/rust/registry/src/index.crates.io-1949cf8c6b5b557f/moxcms-0.7.7/src/conversions/mba3x4.rs
Line | Count | Source |
1 | | /* |
2 | | * // Copyright (c) Radzivon Bartoshyk 3/2025. All rights reserved. |
3 | | * // |
4 | | * // Redistribution and use in source and binary forms, with or without modification, |
5 | | * // are permitted provided that the following conditions are met: |
6 | | * // |
7 | | * // 1. Redistributions of source code must retain the above copyright notice, this |
8 | | * // list of conditions and the following disclaimer. |
9 | | * // |
10 | | * // 2. Redistributions in binary form must reproduce the above copyright notice, |
11 | | * // this list of conditions and the following disclaimer in the documentation |
12 | | * // and/or other materials provided with the distribution. |
13 | | * // |
14 | | * // 3. Neither the name of the copyright holder nor the names of its |
15 | | * // contributors may be used to endorse or promote products derived from |
16 | | * // this software without specific prior written permission. |
17 | | * // |
18 | | * // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" |
19 | | * // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
20 | | * // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE |
21 | | * // DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE |
22 | | * // FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL |
23 | | * // DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR |
24 | | * // SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER |
25 | | * // CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, |
26 | | * // OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE |
27 | | * // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
28 | | */ |
29 | | use crate::conversions::mab::{BCurves3, MCurves3}; |
30 | | use crate::err::try_vec; |
31 | | use crate::safe_math::SafeMul; |
32 | | use crate::{ |
33 | | CmsError, Cube, DataColorSpace, InPlaceStage, InterpolationMethod, LutMultidimensionalType, |
34 | | MalformedSize, Matrix3d, Stage, TransformOptions, Vector3d, Vector4f, |
35 | | }; |
36 | | |
37 | | struct ACurves3x4Inverse<'a> { |
38 | | curve0: Box<[f32; 65536]>, |
39 | | curve1: Box<[f32; 65536]>, |
40 | | curve2: Box<[f32; 65536]>, |
41 | | curve3: Box<[f32; 65536]>, |
42 | | clut: &'a [f32], |
43 | | grid_size: [u8; 3], |
44 | | interpolation_method: InterpolationMethod, |
45 | | pcs: DataColorSpace, |
46 | | depth: usize, |
47 | | } |
48 | | |
49 | | struct ACurves3x4InverseOptimized<'a> { |
50 | | clut: &'a [f32], |
51 | | grid_size: [u8; 3], |
52 | | interpolation_method: InterpolationMethod, |
53 | | pcs: DataColorSpace, |
54 | | } |
55 | | |
56 | | impl ACurves3x4Inverse<'_> { |
57 | 0 | fn transform_impl<Fetch: Fn(f32, f32, f32) -> Vector4f>( |
58 | 0 | &self, |
59 | 0 | src: &[f32], |
60 | 0 | dst: &mut [f32], |
61 | 0 | fetch: Fetch, |
62 | 0 | ) -> Result<(), CmsError> { |
63 | 0 | let scale_value = (self.depth as u32 - 1u32) as f32; |
64 | | |
65 | 0 | assert_eq!(src.len() / 3, dst.len() / 4); |
66 | | |
67 | 0 | for (src, dst) in src.chunks_exact(3).zip(dst.chunks_exact_mut(4)) { |
68 | 0 | let interpolated = fetch(src[0], src[1], src[2]); |
69 | 0 | let a0 = (interpolated.v[0] * scale_value).round().min(scale_value) as u16; |
70 | 0 | let a1 = (interpolated.v[1] * scale_value).round().min(scale_value) as u16; |
71 | 0 | let a2 = (interpolated.v[2] * scale_value).round().min(scale_value) as u16; |
72 | 0 | let a3 = (interpolated.v[3] * scale_value).round().min(scale_value) as u16; |
73 | 0 | let b0 = self.curve0[a0 as usize]; |
74 | 0 | let b1 = self.curve1[a1 as usize]; |
75 | 0 | let b2 = self.curve2[a2 as usize]; |
76 | 0 | let b3 = self.curve3[a3 as usize]; |
77 | 0 | dst[0] = b0; |
78 | 0 | dst[1] = b1; |
79 | 0 | dst[2] = b2; |
80 | 0 | dst[3] = b3; |
81 | 0 | } |
82 | 0 | Ok(()) |
83 | 0 | } Unexecuted instantiation: <moxcms::conversions::mba3x4::ACurves3x4Inverse>::transform_impl::<<moxcms::conversions::mba3x4::ACurves3x4Inverse as moxcms::transform::Stage>::transform::{closure#0}> Unexecuted instantiation: <moxcms::conversions::mba3x4::ACurves3x4Inverse>::transform_impl::<<moxcms::conversions::mba3x4::ACurves3x4Inverse as moxcms::transform::Stage>::transform::{closure#1}> |
84 | | } |
85 | | |
86 | | impl ACurves3x4InverseOptimized<'_> { |
87 | 0 | fn transform_impl<Fetch: Fn(f32, f32, f32) -> Vector4f>( |
88 | 0 | &self, |
89 | 0 | src: &[f32], |
90 | 0 | dst: &mut [f32], |
91 | 0 | fetch: Fetch, |
92 | 0 | ) -> Result<(), CmsError> { |
93 | 0 | assert_eq!(src.len() / 3, dst.len() / 4); |
94 | | |
95 | 0 | for (src, dst) in src.chunks_exact(3).zip(dst.chunks_exact_mut(4)) { |
96 | 0 | let interpolated = fetch(src[0], src[1], src[2]); |
97 | 0 | let b0 = interpolated.v[0]; |
98 | 0 | let b1 = interpolated.v[1]; |
99 | 0 | let b2 = interpolated.v[2]; |
100 | 0 | let b3 = interpolated.v[3]; |
101 | 0 | dst[0] = b0; |
102 | 0 | dst[1] = b1; |
103 | 0 | dst[2] = b2; |
104 | 0 | dst[3] = b3; |
105 | 0 | } |
106 | 0 | Ok(()) |
107 | 0 | } Unexecuted instantiation: <moxcms::conversions::mba3x4::ACurves3x4InverseOptimized>::transform_impl::<<moxcms::conversions::mba3x4::ACurves3x4InverseOptimized as moxcms::transform::Stage>::transform::{closure#0}> Unexecuted instantiation: <moxcms::conversions::mba3x4::ACurves3x4InverseOptimized>::transform_impl::<<moxcms::conversions::mba3x4::ACurves3x4InverseOptimized as moxcms::transform::Stage>::transform::{closure#1}> |
108 | | } |
109 | | |
110 | | impl Stage for ACurves3x4Inverse<'_> { |
111 | 0 | fn transform(&self, src: &[f32], dst: &mut [f32]) -> Result<(), CmsError> { |
112 | 0 | let lut = Cube::new_cube(self.clut, self.grid_size); |
113 | | |
114 | | // If PCS is LAB then linear interpolation should be used |
115 | 0 | if self.pcs == DataColorSpace::Lab || self.pcs == DataColorSpace::Xyz { |
116 | 0 | return self.transform_impl(src, dst, |x, y, z| lut.trilinear_vec4(x, y, z)); |
117 | 0 | } |
118 | | |
119 | 0 | match self.interpolation_method { |
120 | | #[cfg(feature = "options")] |
121 | | InterpolationMethod::Tetrahedral => { |
122 | | self.transform_impl(src, dst, |x, y, z| lut.tetra_vec4(x, y, z))?; |
123 | | } |
124 | | #[cfg(feature = "options")] |
125 | | InterpolationMethod::Pyramid => { |
126 | | self.transform_impl(src, dst, |x, y, z| lut.pyramid_vec4(x, y, z))?; |
127 | | } |
128 | | #[cfg(feature = "options")] |
129 | | InterpolationMethod::Prism => { |
130 | | self.transform_impl(src, dst, |x, y, z| lut.prism_vec4(x, y, z))?; |
131 | | } |
132 | | InterpolationMethod::Linear => { |
133 | 0 | self.transform_impl(src, dst, |x, y, z| lut.trilinear_vec4(x, y, z))?; |
134 | | } |
135 | | } |
136 | 0 | Ok(()) |
137 | 0 | } |
138 | | } |
139 | | |
140 | | impl Stage for ACurves3x4InverseOptimized<'_> { |
141 | 0 | fn transform(&self, src: &[f32], dst: &mut [f32]) -> Result<(), CmsError> { |
142 | 0 | let lut = Cube::new_cube(self.clut, self.grid_size); |
143 | | |
144 | | // If PCS is LAB then linear interpolation should be used |
145 | 0 | if self.pcs == DataColorSpace::Lab || self.pcs == DataColorSpace::Xyz { |
146 | 0 | return self.transform_impl(src, dst, |x, y, z| lut.trilinear_vec4(x, y, z)); |
147 | 0 | } |
148 | | |
149 | 0 | match self.interpolation_method { |
150 | | #[cfg(feature = "options")] |
151 | | InterpolationMethod::Tetrahedral => { |
152 | | self.transform_impl(src, dst, |x, y, z| lut.tetra_vec4(x, y, z))?; |
153 | | } |
154 | | #[cfg(feature = "options")] |
155 | | InterpolationMethod::Pyramid => { |
156 | | self.transform_impl(src, dst, |x, y, z| lut.pyramid_vec4(x, y, z))?; |
157 | | } |
158 | | #[cfg(feature = "options")] |
159 | | InterpolationMethod::Prism => { |
160 | | self.transform_impl(src, dst, |x, y, z| lut.prism_vec4(x, y, z))?; |
161 | | } |
162 | | InterpolationMethod::Linear => { |
163 | 0 | self.transform_impl(src, dst, |x, y, z| lut.trilinear_vec4(x, y, z))?; |
164 | | } |
165 | | } |
166 | 0 | Ok(()) |
167 | 0 | } |
168 | | } |
169 | | |
170 | 0 | pub(crate) fn prepare_mba_3x4( |
171 | 0 | mab: &LutMultidimensionalType, |
172 | 0 | lut: &mut [f32], |
173 | 0 | options: TransformOptions, |
174 | 0 | pcs: DataColorSpace, |
175 | 0 | ) -> Result<Vec<f32>, CmsError> { |
176 | 0 | if mab.num_input_channels != 3 && mab.num_output_channels != 4 { |
177 | 0 | return Err(CmsError::UnsupportedProfileConnection); |
178 | 0 | } |
179 | | |
180 | | const LERP_DEPTH: usize = 65536; |
181 | | const BP: usize = 13; |
182 | | const DEPTH: usize = 8192; |
183 | | |
184 | 0 | if mab.b_curves.len() == 3 { |
185 | 0 | let all_curves_linear = mab.b_curves.iter().all(|curve| curve.is_linear()); |
186 | | |
187 | 0 | if !all_curves_linear { |
188 | 0 | let curves: Result<Vec<_>, _> = mab |
189 | 0 | .b_curves |
190 | 0 | .iter() |
191 | 0 | .map(|c| { |
192 | 0 | c.build_linearize_table::<u16, LERP_DEPTH, BP>() |
193 | 0 | .ok_or(CmsError::InvalidTrcCurve) |
194 | 0 | }) |
195 | 0 | .collect(); |
196 | | |
197 | 0 | let [curve0, curve1, curve2] = |
198 | 0 | curves?.try_into().map_err(|_| CmsError::InvalidTrcCurve)?; |
199 | 0 | let b_curves = BCurves3::<DEPTH> { |
200 | 0 | curve0, |
201 | 0 | curve1, |
202 | 0 | curve2, |
203 | 0 | }; |
204 | 0 | b_curves.transform(lut)?; |
205 | 0 | } |
206 | | } else { |
207 | 0 | return Err(CmsError::InvalidAtoBLut); |
208 | | } |
209 | | |
210 | 0 | if mab.m_curves.len() == 3 { |
211 | 0 | let all_curves_linear = mab.m_curves.iter().all(|curve| curve.is_linear()); |
212 | 0 | if !all_curves_linear |
213 | 0 | || !mab.matrix.test_equality(Matrix3d::IDENTITY) |
214 | 0 | || mab.bias.ne(&Vector3d::default()) |
215 | | { |
216 | 0 | let curves: Result<Vec<_>, _> = mab |
217 | 0 | .m_curves |
218 | 0 | .iter() |
219 | 0 | .map(|c| { |
220 | 0 | c.build_linearize_table::<u16, LERP_DEPTH, BP>() |
221 | 0 | .ok_or(CmsError::InvalidTrcCurve) |
222 | 0 | }) |
223 | 0 | .collect(); |
224 | | |
225 | 0 | let [curve0, curve1, curve2] = |
226 | 0 | curves?.try_into().map_err(|_| CmsError::InvalidTrcCurve)?; |
227 | | |
228 | 0 | let matrix = mab.matrix.to_f32(); |
229 | 0 | let bias = mab.bias.cast(); |
230 | 0 | let m_curves = MCurves3 { |
231 | 0 | curve0, |
232 | 0 | curve1, |
233 | 0 | curve2, |
234 | 0 | matrix, |
235 | 0 | bias, |
236 | 0 | inverse: true, |
237 | 0 | depth: DEPTH, |
238 | 0 | }; |
239 | 0 | m_curves.transform(lut)?; |
240 | 0 | } |
241 | 0 | } |
242 | | |
243 | 0 | let mut new_lut = try_vec![0f32; (lut.len() / 3) * 4]; |
244 | | |
245 | 0 | if mab.a_curves.len() == 4 && mab.clut.is_some() { |
246 | 0 | let clut = &mab.clut.as_ref().map(|x| x.to_clut_f32()).unwrap(); |
247 | | |
248 | 0 | let lut_grid = (mab.grid_points[0] as usize) |
249 | 0 | .safe_mul(mab.grid_points[1] as usize)? |
250 | 0 | .safe_mul(mab.grid_points[2] as usize)? |
251 | 0 | .safe_mul(mab.num_output_channels as usize)?; |
252 | 0 | if clut.len() != lut_grid { |
253 | 0 | return Err(CmsError::MalformedClut(MalformedSize { |
254 | 0 | size: clut.len(), |
255 | 0 | expected: lut_grid, |
256 | 0 | })); |
257 | 0 | } |
258 | | |
259 | 0 | let grid_size = [mab.grid_points[0], mab.grid_points[1], mab.grid_points[2]]; |
260 | | |
261 | 0 | let all_curves_linear = mab.a_curves.iter().all(|curve| curve.is_linear()); |
262 | | |
263 | 0 | if all_curves_linear { |
264 | 0 | let a_curves = ACurves3x4InverseOptimized { |
265 | 0 | clut, |
266 | 0 | grid_size: [mab.grid_points[0], mab.grid_points[1], mab.grid_points[2]], |
267 | 0 | interpolation_method: options.interpolation_method, |
268 | 0 | pcs, |
269 | 0 | }; |
270 | 0 | a_curves.transform(lut, &mut new_lut)?; |
271 | | } else { |
272 | 0 | let curves: Result<Vec<_>, _> = mab |
273 | 0 | .a_curves |
274 | 0 | .iter() |
275 | 0 | .map(|c| { |
276 | 0 | c.build_linearize_table::<u16, LERP_DEPTH, BP>() |
277 | 0 | .ok_or(CmsError::InvalidTrcCurve) |
278 | 0 | }) |
279 | 0 | .collect(); |
280 | | |
281 | 0 | let [curve0, curve1, curve2, curve3] = |
282 | 0 | curves?.try_into().map_err(|_| CmsError::InvalidTrcCurve)?; |
283 | | |
284 | 0 | let a_curves = ACurves3x4Inverse { |
285 | 0 | curve0, |
286 | 0 | curve1, |
287 | 0 | curve2, |
288 | 0 | curve3, |
289 | 0 | clut, |
290 | 0 | grid_size, |
291 | 0 | interpolation_method: options.interpolation_method, |
292 | 0 | depth: DEPTH, |
293 | 0 | pcs, |
294 | 0 | }; |
295 | 0 | a_curves.transform(lut, &mut new_lut)?; |
296 | | } |
297 | | } else { |
298 | 0 | return Err(CmsError::UnsupportedProfileConnection); |
299 | | } |
300 | | |
301 | 0 | Ok(new_lut) |
302 | 0 | } |