Pixel};
16
17
use crate::cpu_features::CpuFeatureLevel;
18
use std::cmp;
19
20
cfg_if::cfg_if! {
21
  if #[cfg(nasm_x86_64)] {
22
    pub(crate) use crate::asm::x86::cdef::*;
23
  } else if #[cfg(asm_neon)] {
24
    pub(crate) use crate::asm::aarch64::cdef::*;
25
  } else {
26
    pub(crate) use self::rust::*;
27
  }
28
}
29
30
pub const CDEF_VERY_LARGE: u16 = 0x8000;
31
// These values match dav1d; flags indicating where padding exists
32
pub const CDEF_HAVE_LEFT: u8 = 1 << 0;
33
pub const CDEF_HAVE_RIGHT: u8 = 1 << 1;
34
pub const CDEF_HAVE_TOP: u8 = 1 << 2;
35
pub const CDEF_HAVE_BOTTOM: u8 = 1 << 3;
36
pub const CDEF_HAVE_ALL: u8 =
37
  CDEF_HAVE_LEFT | CDEF_HAVE_RIGHT | CDEF_HAVE_TOP | CDEF_HAVE_BOTTOM;
38
39
pub(crate) const CDEF_SEC_STRENGTHS: u8 = 4;
40
41
pub struct CdefDirections {
42
  dir: [[u8; 8]; 8],
43
  var: [[i32; 8]; 8],
44
}
45
46
pub(crate) mod rust {
47
  use super::*;
48
49
  use simd_helpers::cold_for_target_arch;
50
51
  // Instead of dividing by n between 2 and 8, we multiply by 3*5*7*8/n.
52
  // The output is then 840 times larger, but we don't care for finding
53
  // the max.
54
  const CDEF_DIV_TABLE: [i32; 9] = [0, 840, 420, 280, 210, 168, 140, 120, 105];
55
56
  /// Returns the position and value of the first instance of the max element in
57
  /// a slice as a tuple.
58
  ///
59
  /// # Arguments
60
  ///
61
  /// * `elems` - A non-empty slice of integers
62
  ///
63
  /// # Panics
64
  ///
65
  /// Panics if `elems` is empty
66
  #[inline]
67
0
  fn first_max_element(elems: &[i32]) -> (usize, i32) {
68
0
    // In case of a tie, the first element must be selected.
69
0
    let (max_idx, max_value) = elems
70
0
      .iter()
71
0
      .enumerate()
72
0
      .max_by_key(|&(i, v)| (v, -(i as isize)))
73
0
      .unwrap();
74
0
    (max_idx, *max_value)
75
0
  }
Unexecuted instantiation: rav1e::cdef::rust::first_max_element
Unexecuted instantiation: rav1e::cdef::rust::first_max_element
76
77
  // Detect direction. 0 means 45-degree up-right, 2 is horizontal, and so on.
78
  // The search minimizes the weighted variance along all the lines in a
79
  // particular direction, i.e. the squared error between the input and a
80
  // "predicted" block where each pixel is replaced by the average along a line
81
  // in a particular direction. Since each direction have the same sum(x^2) term,
82
  // that term is never computed. See Section 2, step 2, of:
83
  // http://jmvalin.ca/notes/intra_paint.pdf
84
0
  pub fn cdef_find_dir<T: Pixel>(
85
0
    img: &PlaneSlice<'_, T>, var: &mut u32, coeff_shift: usize,
86
0
    _cpu: CpuFeatureLevel,
87
0
  ) -> i32 {
88
0
    let mut cost: [i32; 8] = [0; 8];
89
0
    let mut partial: [[i32; 15]; 8] = [[0; 15]; 8];
90
0
    for i in 0..8 {
91
0
      for j in 0..8 {
92
0
        let p: i32 = i32::cast_from(img[i][j]);
93
0
        // We subtract 128 here to reduce the maximum range of the squared
94
0
        // partial sums.
95
0
        debug_assert!(p >> coeff_shift <= 255);
96
0
        let x = (p >> coeff_shift) - 128;
97
0
        partial[0][i + j] += x;
98
0
        partial[1][i + j / 2] += x;
99
0
        partial[2][i] += x;
100
0
        partial[3][3 + i - j / 2] += x;
101
0
        partial[4][7 + i - j] += x;
102
0
        partial[5][3 - i / 2 + j] += x;
103
0
        partial[6][j] += x;
104
0
        partial[7][i / 2 + j] += x;
105
      }
106
    }
107
0
    for i in 0..8 {
108
0
      cost[2] += partial[2][i] * partial[2][i];
109
0
      cost[6] += partial[6][i] * partial[6][i];
110
0
    }
111
0
    cost[2] *= CDEF_DIV_TABLE[8];
112
0
    cost[6] *= CDEF_DIV_TABLE[8];
113
0
    for i in 0..7 {
114
0
      cost[0] += (partial[0][i] * partial[0][i]
115
0
        + partial[0][14 - i] * partial[0][14 - i])
116
0
        * CDEF_DIV_TABLE[i + 1];
117
0
      cost[4] += (partial[4][i] * partial[4][i]
118
0
        + partial[4][14 - i] * partial[4][14 - i])
119
0
        * CDEF_DIV_TABLE[i + 1];
120
0
    }
121
0
    cost[0] += partial[0][7] * partial[0][7] * CDEF_DIV_TABLE[8];
122
0
    cost[4] += partial[4][7] * partial[4][7] * CDEF_DIV_TABLE[8];
123
0
    for i in (1..8).step_by(2) {
124
0
      for j in 0..5 {
125
0
        cost[i] += partial[i][3 + j] * partial[i][3 + j];
126
0
      }
127
0
      cost[i] *= CDEF_DIV_TABLE[8];
128
0
      for j in 0..3 {
129
0
        cost[i] += (partial[i][j] * partial[i][j]
130
0
          + partial[i][10 - j] * partial[i][10 - j])
131
0
          * CDEF_DIV_TABLE[2 * j + 2];
132
0
      }
133
    }
134
135
0
    let (best_dir, best_cost) = first_max_element(&cost);
136
0
    // Difference between the optimal variance and the variance along the
137
0
    // orthogonal direction. Again, the sum(x^2) terms cancel out.
138
0
    // We'd normally divide by 840, but dividing by 1024 is close enough
139
0
    // for what we're going to do with this. */
140
0
    *var = ((best_cost - cost[(best_dir + 4) & 7]) >> 10) as u32;
141
0
142
0
    best_dir as i32
143
0
  }
Unexecuted instantiation: rav1e::cdef::rust::cdef_find_dir::<u16>
Unexecuted instantiation: rav1e::cdef::rust::cdef_find_dir::<u8>
144
145
  #[inline(always)]
146
0
  fn constrain(diff: i32, threshold: i32, damping: i32) -> i32 {
147
0
    if threshold != 0 {
148
0
      let shift = cmp::max(0, damping - msb(threshold));
149
0
      let magnitude = (threshold - (diff.abs() >> shift)).clamp(0, diff.abs());
150
0
151
0
      if diff < 0 {
152
0
        -magnitude
153
      } else {
154
0
        magnitude
155
      }
156
    } else {
157
0
      0
158
    }
159
0
  }
160
161
0
  pub unsafe fn pad_into_tmp16<T: Pixel>(
162
0
    dst: *mut u16, dst_stride: isize, src: *const T, src_stride: isize,
163
0
    block_width: usize, block_height: usize, edges: u8,
164
0
  ) {
165
0
    let mut w = block_width;
166
0
    let mut h = block_height;
167
0
    let (dst_col, src_col) = if (edges & CDEF_HAVE_LEFT) != 0 {
168
0
      w += 2;
169
0
      (dst, src.offset(-2))
170
    } else {
171
0
      (dst.offset(2), src)
172
    };
173
0
    if (edges & CDEF_HAVE_RIGHT) != 0 {
174
0
      w += 2;
175
0
    };
176
177
0
    let (mut dst_ptr, mut src_ptr) = if (edges & CDEF_HAVE_TOP) != 0 {
178
0
      h += 2;
179
0
      (dst_col, src_col.offset(-2 * src_stride))
180
    } else {
181
0
      (dst_col.offset(2 * dst_stride), src_col)
182
    };
183
0
    if (edges & CDEF_HAVE_BOTTOM) != 0 {
184
0
      h += 2;
185
0
    };
186
187
0
    for _y in 0..h {
188
0
      for x in 0..w {
189
0
        *dst_ptr.add(x) = u16::cast_from(*src_ptr.add(x));
190
0
      }
191
0
      src_ptr = src_ptr.offset(src_stride);
192
0
      dst_ptr = dst_ptr.offset(dst_stride);
193
    }
194
0
  }
Unexecuted instantiation: rav1e::cdef::rust::pad_into_tmp16::<u8>
Unexecuted instantiation: rav1e::cdef::rust::pad_into_tmp16::<u16>
195
196
  #[cold_for_target_arch("x86_64")]
197
  #[allow(clippy::erasing_op, clippy::identity_op, clippy::neg_multiply)]
198
0
  pub(crate) unsafe fn cdef_filter_block<T: Pixel, U: Pixel>(
199
0
    dst: &mut PlaneRegionMut<'_, T>, input: *const U, istride: isize,
200
0
    pri_strength: i32, sec_strength: i32, dir: usize, damping: i32,
201
0
    bit_depth: usize, xdec: usize, ydec: usize, edges: u8,
202
0
    _cpu: CpuFeatureLevel,
203
0
  ) {
204
0
    if edges != CDEF_HAVE_ALL {
205
0
      // slowpath for unpadded border[s]
206
0
      let tmpstride = 2 + (8 >> xdec) + 2;
207
0
      let mut tmp = [CDEF_VERY_LARGE; (2 + 8 + 2) * (2 + 8 + 2)];
208
0
      // copy in what pixels we have/are allowed to use
209
0
      pad_into_tmp16(
210
0
        tmp.as_mut_ptr(), // points to *padding* upper left
211
0
        tmpstride,
212
0
        input, // points to *block* upper left
213
0
        istride,
214
0
        8 >> xdec,
215
0
        8 >> ydec,
216
0
        edges,
217
0
      );
218
0
      cdef_filter_block(
219
0
        dst,
220
0
        tmp.as_ptr().offset(2 * tmpstride + 2),
221
0
        tmpstride,
222
0
        pri_strength,
223
0
        sec_strength,
224
0
        dir,
225
0
        damping,
226
0
        bit_depth,
227
0
        xdec,
228
0
        ydec,
229
0
        CDEF_HAVE_ALL,
230
0
        _cpu,
231
0
      );
232
0
    } else {
233
0
      let xsize = (8 >> xdec) as isize;
234
0
      let ysize = (8 >> ydec) as isize;
235
0
      let coeff_shift = bit_depth - 8;
236
0
      let cdef_pri_taps = [[4, 2], [3, 3]];
237
0
      let cdef_sec_taps = [[2, 1], [2, 1]];
238
0
      let pri_taps =
239
0
        cdef_pri_taps[((pri_strength >> coeff_shift) & 1) as usize];
240
0
      let sec_taps =
241
0
        cdef_sec_taps[((pri_strength >> coeff_shift) & 1) as usize];
242
0
      let cdef_directions = [
243
0
        [-1 * istride + 1, -2 * istride + 2],
244
0
        [0 * istride + 1, -1 * istride + 2],
245
0
        [0 * istride + 1, 0 * istride + 2],
246
0
        [0 * istride + 1, 1 * istride + 2],
247
0
        [1 * istride + 1, 2 * istride + 2],
248
0
        [1 * istride + 0, 2 * istride + 1],
249
0
        [1 * istride + 0, 2 * istride + 0],
250
0
        [1 * istride + 0, 2 * istride - 1],
251
0
      ];
252
0
      for i in 0..ysize {
253
0
        for j in 0..xsize {
254
0
          let ptr_in = input.offset(i * istride + j);
255
0
          let x = i32::cast_from(*ptr_in);
256
0
          let mut sum: i32 = 0;
257
0
          let mut max = x;
258
0
          let mut min = x;
259
0
          for k in 0..2usize {
260
0
            let cdef_dirs = [
261
0
              cdef_directions[dir][k],
262
0
              cdef_directions[(dir + 2) & 7][k],
263
0
              cdef_directions[(dir + 6) & 7][k],
264
0
            ];
265
0
            let pri_tap = pri_taps[k];
266
0
            let p = [
267
0
              i32::cast_from(*ptr_in.offset(cdef_dirs[0])),
268
0
              i32::cast_from(*ptr_in.offset(-cdef_dirs[0])),
269
0
            ];
270
0
            for p_elem in p.iter() {
271
0
              sum += pri_tap * constrain(*p_elem - x, pri_strength, damping);
272
0
              if *p_elem != CDEF_VERY_LARGE as i32 {
273
0
                max = cmp::max(*p_elem, max);
274
0
              }
275
0
              min = cmp::min(*p_elem, min);
276
            }
277
278
0
            let s = [
279
0
              i32::cast_from(*ptr_in.offset(cdef_dirs[1])),
280
0
              i32::cast_from(*ptr_in.offset(-cdef_dirs[1])),
281
0
              i32::cast_from(*ptr_in.offset(cdef_dirs[2])),
282
0
              i32::cast_from(*ptr_in.offset(-cdef_dirs[2])),
283
0
            ];
284
0
            let sec_tap = sec_taps[k];
285
0
            for s_elem in s.iter() {
286
0
              if *s_elem != CDEF_VERY_LARGE as i32 {
287
0
                max = cmp::max(*s_elem, max);
288
0
              }
289
0
              min = cmp::min(*s_elem, min);
290
0
              sum += sec_tap * constrain(*s_elem - x, sec_strength, damping);
291
            }
292
          }
293
0
          let v = x + ((8 + sum - (sum < 0) as i32) >> 4);
294
0
          dst[i as usize][j as usize] = T::cast_from(clamp(v, min, max));
295
        }
296
      }
297
    }
298
0
  }
Unexecuted instantiation: rav1e::cdef::rust::cdef_filter_block::<u16, u16>
Unexecuted instantiation: rav1e::cdef::rust::cdef_filter_block::<u8, u8>
Unexecuted instantiation: rav1e::cdef::rust::cdef_filter_block::<u8, u16>
299
300
  #[cfg(test)]
301
  mod test {
302
    use super::*;
303
304
    #[test]
305
    fn check_max_element() {
306
      assert_eq!(first_max_element(&[-1, -1, 1, 2, 3, 4, 6, 6]), (6, 6));
307
      assert_eq!(first_max_element(&[-1, -1, 1, 2, 3, 4, 7, 6]), (6, 7));
308
      assert_eq!(first_max_element(&[0, 0]), (0, 0));
309
    }
310
  }
311
}
312
313
// We use the variance of an 8x8 block to adjust the effective filter strength.
314
#[inline]
315
0
fn adjust_strength(strength: i32, var: i32) -> i32 {
316
0
  let i = if (var >> 6) != 0 { cmp::min(msb(var >> 6), 12) } else { 0 };
317
0
  if var != 0 {
318
0
    (strength * (4 + i) + 8) >> 4
319
  } else {
320
0
    0
321
  }
322
0
}
Unexecuted instantiation: rav1e::cdef::adjust_strength
Unexecuted instantiation: rav1e::cdef::adjust_strength
323
324
0
#[profiling::function]
Unexecuted instantiation: rav1e::cdef::cdef_analyze_superblock_range::<u16>
Unexecuted instantiation: rav1e::cdef::cdef_analyze_superblock_range::<u8>
325
pub fn cdef_analyze_superblock_range<T: Pixel>(
326
  fi: &FrameInvariants<T>, in_frame: &Frame<T>, blocks: &TileBlocks<'_>,
327
  sb_w: usize, sb_h: usize,
328
) -> Vec<CdefDirections> {
329
  let mut ret = Vec::<CdefDirections>::with_capacity(sb_h * sb_w);
330
  for sby in 0..sb_h {
331
    for sbx in 0..sb_w {
332
      let sbo = TileSuperBlockOffset(SuperBlockOffset { x: sbx, y: sby });
333
      ret.push(cdef_analyze_superblock(fi, in_frame, blocks, sbo));
334
    }
335
  }
336
  ret
337
}
338
339
0
#[profiling::function]
Unexecuted instantiation: rav1e::cdef::cdef_analyze_superblock::<u16>
Unexecuted instantiation: rav1e::cdef::cdef_analyze_superblock::<u8>
340
pub fn cdef_analyze_superblock<T: Pixel>(
341
  fi: &FrameInvariants<T>, in_frame: &Frame<T>, blocks: &TileBlocks<'_>,
342
  sbo: TileSuperBlockOffset,
343
) -> CdefDirections {
344
  let coeff_shift = fi.sequence.bit_depth - 8;
345
  let mut dir: CdefDirections =
346
    CdefDirections { dir: [[0; 8]; 8], var: [[0; 8]; 8] };
347
  // Each direction block is 8x8 in y, and direction computation only looks at y
348
  for by in 0..8 {
349
    for bx in 0..8 {
350
      let block_offset = sbo.block_offset(bx << 1, by << 1);
351
      if block_offset.0.x < blocks.cols() && block_offset.0.y < blocks.rows() {
352
        let skip = blocks[block_offset].skip
353
          & blocks[sbo.block_offset(2 * bx + 1, 2 * by)].skip
354
          & blocks[sbo.block_offset(2 * bx, 2 * by + 1)].skip
355
          & blocks[sbo.block_offset(2 * bx + 1, 2 * by + 1)].skip;
356
357
        if !skip {
358
          let mut var: u32 = 0;
359
          let in_plane = &in_frame.planes[0];
360
          let in_po = sbo.plane_offset(&in_plane.cfg);
361
          let in_slice = in_plane.slice(in_po);
362
          dir.dir[bx][by] = cdef_find_dir::<T>(
363
            &in_slice.reslice(8 * bx as isize, 8 * by as isize),
364
            &mut var,
365
            coeff_shift,
366
            fi.cpu_feature_level,
367
          ) as u8;
368
          dir.var[bx][by] = var as i32;
369
        }
370
      }
371
    }
372
  }
373
  dir
374
}
375
376
//   input: A Frame of reconstructed/deblocked pixels prepared to
377
//   undergo CDEF. Note that the input is a Frame and not a Tile due to
378
//   Tiles not allowing [supervised] out-of-rect access for padding
379
//   pixels.  This will be corrected at some point in the future.
380
381
//   tile_sbo: specifies an offset into the output Tile, not an
382
//   absolute offset in the visible frame.  The Tile's own offset is
383
//   added to this in order to address into the input Frame.
384
385
//   tb: the TileBlocks associated with the filtered region; the
386
//   provided blocks co-locate with the output region.  The TileBlocks
387
//   provide by-[super]qblock CDEF parameters.
388
389
//   output: TileMut destination for filtered pixels.  The output's
390
//   rect specifies the region of the input to be processed (x and y
391
//   are relative to the input Frame's origin).  Note that an
392
//   additional area of 2 pixels of padding is used for CDEF.  When
393
//   these pixels are unavailable (beyond the visible frame or at a
394
//   tile boundary), the filtering process ignores input pixels that
395
//   don't exist.
396
397
/// # Panics
398
///
399
/// - If called with invalid parameters
400
0
#[profiling::function]
Unexecuted instantiation: rav1e::cdef::cdef_filter_superblock::<u16>
Unexecuted instantiation: rav1e::cdef::cdef_filter_superblock::<u8>
401
pub fn cdef_filter_superblock<T: Pixel>(
402
  fi: &FrameInvariants<T>, input: &Frame<T>, output: &mut TileMut<'_, T>,
403
  blocks: &TileBlocks<'_>, tile_sbo: TileSuperBlockOffset, cdef_index: u8,
404
  cdef_dirs: &CdefDirections,
405
) {
406
  let bit_depth = fi.sequence.bit_depth;
407
  let coeff_shift = fi.sequence.bit_depth as i32 - 8;
408
  let cdef_damping = fi.cdef_damping as i32;
409
  let cdef_y_strength = fi.cdef_y_strengths[cdef_index as usize];
410
  let cdef_uv_strength = fi.cdef_uv_strengths[cdef_index as usize];
411
  let cdef_pri_y_strength = (cdef_y_strength / CDEF_SEC_STRENGTHS) as i32;
412
  let mut cdef_sec_y_strength = (cdef_y_strength % CDEF_SEC_STRENGTHS) as i32;
413
  let cdef_pri_uv_strength = (cdef_uv_strength / CDEF_SEC_STRENGTHS) as i32;
414
  let planes = if fi.sequence.chroma_sampling == Cs400 { 1 } else { 3 };
415
  let mut cdef_sec_uv_strength =
416
    (cdef_uv_strength % CDEF_SEC_STRENGTHS) as i32;
417
  if cdef_sec_y_strength == 3 {
418
    cdef_sec_y_strength += 1;
419
  }
420
  if cdef_sec_uv_strength == 3 {
421
    cdef_sec_uv_strength += 1;
422
  }
423
424
  let tile_rect = *output.planes[0].rect();
425
  let input_xoffset =
426
    tile_rect.x + tile_sbo.plane_offset(&input.planes[0].cfg).x;
427
  let input_yoffset =
428
    tile_rect.y + tile_sbo.plane_offset(&input.planes[0].cfg).y;
429
  let input_xavail = input.planes[0].cfg.width as isize - input_xoffset;
430
  let input_yavail = input.planes[0].cfg.height as isize - input_yoffset;
431
432
  /* determine what edge padding we have, and what padding we don't.
433
   * We don't pad here, but rather tell the filter_block call what it
434
   * needs to do, then let it handle the specifics (following dav1d's
435
   * lead).  We make one assumption that's not obvious: Because the
436
   * cdef clipping area is rounded up to an even 8x8 luma block, we
437
   * don't need to guard against having only one (as opposed to two)
438
   * pixels of padding past the current block boundary.  The padding
439
   * is all-or-nothing. */
440
441
  // Slightly harder than in dav1d; we're not always doing full-frame.
442
  let have_top_p =
443
    if tile_sbo.0.y as isize + tile_rect.y > 0 { CDEF_HAVE_TOP } else { 0 };
444
  let have_left_p =
445
    if tile_sbo.0.x as isize + tile_rect.x > 0 { CDEF_HAVE_LEFT } else { 0 };
446
  let mut edges = have_top_p | CDEF_HAVE_BOTTOM;
447
448
  // Each direction block is 8x8 in y, potentially smaller if subsampled in chroma
449
  for by in 0..8usize {
450
    if by + 1 >= (input_yavail as usize >> 3) {
451
      edges &= !CDEF_HAVE_BOTTOM
452
    };
453
    edges &= !CDEF_HAVE_LEFT;
454
    edges |= have_left_p;
455
    edges |= CDEF_HAVE_RIGHT;
456
    for bx in 0..8usize {
457
      if bx + 1 >= (input_xavail as usize >> 3) {
458
        edges &= !CDEF_HAVE_RIGHT
459
      };
460
      let block_offset = tile_sbo.block_offset(bx << 1, by << 1);
461
      if block_offset.0.x < blocks.cols() && block_offset.0.y < blocks.rows() {
462
        let skip = blocks[block_offset].skip
463
          & blocks[tile_sbo.block_offset(2 * bx + 1, 2 * by)].skip
464
          & blocks[tile_sbo.block_offset(2 * bx, 2 * by + 1)].skip
465
          & blocks[tile_sbo.block_offset(2 * bx + 1, 2 * by + 1)].skip;
466
        let dir = cdef_dirs.dir[bx][by];
467
        let var = cdef_dirs.var[bx][by];
468
        for p in 0..planes {
469
          let out_plane = &mut output.planes[p];
470
          let in_plane = &input.planes[p];
471
          let xdec = in_plane.cfg.xdec;
472
          let ydec = in_plane.cfg.ydec;
473
          let xsize = 8 >> xdec;
474
          let ysize = 8 >> ydec;
475
          let in_po = PlaneOffset {
476
            x: (input_xoffset >> xdec) + (bx * xsize) as isize,
477
            y: (input_yoffset >> ydec) + (by * ysize) as isize,
478
          };
479
          let in_stride = in_plane.cfg.stride;
480
          let in_slice = &in_plane.slice(in_po);
481
482
          let out_block = &mut out_plane.subregion_mut(Area::BlockRect {
483
            bo: tile_sbo.block_offset(2 * bx, 2 * by).0,
484
            width: xsize,
485
            height: ysize,
486
          });
487
488
          if !skip {
489
            let local_pri_strength;
490
            let local_sec_strength;
491
            let mut local_damping: i32 = cdef_damping + coeff_shift;
492
            // See `Cdef_Uv_Dir` constant lookup table in Section 7.15.1
493
            // <https://aomediacodec.github.io/av1-spec/#cdef-block-process>
494
            let local_dir = if p == 0 {
495
              local_pri_strength =
496
                adjust_strength(cdef_pri_y_strength << coeff_shift, var);
497
              local_sec_strength = cdef_sec_y_strength << coeff_shift;
498
              if cdef_pri_y_strength != 0 {
499
                dir as usize
500
              } else {
501
                0
502
              }
503
            } else {
504
              local_pri_strength = cdef_pri_uv_strength << coeff_shift;
505
              local_sec_strength = cdef_sec_uv_strength << coeff_shift;
506
              local_damping -= 1;
507
              if cdef_pri_uv_strength != 0 {
508
                if xdec != ydec {
509
                  [7, 0, 2, 4, 5, 6, 6, 6][dir as usize]
510
                } else {
511
                  dir as usize
512
                }
513
              } else {
514
                0
515
              }
516
            };
517
518
            // SAFETY: `cdef_filter_block` may call Assembly code.
519
            // The asserts here verify that we are not calling it
520
            // with invalid parameters.
521
            unsafe {
522
              assert!(
523
                input.planes[p].cfg.width as isize
524
                  >= in_po.x
525
                    + xsize as isize
526
                    + if edges & CDEF_HAVE_RIGHT > 0 { 2 } else { 0 }
527
              );
528
              assert!(
529
                0 <= in_po.x - if edges & CDEF_HAVE_LEFT > 0 { 2 } else { 0 }
530
              );
531
              assert!(
532
                input.planes[p].cfg.height as isize
533
                  >= in_po.y
534
                    + ysize as isize
535
                    + if edges & CDEF_HAVE_BOTTOM > 0 { 2 } else { 0 }
536
              );
537
              assert!(
538
                0 <= in_po.y - if edges & CDEF_HAVE_TOP > 0 { 2 } else { 0 }
539
              );
540
541
              cdef_filter_block(
542
                out_block,
543
                in_slice.as_ptr(),
544
                in_stride as isize,
545
                local_pri_strength,
546
                local_sec_strength,
547
                local_dir,
548
                local_damping,
549
                bit_depth,
550
                xdec,
551
                ydec,
552
                edges,
553
                fi.cpu_feature_level,
554
              );
555
            }
556
          } else {
557
            // no filtering, but we need to copy input to output
558
            for i in 0..ysize {
559
              for j in 0..xsize {
560
                out_block[i][j] = in_slice[i][j];
561
              }
562
            }
563
          }
564
        }
565
      }
566
      edges |= CDEF_HAVE_LEFT;
567
    }
568
    edges |= CDEF_HAVE_TOP;
569
  }
570
}
571
572
// The purpose of CDEF is to perform deringing based on the detected
573
// direction of blocks.  CDEF parameters are stored for each 64 by 64
574
// block of pixels.  The CDEF filter is applied on each 8 by 8 block
575
// of pixels.  Reference:
576
// http://av1-spec.argondesign.com/av1-spec/av1-spec.html#cdef-process
577
578
//   input: A Frame of reconstructed/deblocked pixels prepared to
579
//   undergo CDEF.  cdef_filter_tile acts on a subset of these input
580
//   pixels, as specified by the PlaneRegion rect of the output. Note
581
//   that the input is a Frame and not a Tile due to Tiles not
582
//   allowing [supervised] out-of-rect access for padding pixels.
583
//   This will be corrected at some point in the future.
584
585
//   tb: the TileBlocks associated with the filtered region; the
586
//   provided blocks co-locate with the output region.
587
588
//   output: TileMut destination for filtered pixels.  The output's
589
//   rect specifies the region of the input to be processed (x and y
590
//   are relative to the input Frame's origin).  Note that an
591
//   additional area of 2 pixels of padding is used for CDEF.  When
592
//   these pixels are unavailable (beyond the visible frame or at a
593
//   tile boundary), the filtering process ignores input pixels that
594
//   don't exist.
595
596
0
#[profiling::function]
Unexecuted instantiation: rav1e::cdef::cdef_filter_tile::<u16>
Unexecuted instantiation: rav1e::cdef::cdef_filter_tile::<u8>
597
pub fn cdef_filter_tile<T: Pixel>(
598
  fi: &FrameInvariants<T>, input: &Frame<T>, tb: &TileBlocks,
599
  output: &mut TileMut<'_, T>,
600
) {
601
  // Each filter block is 64x64, except right and/or bottom for non-multiple-of-64 sizes.
602
  // FIXME: 128x128 SB support will break this, we need FilterBlockOffset etc.
603
604
  // No need to guard against having fewer actual coded blocks than
605
  // the output.rect() area.  Inner code already guards this case.
606
  let fb_width = (output.planes[0].rect().width + 63) / 64;
607
  let fb_height = (output.planes[0].rect().height + 63) / 64;
608
609
  // should parallelize this
610
  for fby in 0..fb_height {
611
    for fbx in 0..fb_width {
612
      // tile_sbo is treated as an offset into the Tiles' plane
613
      // regions, not as an absolute offset in the visible frame.  The
614
      // Tile's own offset is added to this in order to address into
615
      // the input Frame.
616
      let tile_sbo = TileSuperBlockOffset(SuperBlockOffset { x: fbx, y: fby });
617
      let cdef_index = tb.get_cdef(tile_sbo);
618
      let cdef_dirs = cdef_analyze_superblock(fi, input, tb, tile_sbo);
619
620
      cdef_filter_superblock(
621
        fi, input, output, tb, tile_sbo, cdef_index, &cdef_dirs,
622
      );
623
    }
624
  }
625
}