Coverage Report

Created: 2025-10-10 07:21

next uncovered line (L), next uncovered region (R), next uncovered branch (B)
/rust/registry/src/index.crates.io-1949cf8c6b5b557f/pxfm-0.1.25/src/acospi.rs
Line
Count
Source
1
/*
2
 * // Copyright (c) Radzivon Bartoshyk 6/2025. All rights reserved.
3
 * //
4
 * // Redistribution and use in source and binary forms, with or without modification,
5
 * // are permitted provided that the following conditions are met:
6
 * //
7
 * // 1.  Redistributions of source code must retain the above copyright notice, this
8
 * // list of conditions and the following disclaimer.
9
 * //
10
 * // 2.  Redistributions in binary form must reproduce the above copyright notice,
11
 * // this list of conditions and the following disclaimer in the documentation
12
 * // and/or other materials provided with the distribution.
13
 * //
14
 * // 3.  Neither the name of the copyright holder nor the names of its
15
 * // contributors may be used to endorse or promote products derived from
16
 * // this software without specific prior written permission.
17
 * //
18
 * // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
19
 * // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
20
 * // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
21
 * // DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
22
 * // FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
23
 * // DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
24
 * // SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
25
 * // CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
26
 * // OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
27
 * // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
28
 */
29
use crate::asin::asin_eval;
30
use crate::asin_eval_dyadic::asin_eval_dyadic;
31
use crate::common::f_fmla;
32
use crate::double_double::DoubleDouble;
33
use crate::dyadic_float::{DyadicFloat128, DyadicSign};
34
use crate::rounding::CpuRound;
35
36
pub(crate) const INV_PI_DD: DoubleDouble = DoubleDouble::new(
37
    f64::from_bits(0xbc76b01ec5417056),
38
    f64::from_bits(0x3fd45f306dc9c883),
39
);
40
41
// 1/PI with 128-bit precision generated by SageMath with:
42
// def format_hex(value):
43
//     l = hex(value)[2:]
44
//     n = 8
45
//     x = [l[i:i + n] for i in range(0, len(l), n)]
46
//     return "0x" + "'".join(x) + "_u128"
47
//  r = 1/pi
48
//  (s, m, e) = RealField(128)(r).sign_mantissa_exponent();
49
//  print(format_hex(m));
50
pub(crate) const INV_PI_F128: DyadicFloat128 = DyadicFloat128 {
51
    sign: DyadicSign::Pos,
52
    exponent: -129,
53
    mantissa: 0xa2f9836e_4e441529_fc2757d1_f534ddc1_u128,
54
};
55
56
pub(crate) const PI_OVER_TWO_F128: DyadicFloat128 = DyadicFloat128 {
57
    sign: DyadicSign::Pos,
58
    exponent: -127,
59
    mantissa: 0xc90fdaa2_2168c234_c4c6628b_80dc1cd1_u128,
60
};
61
62
/// Computes acos(x)/PI
63
///
64
/// Max ULP 0.5
65
0
pub fn f_acospi(x: f64) -> f64 {
66
0
    let x_e = (x.to_bits() >> 52) & 0x7ff;
67
    const E_BIAS: u64 = (1u64 << (11 - 1u64)) - 1u64;
68
69
    const PI_OVER_TWO: DoubleDouble = DoubleDouble::new(
70
        f64::from_bits(0x3c91a62633145c07),
71
        f64::from_bits(0x3ff921fb54442d18),
72
    );
73
74
0
    let x_abs = f64::from_bits(x.to_bits() & 0x7fff_ffff_ffff_ffff);
75
76
    // |x| < 0.5.
77
0
    if x_e < E_BIAS - 1 {
78
        // |x| < 2^-55.
79
0
        if x_e < E_BIAS - 55 {
80
            // When |x| < 2^-55, acos(x) = pi/2
81
0
            return f_fmla(f64::from_bits(0xbc80000000000000), x, 0.5);
82
0
        }
83
84
0
        let x_sq = DoubleDouble::from_exact_mult(x, x);
85
0
        let err = x_abs * f64::from_bits(0x3cc0000000000000);
86
        // Polynomial approximation:
87
        //   p ~ asin(x)/x
88
0
        let (p, err) = asin_eval(x_sq, err);
89
        // asin(x) ~ x * p
90
0
        let r0 = DoubleDouble::from_exact_mult(x, p.hi);
91
        // acos(x) = pi/2 - asin(x)
92
        //         ~ pi/2 - x * p
93
        //         = pi/2 - x * (p.hi + p.lo)
94
0
        let mut r_hi = f_fmla(-x, p.hi, PI_OVER_TWO.hi);
95
        // Use Dekker's 2SUM algorithm to compute the lower part.
96
0
        let mut r_lo = ((PI_OVER_TWO.hi - r_hi) - r0.hi) - r0.lo;
97
0
        r_lo = f_fmla(-x, p.lo, r_lo + PI_OVER_TWO.lo);
98
99
0
        let p = DoubleDouble::mult(DoubleDouble::new(r_lo, r_hi), INV_PI_DD);
100
0
        r_hi = p.hi;
101
0
        r_lo = p.lo;
102
103
0
        let r_upper = r_hi + (r_lo + err);
104
0
        let r_lower = r_hi + (r_lo - err);
105
106
0
        if r_upper == r_lower {
107
0
            return r_upper;
108
0
        }
109
110
        // Ziv's accuracy test failed, perform 128-bit calculation.
111
112
        // Recalculate mod 1/64.
113
0
        let idx = (x_sq.hi * f64::from_bits(0x4050000000000000)).cpu_round() as usize;
114
115
        // Get x^2 - idx/64 exactly.  When FMA is available, double-double
116
        // multiplication will be correct for all rounding modes. Otherwise, we use
117
        // Float128 directly.
118
0
        let mut x_f128 = DyadicFloat128::new_from_f64(x);
119
120
        let u: DyadicFloat128;
121
        #[cfg(any(
122
            all(
123
                any(target_arch = "x86", target_arch = "x86_64"),
124
                target_feature = "fma"
125
            ),
126
            target_arch = "aarch64"
127
        ))]
128
        {
129
            // u = x^2 - idx/64
130
            let u_hi = DyadicFloat128::new_from_f64(f_fmla(
131
                idx as f64,
132
                f64::from_bits(0xbf90000000000000),
133
                x_sq.hi,
134
            ));
135
            u = u_hi.quick_add(&DyadicFloat128::new_from_f64(x_sq.lo));
136
        }
137
138
        #[cfg(not(any(
139
            all(
140
                any(target_arch = "x86", target_arch = "x86_64"),
141
                target_feature = "fma"
142
            ),
143
            target_arch = "aarch64"
144
        )))]
145
0
        {
146
0
            let x_sq_f128 = x_f128.quick_mul(&x_f128);
147
0
            u = x_sq_f128.quick_add(&DyadicFloat128::new_from_f64(
148
0
                idx as f64 * f64::from_bits(0xbf90000000000000),
149
0
            ));
150
0
        }
151
152
0
        let p_f128 = asin_eval_dyadic(u, idx);
153
        // Flip the sign of x_f128 to perform subtraction.
154
0
        x_f128.sign = x_f128.sign.negate();
155
0
        let mut r = PI_OVER_TWO_F128.quick_add(&x_f128.quick_mul(&p_f128));
156
0
        r = r.quick_mul(&INV_PI_F128);
157
0
        return r.fast_as_f64();
158
0
    }
159
160
    // |x| >= 0.5
161
162
    const PI: DoubleDouble = DoubleDouble::new(
163
        f64::from_bits(0x3ca1a62633145c07),
164
        f64::from_bits(0x400921fb54442d18),
165
    );
166
167
    // |x| >= 1
168
0
    if x_e >= E_BIAS {
169
        // x = +-1, asin(x) = +- pi/2
170
0
        if x_abs == 1.0 {
171
            // x = 1, acos(x) = 0,
172
            // x = -1, acos(x) = pi
173
0
            return if x == 1.0 { 0.0 } else { 1.0 };
174
0
        }
175
        // |x| > 1, return NaN.
176
0
        return f64::NAN;
177
0
    }
178
179
    // When |x| >= 0.5, we perform range reduction as follow:
180
    //
181
    // When 0.5 <= x < 1, let:
182
    //   y = acos(x)
183
    // We will use the double angle formula:
184
    //   cos(2y) = 1 - 2 sin^2(y)
185
    // and the complement angle identity:
186
    //   x = cos(y) = 1 - 2 sin^2 (y/2)
187
    // So:
188
    //   sin(y/2) = sqrt( (1 - x)/2 )
189
    // And hence:
190
    //   y/2 = asin( sqrt( (1 - x)/2 ) )
191
    // Equivalently:
192
    //   acos(x) = y = 2 * asin( sqrt( (1 - x)/2 ) )
193
    // Let u = (1 - x)/2, then:
194
    //   acos(x) = 2 * asin( sqrt(u) )
195
    // Moreover, since 0.5 <= x < 1:
196
    //   0 < u <= 1/4, and 0 < sqrt(u) <= 0.5,
197
    // And hence we can reuse the same polynomial approximation of asin(x) when
198
    // |x| <= 0.5:
199
    //   acos(x) ~ 2 * sqrt(u) * P(u).
200
    //
201
    // When -1 < x <= -0.5, we reduce to the previous case using the formula:
202
    //   acos(x) = pi - acos(-x)
203
    //           = pi - 2 * asin ( sqrt( (1 + x)/2 ) )
204
    //           ~ pi - 2 * sqrt(u) * P(u),
205
    // where u = (1 - |x|)/2.
206
207
    // u = (1 - |x|)/2
208
0
    let u = f_fmla(x_abs, -0.5, 0.5);
209
    // v_hi + v_lo ~ sqrt(u).
210
    // Let:
211
    //   h = u - v_hi^2 = (sqrt(u) - v_hi) * (sqrt(u) + v_hi)
212
    // Then:
213
    //   sqrt(u) = v_hi + h / (sqrt(u) + v_hi)
214
    //            ~ v_hi + h / (2 * v_hi)
215
    // So we can use:
216
    //   v_lo = h / (2 * v_hi).
217
0
    let v_hi = u.sqrt();
218
219
    let h;
220
    #[cfg(any(
221
        all(
222
            any(target_arch = "x86", target_arch = "x86_64"),
223
            target_feature = "fma"
224
        ),
225
        target_arch = "aarch64"
226
    ))]
227
    {
228
        h = f_fmla(v_hi, -v_hi, u);
229
    }
230
    #[cfg(not(any(
231
        all(
232
            any(target_arch = "x86", target_arch = "x86_64"),
233
            target_feature = "fma"
234
        ),
235
        target_arch = "aarch64"
236
    )))]
237
0
    {
238
0
        let v_hi_sq = DoubleDouble::from_exact_mult(v_hi, v_hi);
239
0
        h = (u - v_hi_sq.hi) - v_hi_sq.lo;
240
0
    }
241
242
    // Scale v_lo and v_hi by 2 from the formula:
243
    //   vh = v_hi * 2
244
    //   vl = 2*v_lo = h / v_hi.
245
0
    let vh = v_hi * 2.0;
246
0
    let vl = h / v_hi;
247
248
    // Polynomial approximation:
249
    //   p ~ asin(sqrt(u))/sqrt(u)
250
0
    let err = vh * f64::from_bits(0x3cc0000000000000);
251
252
0
    let (p, err) = asin_eval(DoubleDouble::new(0.0, u), err);
253
254
    // Perform computations in double-double arithmetic:
255
    //   asin(x) = pi/2 - (v_hi + v_lo) * (ASIN_COEFFS[idx][0] + p)
256
0
    let r0 = DoubleDouble::quick_mult(DoubleDouble::new(vl, vh), p);
257
258
    let mut r_hi;
259
    let mut r_lo;
260
0
    if x.is_sign_positive() {
261
0
        r_hi = r0.hi;
262
0
        r_lo = r0.lo;
263
0
    } else {
264
0
        let r = DoubleDouble::from_exact_add(PI.hi, -r0.hi);
265
0
        r_hi = r.hi;
266
0
        r_lo = (PI.lo - r0.lo) + r.lo;
267
0
    }
268
269
0
    let p = DoubleDouble::mult(DoubleDouble::new(r_lo, r_hi), INV_PI_DD);
270
0
    r_hi = p.hi;
271
0
    r_lo = p.lo;
272
273
0
    let r_upper = r_hi + (r_lo + err);
274
0
    let r_lower = r_hi + (r_lo - err);
275
276
0
    if r_upper == r_lower {
277
0
        return r_upper;
278
0
    }
279
280
    // Ziv's accuracy test failed, we redo the computations in Float128.
281
    // Recalculate mod 1/64.
282
0
    let idx = (u * f64::from_bits(0x4050000000000000)).cpu_round() as usize;
283
284
    // After the first step of Newton-Raphson approximating v = sqrt(u), we have
285
    // that:
286
    //   sqrt(u) = v_hi + h / (sqrt(u) + v_hi)
287
    //      v_lo = h / (2 * v_hi)
288
    // With error:
289
    //   sqrt(u) - (v_hi + v_lo) = h * ( 1/(sqrt(u) + v_hi) - 1/(2*v_hi) )
290
    //                           = -h^2 / (2*v * (sqrt(u) + v)^2).
291
    // Since:
292
    //   (sqrt(u) + v_hi)^2 ~ (2sqrt(u))^2 = 4u,
293
    // we can add another correction term to (v_hi + v_lo) that is:
294
    //   v_ll = -h^2 / (2*v_hi * 4u)
295
    //        = -v_lo * (h / 4u)
296
    //        = -vl * (h / 8u),
297
    // making the errors:
298
    //   sqrt(u) - (v_hi + v_lo + v_ll) = O(h^3)
299
    // well beyond 128-bit precision needed.
300
301
    // Get the rounding error of vl = 2 * v_lo ~ h / vh
302
    // Get full product of vh * vl
303
    let vl_lo;
304
    #[cfg(any(
305
        all(
306
            any(target_arch = "x86", target_arch = "x86_64"),
307
            target_feature = "fma"
308
        ),
309
        target_arch = "aarch64"
310
    ))]
311
    {
312
        vl_lo = f_fmla(-v_hi, vl, h) / v_hi;
313
    }
314
    #[cfg(not(any(
315
        all(
316
            any(target_arch = "x86", target_arch = "x86_64"),
317
            target_feature = "fma"
318
        ),
319
        target_arch = "aarch64"
320
    )))]
321
0
    {
322
0
        let vh_vl = DoubleDouble::from_exact_mult(v_hi, vl);
323
0
        vl_lo = ((h - vh_vl.hi) - vh_vl.lo) / v_hi;
324
0
    }
325
0
    let t = h * (-0.25) / u;
326
0
    let vll = f_fmla(vl, t, vl_lo);
327
    // m_v = -(v_hi + v_lo + v_ll).
328
0
    let m_v_p = DyadicFloat128::new_from_f64(vl) + DyadicFloat128::new_from_f64(vll);
329
0
    let mut m_v = DyadicFloat128::new_from_f64(vh) + m_v_p;
330
0
    m_v.sign = if x.is_sign_negative() {
331
0
        DyadicSign::Neg
332
    } else {
333
0
        DyadicSign::Pos
334
    };
335
336
    // Perform computations in Float128:
337
    //   acos(x) = (v_hi + v_lo + vll) * P(u)         , when 0.5 <= x < 1,
338
    //           = pi - (v_hi + v_lo + vll) * P(u)    , when -1 < x <= -0.5.
339
0
    let y_f128 =
340
0
        DyadicFloat128::new_from_f64(f_fmla(idx as f64, f64::from_bits(0xbf90000000000000), u));
341
342
0
    let p_f128 = asin_eval_dyadic(y_f128, idx);
343
0
    let mut r_f128 = m_v * p_f128;
344
345
0
    if x.is_sign_negative() {
346
        const PI_F128: DyadicFloat128 = DyadicFloat128 {
347
            sign: DyadicSign::Pos,
348
            exponent: -126,
349
            mantissa: 0xc90fdaa2_2168c234_c4c6628b_80dc1cd1_u128,
350
        };
351
0
        r_f128 = PI_F128 + r_f128;
352
0
    }
353
354
0
    r_f128 = r_f128.quick_mul(&INV_PI_F128);
355
356
0
    r_f128.fast_as_f64()
357
0
}
358
359
#[cfg(test)]
360
mod tests {
361
362
    use super::*;
363
364
    #[test]
365
    fn acospi_test() {
366
        assert_eq!(f_acospi(0.5), 0.3333333333333333);
367
        assert!(f_acospi(1.5).is_nan());
368
    }
369
}