Coverage Report

Created: 2025-10-10 07:21

next uncovered line (L), next uncovered region (R), next uncovered branch (B)
/rust/registry/src/index.crates.io-1949cf8c6b5b557f/pxfm-0.1.25/src/triangle/cathetusf.rs
Line
Count
Source
1
/*
2
 * // Copyright (c) Radzivon Bartoshyk 9/2025. All rights reserved.
3
 * //
4
 * // Redistribution and use in source and binary forms, with or without modification,
5
 * // are permitted provided that the following conditions are met:
6
 * //
7
 * // 1.  Redistributions of source code must retain the above copyright notice, this
8
 * // list of conditions and the following disclaimer.
9
 * //
10
 * // 2.  Redistributions in binary form must reproduce the above copyright notice,
11
 * // this list of conditions and the following disclaimer in the documentation
12
 * // and/or other materials provided with the distribution.
13
 * //
14
 * // 3.  Neither the name of the copyright holder nor the names of its
15
 * // contributors may be used to endorse or promote products derived from
16
 * // this software without specific prior written permission.
17
 * //
18
 * // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
19
 * // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
20
 * // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
21
 * // DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
22
 * // FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
23
 * // DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
24
 * // SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
25
 * // CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
26
 * // OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
27
 * // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
28
 */
29
use crate::common::EXP_MASK_F32;
30
31
/// Computes the missing leg of a right triangle
32
///
33
/// Given a hypotenuse `x` and a known leg `y`, returns
34
/// `sqrt(x^2 - y^2)` = the length of the other leg.
35
///
36
/// Domain: requires `|x| >= |y|`. Returns NaN if the input
37
/// is outside this range.
38
0
pub fn f_cathetusf(x: f32, y: f32) -> f32 {
39
0
    let x_abs = f32::from_bits(x.to_bits() & 0x7fff_ffffu32);
40
0
    let y_abs = f32::from_bits(y.to_bits() & 0x7fff_ffffu32);
41
42
0
    let x_bits = x_abs.to_bits();
43
0
    let y_bits = y_abs.to_bits();
44
45
0
    let a_u = x_bits.max(y_bits);
46
47
0
    if a_u >= EXP_MASK_F32 {
48
        // x or y is inf or nan
49
0
        if f32::from_bits(x_bits).is_nan() || f32::from_bits(y_bits).is_nan() {
50
0
            return f32::NAN;
51
0
        }
52
0
        if f32::from_bits(x_bits).is_infinite() || f32::from_bits(y_bits).is_infinite() {
53
0
            if f32::from_bits(x_bits).is_infinite() && f32::from_bits(y_bits).is_infinite() {
54
                // ∞² - ∞² is undefined
55
0
                return f32::NAN;
56
0
            }
57
0
            return f32::INFINITY;
58
0
        }
59
0
        return f32::from_bits(x_bits);
60
0
    }
61
0
    if x_abs < y_abs {
62
        // Would yield sqrt(negative), undefined
63
0
        return f32::NAN;
64
0
    }
65
0
    if x_abs == y_abs {
66
        // sqrt(c² - c²) = 0
67
0
        return 0.0;
68
0
    }
69
70
0
    let dx = x as f64;
71
0
    let dy = y as f64;
72
73
    #[cfg(any(
74
        all(
75
            any(target_arch = "x86", target_arch = "x86_64"),
76
            target_feature = "fma"
77
        ),
78
        target_arch = "aarch64"
79
    ))]
80
    {
81
        use crate::common::f_fmla;
82
        // for FMA environment we're using Kahan style summation which is short and reliable.
83
        let w = dy * dy; // RN(bc)
84
        let e = f_fmla(-dy, dy, w); // RN(w − bc)
85
        let f = f_fmla(dx, dx, -w); // RN(ad − w)
86
        let r = e + f; // RN(f + e)
87
        let cath = r.sqrt(); // sqrt(x^2 - y^2)
88
        cath as f32
89
    }
90
    #[cfg(not(any(
91
        all(
92
            any(target_arch = "x86", target_arch = "x86_64"),
93
            target_feature = "fma"
94
        ),
95
        target_arch = "aarch64"
96
    )))]
97
    {
98
        use crate::double_double::DoubleDouble;
99
0
        let dy2 = DoubleDouble::from_exact_mult(dy, dy);
100
0
        let fdx = DoubleDouble::from_exact_mult(dx, dx);
101
        // element must follow condition |x| > |y| so it always follows fasttwosum requirements
102
0
        let f = DoubleDouble::add_f64(fdx, -dy2.hi).to_f64();
103
0
        let r = dy2.lo + f;
104
0
        let cath = r.sqrt();
105
0
        cath as f32
106
    }
107
0
}
108
109
#[cfg(test)]
110
mod tests {
111
    use super::*;
112
    #[test]
113
    fn test_cathetusf_edge() {
114
        assert_eq!(f_cathetusf(5., 3.), 4.);
115
        assert_eq!(f_cathetusf(5., 4.), 3.);
116
        assert_eq!(f_cathetusf(13., 12.), 5.);
117
        assert_eq!(f_cathetusf(65., 16.), 63.);
118
        assert_eq!(f_cathetusf(25., 24.), 7.);
119
        assert!(f_cathetusf(24., 25.).is_nan());
120
    }
121
122
    #[test]
123
    fn test_cathetusf_edge_cases() {
124
        assert_eq!(f_cathetusf(0.0, 0.0), 0.0);
125
        assert_eq!(f_cathetusf(f32::INFINITY, 0.0), f32::INFINITY);
126
        assert_eq!(f_cathetusf(0.0, f32::INFINITY), f32::INFINITY);
127
        assert!(f_cathetusf(f32::INFINITY, f32::INFINITY).is_nan());
128
        assert_eq!(f_cathetusf(f32::NEG_INFINITY, 0.0), f32::INFINITY);
129
        assert_eq!(f_cathetusf(0.0, f32::NEG_INFINITY), f32::INFINITY);
130
        assert!(f_cathetusf(f32::NEG_INFINITY, f32::NEG_INFINITY).is_nan());
131
        assert!(f_cathetusf(f32::NAN, 1.0).is_nan());
132
        assert!(f_cathetusf(1.0, f32::NAN).is_nan());
133
    }
134
}