/rust/registry/src/index.crates.io-1949cf8c6b5b557f/pxfm-0.1.25/src/sincos.rs
Line | Count | Source |
1 | | /* |
2 | | * // Copyright (c) Radzivon Bartoshyk 6/2025. All rights reserved. |
3 | | * // |
4 | | * // Redistribution and use in source and binary forms, with or without modification, |
5 | | * // are permitted provided that the following conditions are met: |
6 | | * // |
7 | | * // 1. Redistributions of source code must retain the above copyright notice, this |
8 | | * // list of conditions and the following disclaimer. |
9 | | * // |
10 | | * // 2. Redistributions in binary form must reproduce the above copyright notice, |
11 | | * // this list of conditions and the following disclaimer in the documentation |
12 | | * // and/or other materials provided with the distribution. |
13 | | * // |
14 | | * // 3. Neither the name of the copyright holder nor the names of its |
15 | | * // contributors may be used to endorse or promote products derived from |
16 | | * // this software without specific prior written permission. |
17 | | * // |
18 | | * // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" |
19 | | * // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
20 | | * // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE |
21 | | * // DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE |
22 | | * // FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL |
23 | | * // DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR |
24 | | * // SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER |
25 | | * // CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, |
26 | | * // OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE |
27 | | * // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
28 | | */ |
29 | | use crate::common::*; |
30 | | use crate::double_double::DoubleDouble; |
31 | | use crate::sin::{ |
32 | | cos_accurate_near_zero, range_reduction_small, sin_accurate_near_zero, sincos_eval, |
33 | | }; |
34 | | use crate::sin_helper::sincos_eval_dd; |
35 | | use crate::sin_table::SIN_K_PI_OVER_128; |
36 | | use crate::sincos_reduce::LargeArgumentReduction; |
37 | | use std::hint::black_box; |
38 | | |
39 | | /// Sine and cosine for double precision |
40 | | /// |
41 | | /// ULP 0.5 |
42 | 0 | pub fn f_sincos(x: f64) -> (f64, f64) { |
43 | 0 | let x_e = (x.to_bits() >> 52) & 0x7ff; |
44 | | const E_BIAS: u64 = (1u64 << (11 - 1u64)) - 1u64; |
45 | | |
46 | | let y: DoubleDouble; |
47 | | let k; |
48 | | |
49 | 0 | let mut argument_reduction = LargeArgumentReduction::default(); |
50 | | |
51 | | // |x| < 2^32 (with FMA) or |x| < 2^23 (w/o FMA) |
52 | 0 | if x_e < E_BIAS + 16 { |
53 | | // |x| < 2^-26 |
54 | 0 | let ax = x.to_bits() & 0x7fff_ffff_ffff_ffff; |
55 | 0 | if ax <= 0x3fa921fbd34a9550 { |
56 | | // |x| <= 0.0490874 |
57 | 0 | if x_e < E_BIAS - 27 { |
58 | | // Signed zeros. |
59 | 0 | if x == 0.0 { |
60 | 0 | return (x, 1.0); |
61 | 0 | } |
62 | | // For |x| < 2^-26, |sin(x) - x| < ulp(x)/2. |
63 | 0 | let s_sin = dyad_fmla(x, f64::from_bits(0xbc90000000000000), x); |
64 | 0 | let s_cos = black_box(1.0) - min_normal_f64(); |
65 | 0 | return (s_sin, s_cos); |
66 | 0 | } |
67 | | |
68 | | // Polynomial for sin(x)/x |
69 | | // Generated by Sollya: |
70 | | // d = [0, 0.0490874]; |
71 | | // f_sin = sin(y)/y; |
72 | | // Q = fpminimax(f_sin, [|0, 2, 4, 6, 8|], [|1, D...|], d, relative, floating); |
73 | | const SIN_C: [u64; 4] = [ |
74 | | 0xbfc5555555555555, |
75 | | 0x3f8111111110e45a, |
76 | | 0xbf2a019ffd7fdaaf, |
77 | | 0x3ec71819b9bf01ef, |
78 | | ]; |
79 | | |
80 | 0 | let x2 = x * x; |
81 | 0 | let x4 = x2 * x2; |
82 | | |
83 | 0 | let p01 = f_fmla(x2, f64::from_bits(SIN_C[1]), f64::from_bits(SIN_C[0])); |
84 | 0 | let p23 = f_fmla(x2, f64::from_bits(SIN_C[3]), f64::from_bits(SIN_C[2])); |
85 | 0 | let w0 = f_fmla(x4, p23, p01); |
86 | 0 | let w1 = x2 * w0 * x; |
87 | 0 | let r_sin = DoubleDouble::from_exact_add(x, w1); |
88 | | |
89 | | // Polynomial for cos(x) |
90 | | // Generated by Sollya: |
91 | | // d = [0, 0.0490874]; |
92 | | // f_cos = cos(y); |
93 | | // Q = fpminimax(f_cos, [|0, 2, 4, 6, 8|], [|1, D...|], d, relative, floating); |
94 | | const COS_C: [u64; 4] = [ |
95 | | 0xbfe0000000000000, |
96 | | 0x3fa55555555554a4, |
97 | | 0xbf56c16c1619b84a, |
98 | | 0x3efa013d3d01cf7f, |
99 | | ]; |
100 | 0 | let p01 = f_fmla(x2, f64::from_bits(COS_C[1]), f64::from_bits(COS_C[0])); |
101 | 0 | let p23 = f_fmla(x2, f64::from_bits(COS_C[3]), f64::from_bits(COS_C[2])); |
102 | 0 | let w0 = f_fmla(x4, p23, p01); |
103 | 0 | let w1 = x2 * w0; |
104 | 0 | let r_cos = DoubleDouble::from_exact_add(1., w1); |
105 | | |
106 | 0 | let err = f_fmla( |
107 | 0 | x2, |
108 | 0 | f64::from_bits(0x3cb0000000000000), // 2^-52 |
109 | 0 | f64::from_bits(0x3be0000000000000), // 2^-65 |
110 | | ); |
111 | | |
112 | 0 | let sin_ub = r_sin.hi + (r_sin.lo + err); |
113 | 0 | let sin_lb = r_sin.hi + (r_sin.lo - err); |
114 | 0 | let sin_x = if sin_ub == sin_lb { |
115 | 0 | sin_ub |
116 | | } else { |
117 | 0 | sin_accurate_near_zero(x) |
118 | | }; |
119 | | |
120 | 0 | let cos_ub = r_cos.hi + (r_cos.lo + err); |
121 | 0 | let cos_lb = r_cos.hi + (r_cos.lo - err); |
122 | 0 | let cos_x = if cos_ub == cos_lb { |
123 | 0 | cos_ub |
124 | | } else { |
125 | 0 | cos_accurate_near_zero(x) |
126 | | }; |
127 | 0 | return (sin_x, cos_x); |
128 | 0 | } else { |
129 | 0 | // // Small range reduction. |
130 | 0 | (y, k) = range_reduction_small(x); |
131 | 0 | } |
132 | | } else { |
133 | | // Inf or NaN |
134 | 0 | if x_e > 2 * E_BIAS { |
135 | | // sin(+-Inf) = NaN |
136 | 0 | return (x + f64::NAN, x + f64::NAN); |
137 | 0 | } |
138 | | |
139 | | // Large range reduction. |
140 | 0 | (k, y) = argument_reduction.reduce(x); |
141 | | } |
142 | | |
143 | 0 | let r_sincos = sincos_eval(y); |
144 | 0 | let (sin_y, cos_y) = (r_sincos.v_sin, r_sincos.v_cos); |
145 | | |
146 | | // Fast look up version, but needs 256-entry table. |
147 | | // cos(k * pi/128) = sin(k * pi/128 + pi/2) = sin((k + 64) * pi/128). |
148 | 0 | let sk = SIN_K_PI_OVER_128[(k & 255) as usize]; |
149 | 0 | let ck = SIN_K_PI_OVER_128[((k.wrapping_add(64)) & 255) as usize]; |
150 | 0 | let sin_k = DoubleDouble::from_bit_pair(sk); |
151 | 0 | let cos_k = DoubleDouble::from_bit_pair(ck); |
152 | | |
153 | 0 | let msin_k = -sin_k; |
154 | | |
155 | | // After range reduction, k = round(x * 128 / pi) and y = x - k * (pi / 128). |
156 | | // So k is an integer and -pi / 256 <= y <= pi / 256. |
157 | | // Then sin(x) = sin((k * pi/128 + y) |
158 | | // = sin(y) * cos(k*pi/128) + cos(y) * sin(k*pi/128) |
159 | 0 | let sin_k_cos_y = DoubleDouble::quick_mult(cos_y, sin_k); |
160 | 0 | let cos_k_sin_y = DoubleDouble::quick_mult(sin_y, cos_k); |
161 | | // cos(x) = cos((k * pi/128 + y) |
162 | | // = cos(y) * cos(k*pi/128) - sin(y) * sin(k*pi/128) |
163 | 0 | let cos_k_cos_y = DoubleDouble::quick_mult(cos_y, cos_k); |
164 | 0 | let msin_k_sin_y = DoubleDouble::quick_mult(sin_y, msin_k); |
165 | | |
166 | | // cos_k_sin_y is always >> sin_k_cos_y |
167 | 0 | let mut sin_dd = DoubleDouble::from_exact_add(sin_k_cos_y.hi, cos_k_sin_y.hi); |
168 | | // cos_k_cos_y is always >> msin_k_sin_y |
169 | 0 | let mut cos_dd = DoubleDouble::from_exact_add(cos_k_cos_y.hi, msin_k_sin_y.hi); |
170 | 0 | sin_dd.lo += sin_k_cos_y.lo + cos_k_sin_y.lo; |
171 | 0 | cos_dd.lo += msin_k_sin_y.lo + cos_k_cos_y.lo; |
172 | | |
173 | 0 | let sin_lp = sin_dd.lo + r_sincos.err; |
174 | 0 | let sin_lm = sin_dd.lo - r_sincos.err; |
175 | 0 | let cos_lp = cos_dd.lo + r_sincos.err; |
176 | 0 | let cos_lm = cos_dd.lo - r_sincos.err; |
177 | | |
178 | 0 | let sin_upper = sin_dd.hi + sin_lp; |
179 | 0 | let sin_lower = sin_dd.hi + sin_lm; |
180 | 0 | let cos_upper = cos_dd.hi + cos_lp; |
181 | 0 | let cos_lower = cos_dd.hi + cos_lm; |
182 | | |
183 | | // Ziv's rounding test. |
184 | 0 | if sin_upper == sin_lower && cos_upper == cos_lower { |
185 | 0 | return (sin_upper, cos_upper); |
186 | 0 | } |
187 | | |
188 | 0 | sincos_hard(y, sin_k, cos_k, sin_upper, sin_lower, cos_upper, cos_lower) |
189 | 0 | } |
190 | | |
191 | | #[cold] |
192 | | #[inline(never)] |
193 | | #[allow(clippy::too_many_arguments)] |
194 | 0 | fn sincos_hard( |
195 | 0 | y: DoubleDouble, |
196 | 0 | sin_k: DoubleDouble, |
197 | 0 | cos_k: DoubleDouble, |
198 | 0 | sin_upper: f64, |
199 | 0 | sin_lower: f64, |
200 | 0 | cos_upper: f64, |
201 | 0 | cos_lower: f64, |
202 | 0 | ) -> (f64, f64) { |
203 | 0 | let r_sincos = sincos_eval_dd(y); |
204 | | |
205 | 0 | let msin_k = -sin_k; |
206 | | |
207 | 0 | let sin_x = if sin_upper == sin_lower { |
208 | 0 | sin_upper |
209 | | } else { |
210 | | // sin(x) = sin((k * pi/128 + u) |
211 | | // = sin(u) * cos(k*pi/128) + cos(u) * sin(k*pi/128) |
212 | | |
213 | 0 | DoubleDouble::mul_add(sin_k, r_sincos.v_cos, cos_k * r_sincos.v_sin).to_f64() |
214 | | }; |
215 | | |
216 | 0 | let cos_x = if cos_upper == cos_lower { |
217 | 0 | cos_upper |
218 | | } else { |
219 | | // cos(x) = cos((k * pi/128 + u) |
220 | | // = cos(u) * cos(k*pi/128) - sin(u) * sin(k*pi/128) |
221 | 0 | DoubleDouble::mul_add(cos_k, r_sincos.v_cos, msin_k * r_sincos.v_sin).to_f64() |
222 | | }; |
223 | 0 | (sin_x, cos_x) |
224 | 0 | } |
225 | | |
226 | | #[cfg(test)] |
227 | | mod tests { |
228 | | use super::*; |
229 | | |
230 | | #[test] |
231 | | fn f_sincos_test() { |
232 | | let subnormal = f_sincos(0.00000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000015708065354637772); |
233 | | assert_eq!(subnormal.0, 1.5708065354637772e-307); |
234 | | assert_eq!(subnormal.1, 1.0); |
235 | | let zx_0 = f_sincos(0.0); |
236 | | assert_eq!(zx_0.0, 0.0); |
237 | | assert_eq!(zx_0.1, 1.0); |
238 | | let zx_1 = f_sincos(1.0); |
239 | | assert_eq!(zx_1.0, 0.8414709848078965); |
240 | | assert_eq!(zx_1.1, 0.5403023058681398); |
241 | | let zx_0_p5 = f_sincos(-0.5); |
242 | | assert_eq!(zx_0_p5.0, -0.479425538604203); |
243 | | assert_eq!(zx_0_p5.1, 0.8775825618903728); |
244 | | |
245 | | let zx_1 = f_sincos(0.002341235432); |
246 | | assert_eq!(zx_1.0, 0.0023412332931324344); |
247 | | assert_eq!(zx_1.1, 0.9999972593095778); |
248 | | |
249 | | let zx_1 = f_sincos(0.0198676543432); |
250 | | assert_eq!(zx_1.0, 0.019866347330026367); |
251 | | assert_eq!(zx_1.1, 0.9998026446473137); |
252 | | } |
253 | | } |