/rust/registry/src/index.crates.io-1949cf8c6b5b557f/pxfm-0.1.25/src/bessel/k0f.rs
Line | Count | Source |
1 | | /* |
2 | | * // Copyright (c) Radzivon Bartoshyk 7/2025. All rights reserved. |
3 | | * // |
4 | | * // Redistribution and use in source and binary forms, with or without modification, |
5 | | * // are permitted provided that the following conditions are met: |
6 | | * // |
7 | | * // 1. Redistributions of source code must retain the above copyright notice, this |
8 | | * // list of conditions and the following disclaimer. |
9 | | * // |
10 | | * // 2. Redistributions in binary form must reproduce the above copyright notice, |
11 | | * // this list of conditions and the following disclaimer in the documentation |
12 | | * // and/or other materials provided with the distribution. |
13 | | * // |
14 | | * // 3. Neither the name of the copyright holder nor the names of its |
15 | | * // contributors may be used to endorse or promote products derived from |
16 | | * // this software without specific prior written permission. |
17 | | * // |
18 | | * // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" |
19 | | * // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
20 | | * // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE |
21 | | * // DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE |
22 | | * // FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL |
23 | | * // DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR |
24 | | * // SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER |
25 | | * // CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, |
26 | | * // OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE |
27 | | * // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
28 | | */ |
29 | | use crate::bessel::i0f::i0f_small; |
30 | | use crate::common::f_fmla; |
31 | | use crate::exponents::core_expf; |
32 | | use crate::logs::fast_logf; |
33 | | use crate::polyeval::{f_estrin_polyeval7, f_estrin_polyeval8}; |
34 | | |
35 | | /// Modified Bessel of the second kind of order 0 |
36 | | /// |
37 | | /// Max ULP 0.5 |
38 | | /// |
39 | | /// This method have exactly one exception which is not correctly rounded with FMA. |
40 | 0 | pub fn f_k0f(x: f32) -> f32 { |
41 | 0 | let ux = x.to_bits(); |
42 | 0 | if ux >= 0xffu32 << 23 || ux == 0 { |
43 | | // |x| == 0, |x| == inf, |x| == NaN, x < 0 |
44 | 0 | if ux.wrapping_shl(1) == 0 { |
45 | 0 | return f32::INFINITY; |
46 | 0 | } |
47 | 0 | if x.is_infinite() { |
48 | 0 | return if x.is_sign_positive() { 0. } else { f32::NAN }; |
49 | 0 | } |
50 | 0 | return x + f32::NAN; // x == NaN |
51 | 0 | } |
52 | | |
53 | 0 | let xb = x.to_bits(); |
54 | | |
55 | 0 | if xb >= 0x42cbc4fbu32 { |
56 | | // x > 101.88473 |
57 | 0 | return 0.; |
58 | 0 | } |
59 | | |
60 | 0 | if xb <= 0x3f800000u32 { |
61 | 0 | if xb <= 0x34000000u32 { |
62 | | // |x| < f32::EPSILON |
63 | | // taylor series for K0(x) ~ -euler_gamma + log(2) - log(x) |
64 | 0 | let log_x = fast_logf(x); |
65 | | const EULER_GAMMA_PLUS_LOG2: f64 = f64::from_bits(0x3fbdadb014541eb2); |
66 | 0 | return (-log_x + EULER_GAMMA_PLUS_LOG2) as f32; |
67 | 0 | } |
68 | | // x <= 1.0 |
69 | 0 | return k0f_small(x); |
70 | 0 | } |
71 | | |
72 | 0 | k0f_asympt(x) |
73 | 0 | } |
74 | | |
75 | | /** |
76 | | K0(x) + log(x) * I0(x) = P(x^2) |
77 | | hence |
78 | | K0(x) = P(x^2) - log(x)*I0(x) |
79 | | |
80 | | Polynomial generated by Wolfram Mathematica: |
81 | | ```text |
82 | | <<FunctionApproximations` |
83 | | ClearAll["Global`*"] |
84 | | f[x_]:=BesselK[0,x]+Log[x]BesselI[0,x] |
85 | | g[z_]:=f[Sqrt[z]] |
86 | | {err, approx}=MiniMaxApproximation[g[z],{z,{0.000000001,1},6,0},WorkingPrecision->60] |
87 | | poly=Numerator[approx][[1]]; |
88 | | coeffs=CoefficientList[poly,z]; |
89 | | TableForm[Table[Row[{"'",NumberForm[coeffs[[i+1]],{50,50}, ExponentFunction->(Null&)],"',"}],{i,0,Length[coeffs]-1}]] |
90 | | ``` |
91 | | **/ |
92 | | #[inline] |
93 | 0 | fn k0f_small(x: f32) -> f32 { |
94 | 0 | let v_log = fast_logf(x); |
95 | 0 | let i0 = i0f_small(x); |
96 | | |
97 | 0 | let dx = x as f64; |
98 | | |
99 | 0 | let p = f_estrin_polyeval7( |
100 | 0 | dx * dx, |
101 | 0 | f64::from_bits(0x3fbdadb014541ece), |
102 | 0 | f64::from_bits(0x3fd1dadb01453e9c), |
103 | 0 | f64::from_bits(0x3f99dadb01491ac7), |
104 | 0 | f64::from_bits(0x3f4bb90e82a4f609), |
105 | 0 | f64::from_bits(0x3eef4749ebd25b10), |
106 | 0 | f64::from_bits(0x3e85d5b5668593af), |
107 | 0 | f64::from_bits(0x3e15233b0788618b), |
108 | | ); |
109 | 0 | let c = f_fmla(-i0, v_log, p); |
110 | 0 | c as f32 |
111 | 0 | } |
112 | | |
113 | | /** |
114 | | Generated in Wolfram |
115 | | |
116 | | Computes sqrt(x)*exp(x)*K0(x)=Pn(1/x)/Qm(1/x) |
117 | | hence |
118 | | K0(x) = Pn(1/x)/Qm(1/x) / (sqrt(x) * exp(x)) |
119 | | |
120 | | ```text |
121 | | <<FunctionApproximations` |
122 | | ClearAll["Global`*"] |
123 | | f[x_]:=Sqrt[x] Exp[x] BesselK[0,x] |
124 | | g[z_]:=f[1/z] |
125 | | {err, approx}=MiniMaxApproximation[g[z],{z,{0.0000000000001,1},7,7},WorkingPrecision->60] |
126 | | poly=Numerator[approx][[1]]; |
127 | | coeffs=CoefficientList[poly,z]; |
128 | | TableForm[Table[Row[{"'",NumberForm[coeffs[[i+1]],{50,50}, ExponentFunction->(Null&)],"',"}],{i,0,Length[coeffs]-1}]] |
129 | | poly=Denominator[approx][[1]]; |
130 | | coeffs=CoefficientList[poly,z]; |
131 | | TableForm[Table[Row[{"'",NumberForm[coeffs[[i+1]],{50,50}, ExponentFunction->(Null&)],"',"}],{i,0,Length[coeffs]-1}]] |
132 | | ``` |
133 | | **/ |
134 | | #[inline] |
135 | 0 | fn k0f_asympt(x: f32) -> f32 { |
136 | 0 | let dx = x as f64; |
137 | 0 | let recip = 1. / dx; |
138 | 0 | let e = core_expf(x); |
139 | 0 | let r_sqrt = dx.sqrt(); |
140 | | |
141 | 0 | let p_num = f_estrin_polyeval8( |
142 | 0 | recip, |
143 | 0 | f64::from_bits(0x3ff40d931ff62701), |
144 | 0 | f64::from_bits(0x402d8410a62d9c17), |
145 | 0 | f64::from_bits(0x404e9f1804dd7e54), |
146 | 0 | f64::from_bits(0x405c076822dcd255), |
147 | 0 | f64::from_bits(0x4057379c6932949f), |
148 | 0 | f64::from_bits(0x403ffd64a0bd54b7), |
149 | 0 | f64::from_bits(0x400cc53ed733fd97), |
150 | 0 | f64::from_bits(0x3faf8cc8756944eb), |
151 | | ); |
152 | 0 | let p_den = f_estrin_polyeval8( |
153 | 0 | recip, |
154 | 0 | f64::from_bits(0x3ff0000000000000), |
155 | 0 | f64::from_bits(0x4027ccde1d27ffc9), |
156 | 0 | f64::from_bits(0x40492418136fb90f), |
157 | 0 | f64::from_bits(0x4057be8a00983906), |
158 | 0 | f64::from_bits(0x4054cc77d2379b76), |
159 | 0 | f64::from_bits(0x403fd218713ec08d), |
160 | 0 | f64::from_bits(0x4011c77649d3f65f), |
161 | 0 | f64::from_bits(0x3fc2080a59e87324), |
162 | | ); |
163 | 0 | let v = p_num / p_den; |
164 | 0 | let pp = v / (e * r_sqrt); |
165 | 0 | pp as f32 |
166 | 0 | } |
167 | | |
168 | | #[cfg(test)] |
169 | | mod tests { |
170 | | use super::*; |
171 | | |
172 | | #[test] |
173 | | fn test_k0f() { |
174 | | assert_eq!(f_k0f(2.034804e-5), 10.918458); |
175 | | assert_eq!(f_k0f(0.010260499), 4.695535); |
176 | | assert_eq!(f_k0f(0.3260499), 1.2965646); |
177 | | assert_eq!(f_k0f(0.72341), 0.636511734); |
178 | | assert_eq!(f_k0f(0.), f32::INFINITY); |
179 | | assert_eq!(f_k0f(-0.), f32::INFINITY); |
180 | | assert!(f_k0f(-0.5).is_nan()); |
181 | | assert!(f_k0f(f32::NEG_INFINITY).is_nan()); |
182 | | assert_eq!(f_k0f(f32::INFINITY), 0.); |
183 | | } |
184 | | } |