Coverage Report

Created: 2025-10-10 07:21

next uncovered line (L), next uncovered region (R), next uncovered branch (B)
/rust/registry/src/index.crates.io-1949cf8c6b5b557f/pxfm-0.1.25/src/triangle/hypot3f.rs
Line
Count
Source
1
/*
2
 * // Copyright (c) Radzivon Bartoshyk 9/2025. All rights reserved.
3
 * //
4
 * // Redistribution and use in source and binary forms, with or without modification,
5
 * // are permitted provided that the following conditions are met:
6
 * //
7
 * // 1.  Redistributions of source code must retain the above copyright notice, this
8
 * // list of conditions and the following disclaimer.
9
 * //
10
 * // 2.  Redistributions in binary form must reproduce the above copyright notice,
11
 * // this list of conditions and the following disclaimer in the documentation
12
 * // and/or other materials provided with the distribution.
13
 * //
14
 * // 3.  Neither the name of the copyright holder nor the names of its
15
 * // contributors may be used to endorse or promote products derived from
16
 * // this software without specific prior written permission.
17
 * //
18
 * // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
19
 * // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
20
 * // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
21
 * // DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
22
 * // FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
23
 * // DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
24
 * // SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
25
 * // CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
26
 * // OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
27
 * // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
28
 */
29
use crate::common::EXP_MASK_F32;
30
31
0
pub fn f_hypot3f(x: f32, y: f32, z: f32) -> f32 {
32
0
    let x_abs = f32::from_bits(x.to_bits() & 0x7fff_ffffu32);
33
0
    let y_abs = f32::from_bits(y.to_bits() & 0x7fff_ffffu32);
34
0
    let z_abs = f32::from_bits(z.to_bits() & 0x7fff_ffffu32);
35
36
0
    let a_bits = x_abs.to_bits().max(y_abs.to_bits()).max(z_abs.to_bits());
37
0
    let b_bits = x_abs.to_bits().min(y_abs.to_bits()).min(z_abs.to_bits());
38
39
0
    let a_u = a_bits;
40
0
    let b_u = b_bits;
41
42
0
    if a_u >= EXP_MASK_F32 {
43
        // x or y is inf or nan
44
0
        if x_abs.is_nan() || y_abs.is_nan() || z_abs.is_nan() {
45
0
            return f32::NAN;
46
0
        }
47
0
        if x_abs.is_infinite() || y_abs.is_infinite() || z_abs.is_infinite() {
48
0
            return f32::INFINITY;
49
0
        }
50
0
        return f32::from_bits(a_bits);
51
0
    }
52
53
0
    if a_u.wrapping_sub(b_u) >= ((23u32 + 2) << 23) {
54
0
        return x_abs + y_abs + z_abs;
55
0
    }
56
57
    #[cfg(any(
58
        all(
59
            any(target_arch = "x86", target_arch = "x86_64"),
60
            target_feature = "fma"
61
        ),
62
        target_arch = "aarch64"
63
    ))]
64
    {
65
        let ad = x as f64;
66
        let bd = y as f64;
67
        let cd = z as f64;
68
        use crate::common::f_fmla;
69
        // for FMA environment we're using Kahan style summation which is short and reliable.
70
        let w = bd * bd; // RN(bc)
71
        let e = f_fmla(-bd, bd, w); // RN(w − bc)
72
        let f = f_fmla(ad, ad, w); // RN(ad + w)
73
        let f0 = f_fmla(cd, cd, f); // RN(cd + f)
74
        let r = e + f0; // RN(f + e)
75
        let hyp = r.sqrt(); // sqrt(x^2 + y^2)
76
        hyp as f32
77
    }
78
    #[cfg(not(any(
79
        all(
80
            any(target_arch = "x86", target_arch = "x86_64"),
81
            target_feature = "fma"
82
        ),
83
        target_arch = "aarch64"
84
    )))]
85
    {
86
0
        let ad = x_abs as f64;
87
0
        let bd = y_abs as f64;
88
0
        let cd = z_abs as f64;
89
        use crate::double_double::DoubleDouble;
90
0
        let da = DoubleDouble::from_exact_mult(bd, bd);
91
0
        let db = DoubleDouble::from_exact_mult(ad, ad);
92
0
        let dc = DoubleDouble::from_exact_mult(cd, cd);
93
0
        let f = DoubleDouble::add(DoubleDouble::add(da, db), dc);
94
0
        let cath = f.to_f64().sqrt();
95
0
        cath as f32
96
    }
97
0
}
98
99
#[cfg(test)]
100
mod tests {
101
102
    use super::*;
103
104
    #[test]
105
    fn test_hypot3f() {
106
        assert_eq!(f_hypot3f(3.0, 4.0, 12.0), 13.0);
107
        assert_eq!(f_hypot3f(6.0, 8.0, 24.0), 26.0);
108
        assert_eq!(f_hypot3f(5.0, 12.0, 84.0), 85.0);
109
        assert_eq!(f_hypot3f(9.0, 12.0, 20.0), 25.0);
110
        assert_eq!(f_hypot3f(1e20, 3.0, 4.0), 1e20);
111
        assert_eq!(f_hypot3f(1e-20, 1e-20, 1.0), 1.);
112
        assert_eq!(
113
            f_hypot3f(f32::MIN_POSITIVE, f32::MIN_POSITIVE, 0.0),
114
            1.6624e-38
115
        );
116
        assert_eq!(f_hypot3f(f32::MAX, f32::MAX, 0.), f32::INFINITY);
117
        assert_eq!(f_hypot3f(f32::MAX, 0., 0.), 3.4028235e38);
118
        assert_eq!(f_hypot3f(f32::INFINITY, 0., 0.), f32::INFINITY);
119
        assert_eq!(f_hypot3f(0., f32::INFINITY, 0.), f32::INFINITY);
120
        assert_eq!(f_hypot3f(0., 0., f32::INFINITY), f32::INFINITY);
121
        assert!(f_hypot3f(f32::NAN, 0., 0.).is_nan());
122
        assert!(f_hypot3f(0., f32::NAN, 0.).is_nan());
123
        assert!(f_hypot3f(0., 0., f32::NAN).is_nan());
124
    }
125
}