Coverage Report

Created: 2025-10-10 07:21

next uncovered line (L), next uncovered region (R), next uncovered branch (B)
/rust/registry/src/index.crates.io-1949cf8c6b5b557f/pxfm-0.1.25/src/tangent/tanpi.rs
Line
Count
Source
1
/*
2
 * // Copyright (c) Radzivon Bartoshyk 7/2025. All rights reserved.
3
 * //
4
 * // Redistribution and use in source and binary forms, with or without modification,
5
 * // are permitted provided that the following conditions are met:
6
 * //
7
 * // 1.  Redistributions of source code must retain the above copyright notice, this
8
 * // list of conditions and the following disclaimer.
9
 * //
10
 * // 2.  Redistributions in binary form must reproduce the above copyright notice,
11
 * // this list of conditions and the following disclaimer in the documentation
12
 * // and/or other materials provided with the distribution.
13
 * //
14
 * // 3.  Neither the name of the copyright holder nor the names of its
15
 * // contributors may be used to endorse or promote products derived from
16
 * // this software without specific prior written permission.
17
 * //
18
 * // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
19
 * // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
20
 * // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
21
 * // DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
22
 * // FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
23
 * // DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
24
 * // SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
25
 * // CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
26
 * // OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
27
 * // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
28
 */
29
use crate::common::f_fmla;
30
use crate::double_double::DoubleDouble;
31
use crate::sincospi::reduce_pi_64;
32
use crate::tangent::tanpi_table::TANPI_K_PI_OVER_64;
33
34
#[inline]
35
0
pub(crate) fn tanpi_eval(x: f64) -> DoubleDouble {
36
0
    let x2 = DoubleDouble::from_exact_mult(x, x);
37
    // tan(pi*x) generated by Sollya:
38
    // d = [0, 0.0078128];
39
    // f_tan = tan(y*pi)/y;
40
    // Q = fpminimax(f_tan, [|0, 2, 4, 6, 8|], [|107, D...|], d, relative, floating);
41
    const C: [u64; 4] = [
42
        0x4024abbce625be51,
43
        0x404466bc677698e5,
44
        0x40645fff70379ae3,
45
        0x4084626b091b7fd0,
46
    ];
47
    const C0: DoubleDouble = DoubleDouble::from_bit_pair((0x3ca1a6444aa5b996, 0x400921fb54442d18));
48
49
    // polyeval 4, estrin scheme
50
0
    let u0 = f_fmla(x2.hi, f64::from_bits(C[1]), f64::from_bits(C[0]));
51
0
    let u1 = f_fmla(x2.hi, f64::from_bits(C[3]), f64::from_bits(C[2]));
52
0
    let tan_poly_lo = f_fmla(x2.hi * x2.hi, u1, u0);
53
54
    // We're splitting polynomial in two parts, since first term dominates
55
    // we compute: (a0_lo + a0_hi) * x + x * (a1 * x^2 + a2 + x^4) ...
56
0
    let r_lo = DoubleDouble::quick_mult_f64(x2, tan_poly_lo);
57
0
    let tan_lo = f_fmla(r_lo.lo, x, r_lo.hi * x);
58
0
    let tan_hi = DoubleDouble::quick_mult_f64(C0, x);
59
0
    DoubleDouble::full_add_f64(tan_hi, tan_lo)
60
0
}
61
62
#[cold]
63
0
fn tanpi_hard(x: f64, tan_k: DoubleDouble) -> DoubleDouble {
64
    const C: [(u64, u64); 6] = [
65
        (0x3ca1a62632712fc8, 0x400921fb54442d18),
66
        (0xbcc052338fbb4528, 0x4024abbce625be53),
67
        (0x3ced42454c5f85b3, 0x404466bc6775aad9),
68
        (0xbd00c7d6a971a560, 0x40645fff9b4b244d),
69
        (0x3d205970eff53274, 0x40845f46e96c3a0b),
70
        (0xbd3589489ad24fc4, 0x40a4630551cd123d),
71
    ];
72
0
    let x2 = DoubleDouble::from_exact_mult(x, x);
73
0
    let mut tan_y = DoubleDouble::quick_mul_add(
74
0
        x2,
75
0
        DoubleDouble::from_bit_pair(C[5]),
76
0
        DoubleDouble::from_bit_pair(C[4]),
77
    );
78
0
    tan_y = DoubleDouble::quick_mul_add(x2, tan_y, DoubleDouble::from_bit_pair(C[3]));
79
0
    tan_y = DoubleDouble::quick_mul_add(x2, tan_y, DoubleDouble::from_bit_pair(C[2]));
80
0
    tan_y = DoubleDouble::quick_mul_add(x2, tan_y, DoubleDouble::from_bit_pair(C[1]));
81
0
    tan_y = DoubleDouble::quick_mul_add(x2, tan_y, DoubleDouble::from_bit_pair(C[0]));
82
0
    tan_y = DoubleDouble::quick_mult_f64(tan_y, x);
83
84
    // num = tan(y*pi/64) + tan(k*pi/64)
85
0
    let num = DoubleDouble::full_dd_add(tan_y, tan_k);
86
    // den = 1 - tan(y*pi/64)*tan(k*pi/64)
87
0
    let den = DoubleDouble::mul_add_f64(tan_y, -tan_k, 1.);
88
    // tan = num / den
89
0
    DoubleDouble::div(num, den)
90
0
}
91
92
/// Computes tan(PI*x)
93
///
94
/// Max found ULP 0.5
95
0
pub fn f_tanpi(x: f64) -> f64 {
96
0
    if x == 0. {
97
0
        return x;
98
0
    }
99
0
    let ax = x.to_bits() & 0x7fff_ffff_ffff_ffff;
100
0
    if ax >= (0x7ffu64 << 52) {
101
        // NaN, Inf
102
0
        if ax > (0x7ffu64 << 52) {
103
0
            return x + x;
104
0
        } // NaN
105
0
        return f64::NAN; // x=Inf
106
0
    }
107
0
    let e: i32 = (ax >> 52) as i32 - 1023;
108
0
    if e > 0 {
109
0
        if e >= 52 {
110
            // when |x| > 2^53 it's always an integer
111
0
            return f64::copysign(0., x);
112
0
        }
113
        // |x| > 1 and |x| < 2^53
114
0
        let m = (ax & ((1u64 << 52) - 1)) | (1u64 << 52); // mantissa with hidden 1
115
0
        let shift = 52 - e;
116
117
0
        let frac = m & ((1u64 << shift) - 1);
118
0
        if frac == (1u64 << (shift - 1)) {
119
            // |x| is always integer.5 means it's inf
120
0
            return f64::INFINITY;
121
0
        }
122
0
    }
123
124
0
    if ax <= 0x3cb0000000000000 {
125
        // for tiny x ( |x| < f64::EPSILON ) just small taylor expansion
126
        // tan(PI*x) ~ PI*x + PI^3*x^3/3 + O(x^5)
127
        const PI: DoubleDouble =
128
            DoubleDouble::from_bit_pair((0x3ca1a62633145c07, 0x400921fb54442d18));
129
0
        if ax <= 0x3ca0000000000000 {
130
            // |x| <= 2^-53, renormalize value
131
0
            let e: i32 = (ax >> 52) as i32;
132
0
            let sc = f64::from_bits((2045i64 - e as i64).wrapping_shl(52) as u64);
133
0
            let isc = f64::from_bits(1i64.wrapping_add(e as i64).wrapping_shl(52) as u64);
134
0
            let dx = x * sc;
135
0
            let q0 = DoubleDouble::quick_mult_f64(PI, dx);
136
0
            let r = q0.to_f64() * isc;
137
0
            return r;
138
0
        }
139
0
        let q0 = DoubleDouble::quick_mult_f64(PI, x);
140
0
        let r = q0.to_f64();
141
0
        return r;
142
0
    }
143
144
    // argument reduction
145
0
    let (y, k) = reduce_pi_64(x);
146
147
0
    if y == 0.0 {
148
0
        let km = (k.abs() & 63) as i32; // k mod 64
149
150
0
        match km {
151
0
            0 => return f64::copysign(0f64, x),           // tanpi(n) = 0
152
0
            32 => return f64::copysign(f64::INFINITY, x), // tanpi(n+0.5) = ±∞
153
0
            16 => return f64::copysign(1.0, x),           // tanpi(n+0.25) = ±1
154
0
            48 => return -f64::copysign(1.0, x),          // tanpi(n+0.75) = ∓1
155
0
            _ => {}
156
        }
157
0
    }
158
159
0
    let tan_k = DoubleDouble::from_bit_pair(TANPI_K_PI_OVER_64[((k as u64) & 127) as usize]);
160
161
    // Computes tan(pi*x) through identities.
162
    // tan(a+b) = (tan(a) + tan(b)) / (1 - tan(a)tan(b)) = (tan(y*pi/64) + tan(k*pi/64)) / (1 - tan(y*pi/64)*tan(k*pi/64))
163
0
    let tan_y = tanpi_eval(y);
164
    // num = tan(y*pi/64) + tan(k*pi/64)
165
0
    let num = DoubleDouble::add(tan_k, tan_y);
166
    // den = 1 - tan(y*pi/64)*tan(k*pi/64)
167
0
    let den = DoubleDouble::mul_add_f64(tan_y, -tan_k, 1.);
168
    // tan = num / den
169
0
    let tan_value = DoubleDouble::div(num, den);
170
0
    let err = f_fmla(
171
0
        tan_value.hi,
172
0
        f64::from_bits(0x3bf0000000000000), // 2^-64
173
0
        f64::from_bits(0x3b60000000000000), // 2^-73
174
    );
175
0
    let ub = tan_value.hi + (tan_value.lo + err);
176
0
    let lb = tan_value.hi + (tan_value.lo - err);
177
0
    if ub == lb {
178
0
        return tan_value.to_f64();
179
0
    }
180
0
    tanpi_hard(y, tan_k).to_f64()
181
0
}
182
183
#[cfg(test)]
184
mod tests {
185
    use super::*;
186
187
    #[test]
188
    fn test_tanpi() {
189
        assert_eq!(f_tanpi(0.4999999999119535), 3615246871.564404);
190
        assert_eq!(f_tanpi(7119681148991743.0), 0.);
191
        assert_eq!(f_tanpi(63.5), f64::INFINITY);
192
        assert_eq!(f_tanpi(63.99935913085936), -0.0020133525045719896);
193
        assert_eq!(f_tanpi(3.3821122649309461E-306), 1.0625219045122997E-305);
194
        assert_eq!(f_tanpi(1.8010707049867402E-255), 5.6582304953821333E-255);
195
        assert_eq!(f_tanpi(1.001000000061801), 0.0031416031832113213);
196
        assert_eq!(f_tanpi(-0.5000000000000226), 14054316517702.594);
197
        assert_eq!(f_tanpi(0.5000000000000001), -2867080569611329.5);
198
        assert_eq!(f_tanpi(0.02131), 0.06704753721009375);
199
        assert!(f_tanpi(f64::INFINITY).is_nan());
200
        assert!(f_tanpi(f64::NAN).is_nan());
201
        assert!(f_tanpi(f64::NEG_INFINITY).is_nan());
202
    }
203
}