/rust/registry/src/index.crates.io-1949cf8c6b5b557f/pxfm-0.1.25/src/acospi.rs
Line | Count | Source |
1 | | /* |
2 | | * // Copyright (c) Radzivon Bartoshyk 6/2025. All rights reserved. |
3 | | * // |
4 | | * // Redistribution and use in source and binary forms, with or without modification, |
5 | | * // are permitted provided that the following conditions are met: |
6 | | * // |
7 | | * // 1. Redistributions of source code must retain the above copyright notice, this |
8 | | * // list of conditions and the following disclaimer. |
9 | | * // |
10 | | * // 2. Redistributions in binary form must reproduce the above copyright notice, |
11 | | * // this list of conditions and the following disclaimer in the documentation |
12 | | * // and/or other materials provided with the distribution. |
13 | | * // |
14 | | * // 3. Neither the name of the copyright holder nor the names of its |
15 | | * // contributors may be used to endorse or promote products derived from |
16 | | * // this software without specific prior written permission. |
17 | | * // |
18 | | * // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" |
19 | | * // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
20 | | * // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE |
21 | | * // DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE |
22 | | * // FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL |
23 | | * // DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR |
24 | | * // SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER |
25 | | * // CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, |
26 | | * // OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE |
27 | | * // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
28 | | */ |
29 | | use crate::asin::asin_eval; |
30 | | use crate::asin_eval_dyadic::asin_eval_dyadic; |
31 | | use crate::common::f_fmla; |
32 | | use crate::double_double::DoubleDouble; |
33 | | use crate::dyadic_float::{DyadicFloat128, DyadicSign}; |
34 | | use crate::rounding::CpuRound; |
35 | | |
36 | | pub(crate) const INV_PI_DD: DoubleDouble = DoubleDouble::new( |
37 | | f64::from_bits(0xbc76b01ec5417056), |
38 | | f64::from_bits(0x3fd45f306dc9c883), |
39 | | ); |
40 | | |
41 | | // 1/PI with 128-bit precision generated by SageMath with: |
42 | | // def format_hex(value): |
43 | | // l = hex(value)[2:] |
44 | | // n = 8 |
45 | | // x = [l[i:i + n] for i in range(0, len(l), n)] |
46 | | // return "0x" + "'".join(x) + "_u128" |
47 | | // r = 1/pi |
48 | | // (s, m, e) = RealField(128)(r).sign_mantissa_exponent(); |
49 | | // print(format_hex(m)); |
50 | | pub(crate) const INV_PI_F128: DyadicFloat128 = DyadicFloat128 { |
51 | | sign: DyadicSign::Pos, |
52 | | exponent: -129, |
53 | | mantissa: 0xa2f9836e_4e441529_fc2757d1_f534ddc1_u128, |
54 | | }; |
55 | | |
56 | | pub(crate) const PI_OVER_TWO_F128: DyadicFloat128 = DyadicFloat128 { |
57 | | sign: DyadicSign::Pos, |
58 | | exponent: -127, |
59 | | mantissa: 0xc90fdaa2_2168c234_c4c6628b_80dc1cd1_u128, |
60 | | }; |
61 | | |
62 | | /// Computes acos(x)/PI |
63 | | /// |
64 | | /// Max ULP 0.5 |
65 | 0 | pub fn f_acospi(x: f64) -> f64 { |
66 | 0 | let x_e = (x.to_bits() >> 52) & 0x7ff; |
67 | | const E_BIAS: u64 = (1u64 << (11 - 1u64)) - 1u64; |
68 | | |
69 | | const PI_OVER_TWO: DoubleDouble = DoubleDouble::new( |
70 | | f64::from_bits(0x3c91a62633145c07), |
71 | | f64::from_bits(0x3ff921fb54442d18), |
72 | | ); |
73 | | |
74 | 0 | let x_abs = f64::from_bits(x.to_bits() & 0x7fff_ffff_ffff_ffff); |
75 | | |
76 | | // |x| < 0.5. |
77 | 0 | if x_e < E_BIAS - 1 { |
78 | | // |x| < 2^-55. |
79 | 0 | if x_e < E_BIAS - 55 { |
80 | | // When |x| < 2^-55, acos(x) = pi/2 |
81 | 0 | return f_fmla(f64::from_bits(0xbc80000000000000), x, 0.5); |
82 | 0 | } |
83 | | |
84 | 0 | let x_sq = DoubleDouble::from_exact_mult(x, x); |
85 | 0 | let err = x_abs * f64::from_bits(0x3cc0000000000000); |
86 | | // Polynomial approximation: |
87 | | // p ~ asin(x)/x |
88 | 0 | let (p, err) = asin_eval(x_sq, err); |
89 | | // asin(x) ~ x * p |
90 | 0 | let r0 = DoubleDouble::from_exact_mult(x, p.hi); |
91 | | // acos(x) = pi/2 - asin(x) |
92 | | // ~ pi/2 - x * p |
93 | | // = pi/2 - x * (p.hi + p.lo) |
94 | 0 | let mut r_hi = f_fmla(-x, p.hi, PI_OVER_TWO.hi); |
95 | | // Use Dekker's 2SUM algorithm to compute the lower part. |
96 | 0 | let mut r_lo = ((PI_OVER_TWO.hi - r_hi) - r0.hi) - r0.lo; |
97 | 0 | r_lo = f_fmla(-x, p.lo, r_lo + PI_OVER_TWO.lo); |
98 | | |
99 | 0 | let p = DoubleDouble::mult(DoubleDouble::new(r_lo, r_hi), INV_PI_DD); |
100 | 0 | r_hi = p.hi; |
101 | 0 | r_lo = p.lo; |
102 | | |
103 | 0 | let r_upper = r_hi + (r_lo + err); |
104 | 0 | let r_lower = r_hi + (r_lo - err); |
105 | | |
106 | 0 | if r_upper == r_lower { |
107 | 0 | return r_upper; |
108 | 0 | } |
109 | | |
110 | | // Ziv's accuracy test failed, perform 128-bit calculation. |
111 | | |
112 | | // Recalculate mod 1/64. |
113 | 0 | let idx = (x_sq.hi * f64::from_bits(0x4050000000000000)).cpu_round() as usize; |
114 | | |
115 | | // Get x^2 - idx/64 exactly. When FMA is available, double-double |
116 | | // multiplication will be correct for all rounding modes. Otherwise, we use |
117 | | // Float128 directly. |
118 | 0 | let mut x_f128 = DyadicFloat128::new_from_f64(x); |
119 | | |
120 | | let u: DyadicFloat128; |
121 | | #[cfg(any( |
122 | | all( |
123 | | any(target_arch = "x86", target_arch = "x86_64"), |
124 | | target_feature = "fma" |
125 | | ), |
126 | | target_arch = "aarch64" |
127 | | ))] |
128 | | { |
129 | | // u = x^2 - idx/64 |
130 | | let u_hi = DyadicFloat128::new_from_f64(f_fmla( |
131 | | idx as f64, |
132 | | f64::from_bits(0xbf90000000000000), |
133 | | x_sq.hi, |
134 | | )); |
135 | | u = u_hi.quick_add(&DyadicFloat128::new_from_f64(x_sq.lo)); |
136 | | } |
137 | | |
138 | | #[cfg(not(any( |
139 | | all( |
140 | | any(target_arch = "x86", target_arch = "x86_64"), |
141 | | target_feature = "fma" |
142 | | ), |
143 | | target_arch = "aarch64" |
144 | | )))] |
145 | 0 | { |
146 | 0 | let x_sq_f128 = x_f128.quick_mul(&x_f128); |
147 | 0 | u = x_sq_f128.quick_add(&DyadicFloat128::new_from_f64( |
148 | 0 | idx as f64 * f64::from_bits(0xbf90000000000000), |
149 | 0 | )); |
150 | 0 | } |
151 | | |
152 | 0 | let p_f128 = asin_eval_dyadic(u, idx); |
153 | | // Flip the sign of x_f128 to perform subtraction. |
154 | 0 | x_f128.sign = x_f128.sign.negate(); |
155 | 0 | let mut r = PI_OVER_TWO_F128.quick_add(&x_f128.quick_mul(&p_f128)); |
156 | 0 | r = r.quick_mul(&INV_PI_F128); |
157 | 0 | return r.fast_as_f64(); |
158 | 0 | } |
159 | | |
160 | | // |x| >= 0.5 |
161 | | |
162 | | const PI: DoubleDouble = DoubleDouble::new( |
163 | | f64::from_bits(0x3ca1a62633145c07), |
164 | | f64::from_bits(0x400921fb54442d18), |
165 | | ); |
166 | | |
167 | | // |x| >= 1 |
168 | 0 | if x_e >= E_BIAS { |
169 | | // x = +-1, asin(x) = +- pi/2 |
170 | 0 | if x_abs == 1.0 { |
171 | | // x = 1, acos(x) = 0, |
172 | | // x = -1, acos(x) = pi |
173 | 0 | return if x == 1.0 { 0.0 } else { 1.0 }; |
174 | 0 | } |
175 | | // |x| > 1, return NaN. |
176 | 0 | return f64::NAN; |
177 | 0 | } |
178 | | |
179 | | // When |x| >= 0.5, we perform range reduction as follow: |
180 | | // |
181 | | // When 0.5 <= x < 1, let: |
182 | | // y = acos(x) |
183 | | // We will use the double angle formula: |
184 | | // cos(2y) = 1 - 2 sin^2(y) |
185 | | // and the complement angle identity: |
186 | | // x = cos(y) = 1 - 2 sin^2 (y/2) |
187 | | // So: |
188 | | // sin(y/2) = sqrt( (1 - x)/2 ) |
189 | | // And hence: |
190 | | // y/2 = asin( sqrt( (1 - x)/2 ) ) |
191 | | // Equivalently: |
192 | | // acos(x) = y = 2 * asin( sqrt( (1 - x)/2 ) ) |
193 | | // Let u = (1 - x)/2, then: |
194 | | // acos(x) = 2 * asin( sqrt(u) ) |
195 | | // Moreover, since 0.5 <= x < 1: |
196 | | // 0 < u <= 1/4, and 0 < sqrt(u) <= 0.5, |
197 | | // And hence we can reuse the same polynomial approximation of asin(x) when |
198 | | // |x| <= 0.5: |
199 | | // acos(x) ~ 2 * sqrt(u) * P(u). |
200 | | // |
201 | | // When -1 < x <= -0.5, we reduce to the previous case using the formula: |
202 | | // acos(x) = pi - acos(-x) |
203 | | // = pi - 2 * asin ( sqrt( (1 + x)/2 ) ) |
204 | | // ~ pi - 2 * sqrt(u) * P(u), |
205 | | // where u = (1 - |x|)/2. |
206 | | |
207 | | // u = (1 - |x|)/2 |
208 | 0 | let u = f_fmla(x_abs, -0.5, 0.5); |
209 | | // v_hi + v_lo ~ sqrt(u). |
210 | | // Let: |
211 | | // h = u - v_hi^2 = (sqrt(u) - v_hi) * (sqrt(u) + v_hi) |
212 | | // Then: |
213 | | // sqrt(u) = v_hi + h / (sqrt(u) + v_hi) |
214 | | // ~ v_hi + h / (2 * v_hi) |
215 | | // So we can use: |
216 | | // v_lo = h / (2 * v_hi). |
217 | 0 | let v_hi = u.sqrt(); |
218 | | |
219 | | let h; |
220 | | #[cfg(any( |
221 | | all( |
222 | | any(target_arch = "x86", target_arch = "x86_64"), |
223 | | target_feature = "fma" |
224 | | ), |
225 | | target_arch = "aarch64" |
226 | | ))] |
227 | | { |
228 | | h = f_fmla(v_hi, -v_hi, u); |
229 | | } |
230 | | #[cfg(not(any( |
231 | | all( |
232 | | any(target_arch = "x86", target_arch = "x86_64"), |
233 | | target_feature = "fma" |
234 | | ), |
235 | | target_arch = "aarch64" |
236 | | )))] |
237 | 0 | { |
238 | 0 | let v_hi_sq = DoubleDouble::from_exact_mult(v_hi, v_hi); |
239 | 0 | h = (u - v_hi_sq.hi) - v_hi_sq.lo; |
240 | 0 | } |
241 | | |
242 | | // Scale v_lo and v_hi by 2 from the formula: |
243 | | // vh = v_hi * 2 |
244 | | // vl = 2*v_lo = h / v_hi. |
245 | 0 | let vh = v_hi * 2.0; |
246 | 0 | let vl = h / v_hi; |
247 | | |
248 | | // Polynomial approximation: |
249 | | // p ~ asin(sqrt(u))/sqrt(u) |
250 | 0 | let err = vh * f64::from_bits(0x3cc0000000000000); |
251 | | |
252 | 0 | let (p, err) = asin_eval(DoubleDouble::new(0.0, u), err); |
253 | | |
254 | | // Perform computations in double-double arithmetic: |
255 | | // asin(x) = pi/2 - (v_hi + v_lo) * (ASIN_COEFFS[idx][0] + p) |
256 | 0 | let r0 = DoubleDouble::quick_mult(DoubleDouble::new(vl, vh), p); |
257 | | |
258 | | let mut r_hi; |
259 | | let mut r_lo; |
260 | 0 | if x.is_sign_positive() { |
261 | 0 | r_hi = r0.hi; |
262 | 0 | r_lo = r0.lo; |
263 | 0 | } else { |
264 | 0 | let r = DoubleDouble::from_exact_add(PI.hi, -r0.hi); |
265 | 0 | r_hi = r.hi; |
266 | 0 | r_lo = (PI.lo - r0.lo) + r.lo; |
267 | 0 | } |
268 | | |
269 | 0 | let p = DoubleDouble::mult(DoubleDouble::new(r_lo, r_hi), INV_PI_DD); |
270 | 0 | r_hi = p.hi; |
271 | 0 | r_lo = p.lo; |
272 | | |
273 | 0 | let r_upper = r_hi + (r_lo + err); |
274 | 0 | let r_lower = r_hi + (r_lo - err); |
275 | | |
276 | 0 | if r_upper == r_lower { |
277 | 0 | return r_upper; |
278 | 0 | } |
279 | | |
280 | | // Ziv's accuracy test failed, we redo the computations in Float128. |
281 | | // Recalculate mod 1/64. |
282 | 0 | let idx = (u * f64::from_bits(0x4050000000000000)).cpu_round() as usize; |
283 | | |
284 | | // After the first step of Newton-Raphson approximating v = sqrt(u), we have |
285 | | // that: |
286 | | // sqrt(u) = v_hi + h / (sqrt(u) + v_hi) |
287 | | // v_lo = h / (2 * v_hi) |
288 | | // With error: |
289 | | // sqrt(u) - (v_hi + v_lo) = h * ( 1/(sqrt(u) + v_hi) - 1/(2*v_hi) ) |
290 | | // = -h^2 / (2*v * (sqrt(u) + v)^2). |
291 | | // Since: |
292 | | // (sqrt(u) + v_hi)^2 ~ (2sqrt(u))^2 = 4u, |
293 | | // we can add another correction term to (v_hi + v_lo) that is: |
294 | | // v_ll = -h^2 / (2*v_hi * 4u) |
295 | | // = -v_lo * (h / 4u) |
296 | | // = -vl * (h / 8u), |
297 | | // making the errors: |
298 | | // sqrt(u) - (v_hi + v_lo + v_ll) = O(h^3) |
299 | | // well beyond 128-bit precision needed. |
300 | | |
301 | | // Get the rounding error of vl = 2 * v_lo ~ h / vh |
302 | | // Get full product of vh * vl |
303 | | let vl_lo; |
304 | | #[cfg(any( |
305 | | all( |
306 | | any(target_arch = "x86", target_arch = "x86_64"), |
307 | | target_feature = "fma" |
308 | | ), |
309 | | target_arch = "aarch64" |
310 | | ))] |
311 | | { |
312 | | vl_lo = f_fmla(-v_hi, vl, h) / v_hi; |
313 | | } |
314 | | #[cfg(not(any( |
315 | | all( |
316 | | any(target_arch = "x86", target_arch = "x86_64"), |
317 | | target_feature = "fma" |
318 | | ), |
319 | | target_arch = "aarch64" |
320 | | )))] |
321 | 0 | { |
322 | 0 | let vh_vl = DoubleDouble::from_exact_mult(v_hi, vl); |
323 | 0 | vl_lo = ((h - vh_vl.hi) - vh_vl.lo) / v_hi; |
324 | 0 | } |
325 | 0 | let t = h * (-0.25) / u; |
326 | 0 | let vll = f_fmla(vl, t, vl_lo); |
327 | | // m_v = -(v_hi + v_lo + v_ll). |
328 | 0 | let m_v_p = DyadicFloat128::new_from_f64(vl) + DyadicFloat128::new_from_f64(vll); |
329 | 0 | let mut m_v = DyadicFloat128::new_from_f64(vh) + m_v_p; |
330 | 0 | m_v.sign = if x.is_sign_negative() { |
331 | 0 | DyadicSign::Neg |
332 | | } else { |
333 | 0 | DyadicSign::Pos |
334 | | }; |
335 | | |
336 | | // Perform computations in Float128: |
337 | | // acos(x) = (v_hi + v_lo + vll) * P(u) , when 0.5 <= x < 1, |
338 | | // = pi - (v_hi + v_lo + vll) * P(u) , when -1 < x <= -0.5. |
339 | 0 | let y_f128 = |
340 | 0 | DyadicFloat128::new_from_f64(f_fmla(idx as f64, f64::from_bits(0xbf90000000000000), u)); |
341 | | |
342 | 0 | let p_f128 = asin_eval_dyadic(y_f128, idx); |
343 | 0 | let mut r_f128 = m_v * p_f128; |
344 | | |
345 | 0 | if x.is_sign_negative() { |
346 | | const PI_F128: DyadicFloat128 = DyadicFloat128 { |
347 | | sign: DyadicSign::Pos, |
348 | | exponent: -126, |
349 | | mantissa: 0xc90fdaa2_2168c234_c4c6628b_80dc1cd1_u128, |
350 | | }; |
351 | 0 | r_f128 = PI_F128 + r_f128; |
352 | 0 | } |
353 | | |
354 | 0 | r_f128 = r_f128.quick_mul(&INV_PI_F128); |
355 | | |
356 | 0 | r_f128.fast_as_f64() |
357 | 0 | } |
358 | | |
359 | | #[cfg(test)] |
360 | | mod tests { |
361 | | |
362 | | use super::*; |
363 | | |
364 | | #[test] |
365 | | fn acospi_test() { |
366 | | assert_eq!(f_acospi(0.5), 0.3333333333333333); |
367 | | assert!(f_acospi(1.5).is_nan()); |
368 | | } |
369 | | } |