/rust/registry/src/index.crates.io-1949cf8c6b5b557f/pxfm-0.1.25/src/double_double.rs
Line | Count | Source |
1 | | /* |
2 | | * // Copyright (c) Radzivon Bartoshyk 6/2025. All rights reserved. |
3 | | * // |
4 | | * // Redistribution and use in source and binary forms, with or without modification, |
5 | | * // are permitted provided that the following conditions are met: |
6 | | * // |
7 | | * // 1. Redistributions of source code must retain the above copyright notice, this |
8 | | * // list of conditions and the following disclaimer. |
9 | | * // |
10 | | * // 2. Redistributions in binary form must reproduce the above copyright notice, |
11 | | * // this list of conditions and the following disclaimer in the documentation |
12 | | * // and/or other materials provided with the distribution. |
13 | | * // |
14 | | * // 3. Neither the name of the copyright holder nor the names of its |
15 | | * // contributors may be used to endorse or promote products derived from |
16 | | * // this software without specific prior written permission. |
17 | | * // |
18 | | * // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" |
19 | | * // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
20 | | * // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE |
21 | | * // DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE |
22 | | * // FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL |
23 | | * // DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR |
24 | | * // SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER |
25 | | * // CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, |
26 | | * // OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE |
27 | | * // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
28 | | */ |
29 | | use crate::bits::get_exponent_f64; |
30 | | #[allow(unused_imports)] |
31 | | use crate::common::*; |
32 | | use std::ops::{Mul, Neg}; |
33 | | // https://hal.science/hal-01351529v3/document |
34 | | |
35 | | #[derive(Copy, Clone, Default, Debug)] |
36 | | pub(crate) struct DoubleDouble { |
37 | | pub(crate) lo: f64, |
38 | | pub(crate) hi: f64, |
39 | | } |
40 | | |
41 | | impl Neg for DoubleDouble { |
42 | | type Output = Self; |
43 | | |
44 | | #[inline] |
45 | 0 | fn neg(self) -> Self::Output { |
46 | 0 | Self { |
47 | 0 | hi: -self.hi, |
48 | 0 | lo: -self.lo, |
49 | 0 | } |
50 | 0 | } |
51 | | } |
52 | | |
53 | | impl DoubleDouble { |
54 | | #[inline] |
55 | 0 | pub(crate) const fn from_bit_pair(pair: (u64, u64)) -> Self { |
56 | 0 | Self { |
57 | 0 | lo: f64::from_bits(pair.0), |
58 | 0 | hi: f64::from_bits(pair.1), |
59 | 0 | } |
60 | 0 | } |
61 | | |
62 | | #[inline] |
63 | 0 | pub(crate) const fn new(lo: f64, hi: f64) -> Self { |
64 | 0 | DoubleDouble { lo, hi } |
65 | 0 | } Unexecuted instantiation: <pxfm::double_double::DoubleDouble>::new Unexecuted instantiation: <pxfm::double_double::DoubleDouble>::new |
66 | | |
67 | | // Non FMA helper |
68 | | #[allow(dead_code)] |
69 | | #[inline] |
70 | 0 | pub(crate) const fn split(a: f64) -> DoubleDouble { |
71 | | // CN = 2^N. |
72 | | const CN: f64 = (1 << 27) as f64; |
73 | | const C: f64 = CN + 1.0; |
74 | 0 | let t1 = C * a; |
75 | 0 | let t2 = a - t1; |
76 | 0 | let r_hi = t1 + t2; |
77 | 0 | let r_lo = a - r_hi; |
78 | 0 | DoubleDouble::new(r_lo, r_hi) |
79 | 0 | } Unexecuted instantiation: <pxfm::double_double::DoubleDouble>::split Unexecuted instantiation: <pxfm::double_double::DoubleDouble>::split |
80 | | |
81 | | // Non FMA helper |
82 | | #[allow(dead_code)] |
83 | | #[inline] |
84 | 0 | fn from_exact_mult_impl_non_fma(asz: DoubleDouble, a: f64, b: f64) -> Self { |
85 | 0 | let bs = DoubleDouble::split(b); |
86 | | |
87 | 0 | let r_hi = a * b; |
88 | 0 | let t1 = asz.hi * bs.hi - r_hi; |
89 | 0 | let t2 = asz.hi * bs.lo + t1; |
90 | 0 | let t3 = asz.lo * bs.hi + t2; |
91 | 0 | let r_lo = asz.lo * bs.lo + t3; |
92 | 0 | DoubleDouble::new(r_lo, r_hi) |
93 | 0 | } Unexecuted instantiation: <pxfm::double_double::DoubleDouble>::from_exact_mult_impl_non_fma Unexecuted instantiation: <pxfm::double_double::DoubleDouble>::from_exact_mult_impl_non_fma |
94 | | |
95 | | // valid only for |a| > b |
96 | | #[inline] |
97 | 0 | pub(crate) const fn from_exact_add(a: f64, b: f64) -> DoubleDouble { |
98 | 0 | let r_hi = a + b; |
99 | 0 | let t = r_hi - a; |
100 | 0 | let r_lo = b - t; |
101 | 0 | DoubleDouble::new(r_lo, r_hi) |
102 | 0 | } Unexecuted instantiation: <pxfm::double_double::DoubleDouble>::from_exact_add Unexecuted instantiation: <pxfm::double_double::DoubleDouble>::from_exact_add |
103 | | |
104 | | // valid only for |a| > b |
105 | | #[inline] |
106 | 0 | pub(crate) const fn from_exact_sub(a: f64, b: f64) -> DoubleDouble { |
107 | 0 | let r_hi = a - b; |
108 | 0 | let t = a - r_hi; |
109 | 0 | let r_lo = t - b; |
110 | 0 | DoubleDouble::new(r_lo, r_hi) |
111 | 0 | } |
112 | | |
113 | | #[inline] |
114 | 0 | pub(crate) const fn from_full_exact_add(a: f64, b: f64) -> DoubleDouble { |
115 | 0 | let r_hi = a + b; |
116 | 0 | let t1 = r_hi - a; |
117 | 0 | let t2 = r_hi - t1; |
118 | 0 | let t3 = b - t1; |
119 | 0 | let t4 = a - t2; |
120 | 0 | let r_lo = t3 + t4; |
121 | 0 | DoubleDouble::new(r_lo, r_hi) |
122 | 0 | } |
123 | | |
124 | | #[allow(unused)] |
125 | | #[inline] |
126 | 0 | pub(crate) fn dd_f64_mul_add(a: f64, b: f64, c: f64) -> f64 { |
127 | 0 | let ddx2 = DoubleDouble::from_exact_mult(a, b); |
128 | 0 | let zv = DoubleDouble::full_add_f64(ddx2, c); |
129 | 0 | zv.to_f64() |
130 | 0 | } |
131 | | |
132 | | #[inline] |
133 | 0 | pub(crate) const fn from_full_exact_sub(a: f64, b: f64) -> Self { |
134 | 0 | let r_hi = a - b; |
135 | 0 | let t1 = r_hi - a; |
136 | 0 | let t2 = r_hi - t1; |
137 | 0 | let t3 = -b - t1; |
138 | 0 | let t4 = a - t2; |
139 | 0 | let r_lo = t3 + t4; |
140 | 0 | DoubleDouble::new(r_lo, r_hi) |
141 | 0 | } |
142 | | |
143 | | #[inline] |
144 | 0 | pub(crate) fn add(a: DoubleDouble, b: DoubleDouble) -> DoubleDouble { |
145 | 0 | let s = a.hi + b.hi; |
146 | 0 | let d = s - a.hi; |
147 | 0 | let l = ((b.hi - d) + (a.hi + (d - s))) + (a.lo + b.lo); |
148 | 0 | DoubleDouble::new(l, s) |
149 | 0 | } |
150 | | |
151 | | #[inline] |
152 | 0 | pub(crate) fn quick_dd_add(a: DoubleDouble, b: DoubleDouble) -> DoubleDouble { |
153 | 0 | let DoubleDouble { hi: sh, lo: sl } = DoubleDouble::from_full_exact_add(a.hi, b.hi); |
154 | 0 | let v = a.lo + b.lo; |
155 | 0 | let w = sl + v; |
156 | 0 | DoubleDouble::from_exact_add(sh, w) |
157 | 0 | } |
158 | | |
159 | | #[inline] |
160 | 0 | pub(crate) fn quick_dd_sub(a: DoubleDouble, b: DoubleDouble) -> DoubleDouble { |
161 | 0 | let DoubleDouble { hi: sh, lo: sl } = DoubleDouble::from_full_exact_sub(a.hi, b.hi); |
162 | 0 | let v = a.lo - b.lo; |
163 | 0 | let w = sl + v; |
164 | 0 | DoubleDouble::from_exact_add(sh, w) |
165 | 0 | } |
166 | | |
167 | | #[inline] |
168 | 0 | pub(crate) fn full_dd_add(a: DoubleDouble, b: DoubleDouble) -> DoubleDouble { |
169 | 0 | let DoubleDouble { hi: sh, lo: sl } = DoubleDouble::from_full_exact_add(a.hi, b.hi); |
170 | 0 | let DoubleDouble { hi: th, lo: tl } = DoubleDouble::from_full_exact_add(a.lo, b.lo); |
171 | 0 | let c = sl + th; |
172 | 0 | let v = DoubleDouble::from_exact_add(sh, c); |
173 | 0 | let w = tl + v.lo; |
174 | 0 | DoubleDouble::from_exact_add(v.hi, w) |
175 | 0 | } |
176 | | |
177 | | #[inline] |
178 | 0 | pub(crate) fn full_dd_sub(a: DoubleDouble, b: DoubleDouble) -> DoubleDouble { |
179 | 0 | DoubleDouble::full_dd_add(a, -b) |
180 | 0 | } |
181 | | |
182 | | #[inline] |
183 | 0 | pub(crate) fn sub(a: DoubleDouble, b: DoubleDouble) -> DoubleDouble { |
184 | 0 | let s = a.hi - b.hi; |
185 | 0 | let d = s - a.hi; |
186 | 0 | let l = ((-b.hi - d) + (a.hi + (d - s))) + (a.lo - b.lo); |
187 | 0 | DoubleDouble::new(l, s) |
188 | 0 | } |
189 | | |
190 | | /// DoubleDouble-style square root for a double-double number |
191 | | #[inline] |
192 | 0 | pub(crate) fn sqrt(self) -> DoubleDouble { |
193 | 0 | let a = self.hi + self.lo; |
194 | | |
195 | 0 | if a == 0.0 { |
196 | 0 | return DoubleDouble { hi: 0.0, lo: 0.0 }; |
197 | 0 | } |
198 | 0 | if a < 0.0 || a.is_nan() { |
199 | 0 | return DoubleDouble { |
200 | 0 | hi: f64::NAN, |
201 | 0 | lo: 0.0, |
202 | 0 | }; |
203 | 0 | } |
204 | 0 | if a.is_infinite() { |
205 | 0 | return DoubleDouble { |
206 | 0 | hi: f64::INFINITY, |
207 | 0 | lo: 0.0, |
208 | 0 | }; |
209 | 0 | } |
210 | | |
211 | 0 | let x = a.sqrt(); |
212 | | |
213 | 0 | let x2 = DoubleDouble::from_exact_mult(x, x); |
214 | | |
215 | | // Residual = self - x² |
216 | 0 | let mut r = self.hi - x2.hi; |
217 | 0 | r += self.lo; |
218 | 0 | r -= x2.lo; |
219 | | |
220 | 0 | let dx = r / (2.0 * x); |
221 | 0 | let hi = x + dx; |
222 | 0 | let lo = (x - hi) + dx; |
223 | | |
224 | 0 | DoubleDouble { hi, lo } |
225 | 0 | } |
226 | | |
227 | | /// DoubleDouble-style square root for a double-double number |
228 | | #[inline] |
229 | 0 | pub(crate) fn fast_sqrt(self) -> DoubleDouble { |
230 | 0 | let a = self.hi + self.lo; |
231 | 0 | let x = a.sqrt(); |
232 | | |
233 | 0 | let x2 = DoubleDouble::from_exact_mult(x, x); |
234 | | |
235 | | // Residual = self - x² |
236 | 0 | let mut r = self.hi - x2.hi; |
237 | 0 | r += self.lo; |
238 | 0 | r -= x2.lo; |
239 | | |
240 | 0 | let dx = r / (2.0 * x); |
241 | 0 | let hi = x + dx; |
242 | 0 | let lo = (x - hi) + dx; |
243 | | |
244 | 0 | DoubleDouble { hi, lo } |
245 | 0 | } |
246 | | |
247 | | /// `a*b+c` |
248 | | /// |
249 | | /// *Accurate dot product (Ogita, Rump and Oishi 2004)* |
250 | | #[inline] |
251 | 0 | pub(crate) fn mul_add_f64(a: DoubleDouble, b: DoubleDouble, c: f64) -> DoubleDouble { |
252 | 0 | let DoubleDouble { hi: h, lo: r } = DoubleDouble::quick_mult(a, b); |
253 | 0 | let DoubleDouble { hi: p, lo: q } = DoubleDouble::from_full_exact_add(c, h); |
254 | 0 | DoubleDouble::new(r + q, p) |
255 | 0 | } |
256 | | |
257 | | /// `a*b+c` |
258 | | /// |
259 | | /// *Accurate dot product (Ogita, Rump and Oishi 2004)* |
260 | | #[inline] |
261 | 0 | pub(crate) fn quick_mul_add_f64(a: DoubleDouble, b: DoubleDouble, c: f64) -> DoubleDouble { |
262 | 0 | let DoubleDouble { hi: h, lo: r } = DoubleDouble::quick_mult(a, b); |
263 | 0 | let DoubleDouble { hi: p, lo: q } = DoubleDouble::from_exact_add(c, h); |
264 | 0 | DoubleDouble::new(r + q, p) |
265 | 0 | } |
266 | | |
267 | | /// `a*b+c` |
268 | | /// |
269 | | /// *Accurate dot product (Ogita, Rump and Oishi 2004)* |
270 | | #[inline] |
271 | 0 | pub(crate) fn mul_f64_add_f64(a: DoubleDouble, b: f64, c: f64) -> DoubleDouble { |
272 | 0 | let DoubleDouble { hi: h, lo: r } = DoubleDouble::quick_mult_f64(a, b); |
273 | 0 | let DoubleDouble { hi: p, lo: q } = DoubleDouble::from_full_exact_add(c, h); |
274 | 0 | DoubleDouble::new(r + q, p) |
275 | 0 | } |
276 | | |
277 | | // /// Accurate reciprocal: 1 / self |
278 | | // #[inline] |
279 | | // pub(crate) fn recip_raphson(self) -> DoubleDouble { |
280 | | // let y0 = DoubleDouble::recip(self); |
281 | | // let z = DoubleDouble::mul_add_f64(-self, y0, 1.0); |
282 | | // DoubleDouble::mul_add(y0, z, y0) |
283 | | // } |
284 | | |
285 | | /// Accurate reciprocal: 1 / self |
286 | | #[inline] |
287 | 0 | pub(crate) fn recip(self) -> DoubleDouble { |
288 | | #[cfg(any( |
289 | | all( |
290 | | any(target_arch = "x86", target_arch = "x86_64"), |
291 | | target_feature = "fma" |
292 | | ), |
293 | | target_arch = "aarch64" |
294 | | ))] |
295 | | { |
296 | | let y = 1. / self.hi; |
297 | | let e1 = f_fmla(-self.hi, y, 1.0); |
298 | | let e2 = f_fmla(-self.lo, y, e1); |
299 | | let e = y * e2; |
300 | | DoubleDouble::new(e, y) |
301 | | } |
302 | | #[cfg(not(any( |
303 | | all( |
304 | | any(target_arch = "x86", target_arch = "x86_64"), |
305 | | target_feature = "fma" |
306 | | ), |
307 | | target_arch = "aarch64" |
308 | | )))] |
309 | | { |
310 | 0 | let y = 1.0 / self.hi; |
311 | | |
312 | 0 | let DoubleDouble { hi: p1, lo: err1 } = DoubleDouble::from_exact_mult(self.hi, y); |
313 | 0 | let e1 = (1.0 - p1) - err1; |
314 | 0 | let DoubleDouble { hi: p2, lo: err2 } = DoubleDouble::from_exact_mult(self.lo, y); |
315 | 0 | let e2 = (e1 - p2) - err2; |
316 | 0 | let e = y * e2; |
317 | | |
318 | 0 | DoubleDouble::new(e, y) |
319 | | } |
320 | 0 | } |
321 | | |
322 | | #[inline] |
323 | 0 | pub(crate) fn from_recip(b: f64) -> Self { |
324 | | #[cfg(any( |
325 | | all( |
326 | | any(target_arch = "x86", target_arch = "x86_64"), |
327 | | target_feature = "fma" |
328 | | ), |
329 | | target_arch = "aarch64" |
330 | | ))] |
331 | | { |
332 | | let x_hi = 1.0 / b; |
333 | | let err = f_fmla(-x_hi, b, 1.0); |
334 | | let x_lo = err / b; |
335 | | Self::new(x_lo, x_hi) |
336 | | } |
337 | | #[cfg(not(any( |
338 | | all( |
339 | | any(target_arch = "x86", target_arch = "x86_64"), |
340 | | target_feature = "fma" |
341 | | ), |
342 | | target_arch = "aarch64" |
343 | | )))] |
344 | | { |
345 | 0 | let x_hi = 1.0 / b; |
346 | 0 | let prod = Self::from_exact_mult(x_hi, b); |
347 | 0 | let err = (1.0 - prod.hi) - prod.lo; |
348 | 0 | let x_lo = err / b; |
349 | 0 | Self::new(x_lo, x_hi) |
350 | | } |
351 | 0 | } |
352 | | |
353 | | #[inline] |
354 | 0 | pub(crate) fn from_quick_recip(b: f64) -> Self { |
355 | | #[cfg(any( |
356 | | all( |
357 | | any(target_arch = "x86", target_arch = "x86_64"), |
358 | | target_feature = "fma" |
359 | | ), |
360 | | target_arch = "aarch64" |
361 | | ))] |
362 | | { |
363 | | let h = 1.0 / b; |
364 | | let hl = f_fmla(h, -b, 1.) * h; |
365 | | DoubleDouble::new(hl, h) |
366 | | } |
367 | | #[cfg(not(any( |
368 | | all( |
369 | | any(target_arch = "x86", target_arch = "x86_64"), |
370 | | target_feature = "fma" |
371 | | ), |
372 | | target_arch = "aarch64" |
373 | | )))] |
374 | | { |
375 | 0 | let h = 1.0 / b; |
376 | 0 | let pr = DoubleDouble::from_exact_mult(h, b); |
377 | 0 | let err = (1.0 - pr.hi) - pr.lo; |
378 | 0 | let hl = err * h; |
379 | 0 | DoubleDouble::new(hl, h) |
380 | | } |
381 | 0 | } |
382 | | |
383 | | #[inline] |
384 | 0 | pub(crate) fn from_exact_div(a: f64, b: f64) -> Self { |
385 | | #[cfg(any( |
386 | | all( |
387 | | any(target_arch = "x86", target_arch = "x86_64"), |
388 | | target_feature = "fma" |
389 | | ), |
390 | | target_arch = "aarch64" |
391 | | ))] |
392 | | { |
393 | | let q_hi = a / b; |
394 | | let r = f_fmla(-q_hi, b, a); |
395 | | let q_lo = r / b; |
396 | | Self::new(q_lo, q_hi) |
397 | | } |
398 | | |
399 | | #[cfg(not(any( |
400 | | all( |
401 | | any(target_arch = "x86", target_arch = "x86_64"), |
402 | | target_feature = "fma" |
403 | | ), |
404 | | target_arch = "aarch64" |
405 | | )))] |
406 | | { |
407 | 0 | let q_hi = a / b; |
408 | | |
409 | 0 | let p = DoubleDouble::from_exact_mult(q_hi, b); |
410 | 0 | let r = DoubleDouble::from_exact_sub(a, p.hi); |
411 | 0 | let r = r.hi + (r.lo - p.lo); |
412 | 0 | let q_lo = r / b; |
413 | | |
414 | 0 | Self::new(q_lo, q_hi) |
415 | | } |
416 | 0 | } |
417 | | |
418 | | // Resistant to overflow without FMA |
419 | | #[inline] |
420 | 0 | pub(crate) fn from_exact_safe_div(a: f64, b: f64) -> Self { |
421 | 0 | let q_hi = a / b; |
422 | 0 | let r = f64::mul_add(-q_hi, b, a); |
423 | 0 | let q_lo = r / b; |
424 | 0 | Self::new(q_lo, q_hi) |
425 | 0 | } |
426 | | |
427 | | #[inline] |
428 | 0 | pub(crate) fn from_sqrt(x: f64) -> Self { |
429 | | #[cfg(any( |
430 | | all( |
431 | | any(target_arch = "x86", target_arch = "x86_64"), |
432 | | target_feature = "fma" |
433 | | ), |
434 | | target_arch = "aarch64" |
435 | | ))] |
436 | | { |
437 | | let h = x.sqrt(); |
438 | | /* h = sqrt(x) * (1 + e1) with |e1| < 2^-52 |
439 | | thus h^2 = x * (1 + e2) with |e2| < 2^-50.999 */ |
440 | | let e = -f_fmla(h, h, -x); // exact |
441 | | |
442 | | /* e = x - h^2 */ |
443 | | let l = e / (h + h); |
444 | | DoubleDouble::new(l, h) |
445 | | } |
446 | | #[cfg(not(any( |
447 | | all( |
448 | | any(target_arch = "x86", target_arch = "x86_64"), |
449 | | target_feature = "fma" |
450 | | ), |
451 | | target_arch = "aarch64" |
452 | | )))] |
453 | | { |
454 | 0 | let h = x.sqrt(); |
455 | 0 | let prod_hh = DoubleDouble::from_exact_mult(h, h); |
456 | 0 | let e = (x - prod_hh.hi) - prod_hh.lo; // exact |
457 | | |
458 | | /* e = x - h^2 */ |
459 | 0 | let l = e / (h + h); |
460 | 0 | DoubleDouble::new(l, h) |
461 | | } |
462 | 0 | } |
463 | | |
464 | | /// Safe to overflow underflow division using mandatory FMA. |
465 | | #[inline] |
466 | | #[allow(dead_code)] |
467 | 0 | pub(crate) fn div_safe_dd_f64(a: DoubleDouble, b: f64) -> Self { |
468 | 0 | let q1 = a.hi / b; |
469 | 0 | let r = f64::mul_add(-q1, b, a.hi); |
470 | 0 | let r = r + a.lo; |
471 | 0 | let q2 = r / b; |
472 | | |
473 | 0 | DoubleDouble::new(q2, q1) |
474 | 0 | } |
475 | | |
476 | | #[inline] |
477 | 0 | pub(crate) fn div_dd_f64(a: DoubleDouble, b: f64) -> Self { |
478 | | #[cfg(any( |
479 | | all( |
480 | | any(target_arch = "x86", target_arch = "x86_64"), |
481 | | target_feature = "fma" |
482 | | ), |
483 | | target_arch = "aarch64" |
484 | | ))] |
485 | | { |
486 | | let q1 = a.hi / b; |
487 | | let r = f_fmla(-q1, b, a.hi); |
488 | | let r = r + a.lo; |
489 | | let q2 = r / b; |
490 | | |
491 | | DoubleDouble::new(q2, q1) |
492 | | } |
493 | | #[cfg(not(any( |
494 | | all( |
495 | | any(target_arch = "x86", target_arch = "x86_64"), |
496 | | target_feature = "fma" |
497 | | ), |
498 | | target_arch = "aarch64" |
499 | | )))] |
500 | | { |
501 | 0 | let th = a.hi / b; |
502 | 0 | let prod = DoubleDouble::from_exact_mult(th, b); |
503 | 0 | let beta_h = a.hi - prod.hi; |
504 | 0 | let beta_l = beta_h - prod.lo; |
505 | 0 | let beta = beta_l + a.lo; |
506 | 0 | let tl = beta / b; |
507 | 0 | DoubleDouble::new(tl, th) |
508 | | } |
509 | 0 | } |
510 | | |
511 | | // /// Dekker division with one refinement step |
512 | | // #[inline] |
513 | | // pub(crate) fn div_dd_f64_newton_raphson(a: DoubleDouble, b: f64) -> Self { |
514 | | // // Initial estimate q = a / b |
515 | | // let q = DoubleDouble::div_dd_f64(a, b); |
516 | | // |
517 | | // // One Newton-Raphson refinement step: |
518 | | // // e = a - q * b |
519 | | // let qb = DoubleDouble::quick_mult_f64(q, b); |
520 | | // let e = DoubleDouble::sub(a, qb); |
521 | | // let e_div_b = DoubleDouble::div_dd_f64(e, b); |
522 | | // |
523 | | // DoubleDouble::add(q, e_div_b) |
524 | | // } |
525 | | |
526 | | // /// Dekker division with two Newton-Raphson refinement steps |
527 | | // #[inline] |
528 | | // pub(crate) fn div_dd_f64_newton_raphson_2(a: Dekker, b: f64) -> Self { |
529 | | // // First estimate: q = a / b (one round of Dekker division) |
530 | | // let q1 = Dekker::div_dd_f64(a, b); |
531 | | // |
532 | | // // First refinement: q2 = q1 + (a - q1 * b) / b |
533 | | // let qb1 = Dekker::quick_mult_f64(q1, b); |
534 | | // let e1 = Dekker::sub(a, qb1); |
535 | | // let dq1 = Dekker::div_dd_f64(e1, b); |
536 | | // let q2 = Dekker::add(q1, dq1); |
537 | | // |
538 | | // // Second refinement: q3 = q2 + (a - q2 * b) / b |
539 | | // let qb2 = Dekker::quick_mult_f64(q2, b); |
540 | | // let e2 = Dekker::sub(a, qb2); |
541 | | // let dq2 = Dekker::div_dd_f64(e2, b); |
542 | | // |
543 | | // Dekker::add(q2, dq2) |
544 | | // } |
545 | | |
546 | | // #[inline] |
547 | | // pub(crate) fn neg(self) -> Self { |
548 | | // Self { |
549 | | // lo: -self.lo, hi: -self.hi, |
550 | | // } |
551 | | // } |
552 | | |
553 | | #[inline] |
554 | 0 | pub(crate) fn from_f64_div_dd(a: f64, b: DoubleDouble) -> Self { |
555 | 0 | let q1 = a / b.hi; |
556 | | |
557 | 0 | let prod = DoubleDouble::from_exact_mult(q1, b.hi); |
558 | 0 | let prod_lo = f_fmla(q1, b.lo, prod.lo); |
559 | 0 | let rem = f_fmla(-1.0, prod.hi, a) - prod_lo; |
560 | | |
561 | 0 | let q2 = rem / b.hi; |
562 | | |
563 | 0 | DoubleDouble::new(q2, q1) |
564 | 0 | } |
565 | | |
566 | | // #[inline] |
567 | | // pub(crate) fn mla_f64(a: Dekker, b: f64, c: f64) -> Self { |
568 | | // let q = Dekker::mult_f64(a, b); |
569 | | // Dekker::add_f64(q, c) |
570 | | // } |
571 | | // |
572 | | // #[inline] |
573 | | // pub(crate) fn mla_dd_f64(a: Dekker, b: Dekker, c: f64) -> Self { |
574 | | // let q = Dekker::quick_mult(a, b); |
575 | | // Dekker::add_f64(q, c) |
576 | | // } |
577 | | |
578 | | #[inline] |
579 | 0 | pub(crate) fn div(a: DoubleDouble, b: DoubleDouble) -> DoubleDouble { |
580 | 0 | let q = 1.0 / b.hi; |
581 | 0 | let r_hi = a.hi * q; |
582 | | #[cfg(any( |
583 | | all( |
584 | | any(target_arch = "x86", target_arch = "x86_64"), |
585 | | target_feature = "fma" |
586 | | ), |
587 | | target_arch = "aarch64" |
588 | | ))] |
589 | | { |
590 | | let e_hi = f_fmla(b.hi, -r_hi, a.hi); |
591 | | let e_lo = f_fmla(b.lo, -r_hi, a.lo); |
592 | | let r_lo = q * (e_hi + e_lo); |
593 | | DoubleDouble::new(r_lo, r_hi) |
594 | | } |
595 | | |
596 | | #[cfg(not(any( |
597 | | all( |
598 | | any(target_arch = "x86", target_arch = "x86_64"), |
599 | | target_feature = "fma" |
600 | | ), |
601 | | target_arch = "aarch64" |
602 | | )))] |
603 | | { |
604 | 0 | let b_hi_r_hi = DoubleDouble::from_exact_mult(b.hi, -r_hi); |
605 | 0 | let b_lo_r_hi = DoubleDouble::from_exact_mult(b.lo, -r_hi); |
606 | 0 | let e_hi = (a.hi + b_hi_r_hi.hi) + b_hi_r_hi.lo; |
607 | 0 | let e_lo = (a.lo + b_lo_r_hi.hi) + b_lo_r_hi.lo; |
608 | 0 | let r_lo = q * (e_hi + e_lo); |
609 | 0 | DoubleDouble::new(r_lo, r_hi) |
610 | | } |
611 | 0 | } |
612 | | |
613 | | #[inline] |
614 | 0 | pub(crate) fn from_exact_mult(a: f64, b: f64) -> Self { |
615 | | #[cfg(any( |
616 | | all( |
617 | | any(target_arch = "x86", target_arch = "x86_64"), |
618 | | target_feature = "fma" |
619 | | ), |
620 | | target_arch = "aarch64" |
621 | | ))] |
622 | | { |
623 | | let r_hi = a * b; |
624 | | let r_lo = f_fmla(a, b, -r_hi); |
625 | | DoubleDouble::new(r_lo, r_hi) |
626 | | } |
627 | | #[cfg(not(any( |
628 | | all( |
629 | | any(target_arch = "x86", target_arch = "x86_64"), |
630 | | target_feature = "fma" |
631 | | ), |
632 | | target_arch = "aarch64" |
633 | | )))] |
634 | | { |
635 | 0 | let splat = DoubleDouble::split(a); |
636 | 0 | DoubleDouble::from_exact_mult_impl_non_fma(splat, a, b) |
637 | | } |
638 | 0 | } Unexecuted instantiation: <pxfm::double_double::DoubleDouble>::from_exact_mult Unexecuted instantiation: <pxfm::double_double::DoubleDouble>::from_exact_mult |
639 | | |
640 | | // #[inline] |
641 | | // pub(crate) fn add_f64(&self, other: f64) -> DoubleDouble { |
642 | | // let r = DoubleDouble::from_exact_add(self.hi, other); |
643 | | // Dekker::from_exact_add(r.hi, r.lo + self.lo) |
644 | | // } |
645 | | |
646 | | // #[inline] |
647 | | // pub(crate) fn to_triple(self) -> TripleDouble { |
648 | | // TripleDouble::new(0., self.lo, self.hi) |
649 | | // } |
650 | | |
651 | | /// Computes `a * b + c` |
652 | | /// `b` is an `f64`, `a` and `c` are `DoubleDouble`. |
653 | | /// |
654 | | /// *Accurate dot product (Ogita, Rump and Oishi 2004)* |
655 | | #[inline] |
656 | 0 | pub(crate) fn mul_f64_add(a: DoubleDouble, b: f64, c: DoubleDouble) -> Self { |
657 | 0 | let DoubleDouble { hi: h, lo: r } = DoubleDouble::quick_mult_f64(a, b); |
658 | 0 | let DoubleDouble { hi: p, lo: q } = DoubleDouble::full_add_f64(c, h); |
659 | 0 | DoubleDouble::new(r + q, p) |
660 | 0 | } |
661 | | |
662 | | /// Computes `a * b + c` |
663 | | /// `b` is an `f64`, `a` and `c` are `DoubleDouble`. |
664 | | /// |
665 | | /// *Accurate dot product (Ogita, Rump and Oishi 2004)* |
666 | | /// |
667 | | /// *Correctness* |
668 | | /// |c.hi| > |a.hi * b.hi| |
669 | | #[inline] |
670 | 0 | pub(crate) fn quick_mul_f64_add(a: DoubleDouble, b: f64, c: DoubleDouble) -> Self { |
671 | 0 | let DoubleDouble { hi: h, lo: r } = DoubleDouble::quick_mult_f64(a, b); |
672 | 0 | let DoubleDouble { hi: p, lo: q } = DoubleDouble::add_f64(c, h); |
673 | 0 | DoubleDouble::new(r + q, p) |
674 | 0 | } |
675 | | |
676 | | /// Computes `a * b + c` |
677 | | /// |
678 | | /// *Accurate dot product (Ogita, Rump and Oishi 2004)* |
679 | | /// |
680 | | /// *Correctness* |
681 | | /// |c.hi| > |a.hi * b.hi| |
682 | | #[inline] |
683 | 0 | pub(crate) fn quick_mul_f64_add_f64(a: DoubleDouble, b: f64, c: f64) -> Self { |
684 | 0 | let DoubleDouble { hi: h, lo: r } = DoubleDouble::quick_mult_f64(a, b); |
685 | 0 | let DoubleDouble { hi: p, lo: q } = DoubleDouble::from_exact_add(c, h); |
686 | 0 | DoubleDouble::new(r + q, p) |
687 | 0 | } |
688 | | |
689 | | // #[inline] |
690 | | // pub(crate) fn mul_f64_add_full(a: DoubleDouble, b: f64, c: DoubleDouble) -> Self { |
691 | | // /* |
692 | | // double _t1, _t2, _t3, _t4, _t5, _t6, _t7, _t8; \ |
693 | | // \ |
694 | | // Mul12(&_t1,&_t2,(a),(bh)); \ |
695 | | // Add12(_t3,_t4,(ch),_t1); \ |
696 | | // _t5 = (bl) * (a); \ |
697 | | // _t6 = (cl) + _t2; \ |
698 | | // _t7 = _t5 + _t6; \ |
699 | | // _t8 = _t7 + _t4; \ |
700 | | // Add12((*(resh)),(*(resl)),_t3,_t8); \ |
701 | | // */ |
702 | | // let DoubleDouble { hi: t1, lo: t2 } = DoubleDouble::from_exact_mult(a.hi, b); |
703 | | // let DoubleDouble { hi: t3, lo: t4 } = DoubleDouble::from_full_exact_add(c.hi, t1); |
704 | | // let t5 = a.lo * b; |
705 | | // let t6 = c.lo + t2; |
706 | | // let t7 = t5 + t6; |
707 | | // let t8 = t7 + t4; |
708 | | // DoubleDouble::from_full_exact_add(t3, t8) |
709 | | // } |
710 | | |
711 | | /// Computes `a * b + c` |
712 | | /// `b` is an `f64`, `a` and `c` are `DoubleDouble`. |
713 | | /// |
714 | | /// *Accurate dot product (Ogita, Rump and Oishi 2004)* |
715 | | #[inline] |
716 | 0 | pub(crate) fn f64_mul_f64_add(a: f64, b: f64, c: DoubleDouble) -> Self { |
717 | 0 | let DoubleDouble { hi: h, lo: r } = DoubleDouble::from_exact_mult(a, b); |
718 | 0 | let DoubleDouble { hi: p, lo: q } = DoubleDouble::full_add_f64(c, h); |
719 | 0 | DoubleDouble::new(r + q, p) |
720 | 0 | } |
721 | | |
722 | | // /// Computes `a * b + c` |
723 | | // /// `b` is an `f64`, `a` and `c` are `DoubleDouble`. |
724 | | // /// |
725 | | // /// *Accurate dot product (Ogita, Rump and Oishi 2004)* |
726 | | // #[inline] |
727 | | // pub(crate) fn single_mul_add(a: f64, b: f64, c: f64) -> Self { |
728 | | // let DoubleDouble { hi: h, lo: r } = DoubleDouble::from_exact_mult(a, b); |
729 | | // let DoubleDouble { hi: p, lo: q } = DoubleDouble::from_full_exact_add(c, h); |
730 | | // DoubleDouble::new(r + q, p) |
731 | | // } |
732 | | |
733 | | // /// Computes `a * b + c` safe to overflow without FMA |
734 | | // /// `b` is an `f64`, `a` and `c` are `DoubleDouble`. |
735 | | // /// |
736 | | // /// *Accurate dot product (Ogita, Rump and Oishi 2004)* |
737 | | // #[inline] |
738 | | // pub(crate) fn mul_f64_safe_add(a: DoubleDouble, b: f64, c: DoubleDouble) -> Self { |
739 | | // let DoubleDouble { hi: h, lo: r } = DoubleDouble::quick_mult_safe_f64(a, b); |
740 | | // let DoubleDouble { hi: p, lo: q } = DoubleDouble::full_add_f64(c, h); |
741 | | // DoubleDouble::new(r + q, p) |
742 | | // } |
743 | | |
744 | | /// `a*b+c` |
745 | | /// |
746 | | /// *Accurate dot product (Ogita, Rump and Oishi 2004)* |
747 | | #[inline] |
748 | 0 | pub(crate) fn mul_add(a: DoubleDouble, b: DoubleDouble, c: DoubleDouble) -> Self { |
749 | 0 | let DoubleDouble { hi: h, lo: r } = DoubleDouble::quick_mult(a, b); |
750 | 0 | let DoubleDouble { hi: p, lo: q } = DoubleDouble::full_add_f64(c, h); |
751 | 0 | DoubleDouble::new(r + q, p) |
752 | 0 | } |
753 | | |
754 | | /// `a*b+c` |
755 | | /// |
756 | | /// *Accurate dot product (Ogita, Rump and Oishi 2004)* |
757 | | /// |
758 | | /// *Correctness* |
759 | | /// |c.hi| > |a.hi * b.hi| |
760 | | #[inline] |
761 | 0 | pub(crate) fn quick_mul_add(a: DoubleDouble, b: DoubleDouble, c: DoubleDouble) -> Self { |
762 | 0 | let DoubleDouble { hi: h, lo: r } = DoubleDouble::quick_mult(a, b); |
763 | 0 | let DoubleDouble { hi: p, lo: q } = DoubleDouble::add_f64(c, h); |
764 | 0 | DoubleDouble::new(r + q, p) |
765 | 0 | } |
766 | | |
767 | | #[inline] |
768 | 0 | pub(crate) fn quick_mult(a: DoubleDouble, b: DoubleDouble) -> Self { |
769 | | #[cfg(any( |
770 | | all( |
771 | | any(target_arch = "x86", target_arch = "x86_64"), |
772 | | target_feature = "fma" |
773 | | ), |
774 | | target_arch = "aarch64" |
775 | | ))] |
776 | | { |
777 | | let mut r = DoubleDouble::from_exact_mult(a.hi, b.hi); |
778 | | let t1 = f_fmla(a.hi, b.lo, r.lo); |
779 | | let t2 = f_fmla(a.lo, b.hi, t1); |
780 | | r.lo = t2; |
781 | | r |
782 | | } |
783 | | #[cfg(not(any( |
784 | | all( |
785 | | any(target_arch = "x86", target_arch = "x86_64"), |
786 | | target_feature = "fma" |
787 | | ), |
788 | | target_arch = "aarch64" |
789 | | )))] |
790 | | { |
791 | 0 | let DoubleDouble { hi: ch, lo: cl1 } = DoubleDouble::from_exact_mult(a.hi, b.hi); |
792 | 0 | let tl1 = a.hi * b.lo; |
793 | 0 | let tl2 = a.lo * b.hi; |
794 | 0 | let cl2 = tl1 + tl2; |
795 | 0 | let cl3 = cl1 + cl2; |
796 | 0 | DoubleDouble::new(cl3, ch) |
797 | | } |
798 | 0 | } |
799 | | |
800 | | #[inline] |
801 | 0 | pub(crate) fn mult(a: DoubleDouble, b: DoubleDouble) -> Self { |
802 | | #[cfg(any( |
803 | | all( |
804 | | any(target_arch = "x86", target_arch = "x86_64"), |
805 | | target_feature = "fma" |
806 | | ), |
807 | | target_arch = "aarch64" |
808 | | ))] |
809 | | { |
810 | | let DoubleDouble { hi: ch, lo: cl1 } = DoubleDouble::from_exact_mult(a.hi, b.hi); |
811 | | let tl0 = a.lo * b.lo; |
812 | | let tl1 = f_fmla(a.hi, b.lo, tl0); |
813 | | let cl2 = f_fmla(a.lo, b.hi, tl1); |
814 | | let cl3 = cl1 + cl2; |
815 | | DoubleDouble::from_exact_add(ch, cl3) |
816 | | } |
817 | | #[cfg(not(any( |
818 | | all( |
819 | | any(target_arch = "x86", target_arch = "x86_64"), |
820 | | target_feature = "fma" |
821 | | ), |
822 | | target_arch = "aarch64" |
823 | | )))] |
824 | | { |
825 | 0 | let DoubleDouble { hi: ch, lo: cl1 } = DoubleDouble::from_exact_mult(a.hi, b.hi); |
826 | 0 | let tl1 = a.hi * b.lo; |
827 | 0 | let tl2 = a.lo * b.hi; |
828 | 0 | let cl2 = tl1 + tl2; |
829 | 0 | let cl3 = cl1 + cl2; |
830 | 0 | DoubleDouble::from_exact_add(ch, cl3) |
831 | | } |
832 | 0 | } |
833 | | |
834 | | #[inline] |
835 | 0 | pub(crate) fn mult_f64(a: DoubleDouble, b: f64) -> Self { |
836 | | #[cfg(any( |
837 | | all( |
838 | | any(target_arch = "x86", target_arch = "x86_64"), |
839 | | target_feature = "fma" |
840 | | ), |
841 | | target_arch = "aarch64" |
842 | | ))] |
843 | | { |
844 | | let DoubleDouble { hi: ch, lo: cl1 } = DoubleDouble::from_exact_mult(a.hi, b); |
845 | | let cl3 = f_fmla(a.lo, b, cl1); |
846 | | DoubleDouble::from_exact_add(ch, cl3) |
847 | | } |
848 | | #[cfg(not(any( |
849 | | all( |
850 | | any(target_arch = "x86", target_arch = "x86_64"), |
851 | | target_feature = "fma" |
852 | | ), |
853 | | target_arch = "aarch64" |
854 | | )))] |
855 | | { |
856 | 0 | let DoubleDouble { hi: ch, lo: cl1 } = DoubleDouble::from_exact_mult(a.hi, b); |
857 | 0 | let cl2 = a.lo * b; |
858 | 0 | let t = DoubleDouble::from_exact_add(ch, cl2); |
859 | 0 | let tl2 = t.lo + cl1; |
860 | 0 | DoubleDouble::from_exact_add(t.hi, tl2) |
861 | | } |
862 | 0 | } |
863 | | |
864 | | #[inline] |
865 | 0 | pub(crate) fn quick_f64_mult(a: f64, b: DoubleDouble) -> DoubleDouble { |
866 | 0 | DoubleDouble::quick_mult_f64(b, a) |
867 | 0 | } |
868 | | |
869 | | #[inline] |
870 | 0 | pub(crate) fn quick_mult_f64(a: DoubleDouble, b: f64) -> Self { |
871 | | #[cfg(any( |
872 | | all( |
873 | | any(target_arch = "x86", target_arch = "x86_64"), |
874 | | target_feature = "fma" |
875 | | ), |
876 | | target_arch = "aarch64" |
877 | | ))] |
878 | | { |
879 | | let h = b * a.hi; |
880 | | let l = f_fmla(b, a.lo, f_fmla(b, a.hi, -h)); |
881 | | Self { lo: l, hi: h } |
882 | | } |
883 | | #[cfg(not(any( |
884 | | all( |
885 | | any(target_arch = "x86", target_arch = "x86_64"), |
886 | | target_feature = "fma" |
887 | | ), |
888 | | target_arch = "aarch64" |
889 | | )))] |
890 | | { |
891 | 0 | let DoubleDouble { hi: ch, lo: cl1 } = DoubleDouble::from_exact_mult(a.hi, b); |
892 | 0 | let cl2 = a.lo * b; |
893 | 0 | let cl3 = cl1 + cl2; |
894 | 0 | DoubleDouble::new(cl3, ch) |
895 | | } |
896 | 0 | } |
897 | | |
898 | | // /// Double-double multiplication safe to overflow without FMA |
899 | | // #[inline] |
900 | | // pub(crate) fn quick_mult_safe_f64(a: DoubleDouble, b: f64) -> Self { |
901 | | // let h = b * a.hi; |
902 | | // let l = f64::mul_add(b, a.lo, f64::mul_add(b, a.hi, -h)); |
903 | | // Self { lo: l, hi: h } |
904 | | // } |
905 | | |
906 | | /// Valid only |a.hi| > |b| |
907 | | #[inline] |
908 | 0 | pub(crate) fn add_f64(a: DoubleDouble, b: f64) -> Self { |
909 | 0 | let t = DoubleDouble::from_exact_add(a.hi, b); |
910 | 0 | let l = a.lo + t.lo; |
911 | 0 | Self { lo: l, hi: t.hi } |
912 | 0 | } Unexecuted instantiation: <pxfm::double_double::DoubleDouble>::add_f64 Unexecuted instantiation: <pxfm::double_double::DoubleDouble>::add_f64 |
913 | | |
914 | | #[inline] |
915 | 0 | pub(crate) fn full_add_f64(a: DoubleDouble, b: f64) -> Self { |
916 | 0 | let t = DoubleDouble::from_full_exact_add(a.hi, b); |
917 | 0 | let l = a.lo + t.lo; |
918 | 0 | Self { lo: l, hi: t.hi } |
919 | 0 | } |
920 | | |
921 | | /// Valid only |b| > |a.hi| |
922 | | #[inline] |
923 | 0 | pub(crate) fn f64_add(b: f64, a: DoubleDouble) -> Self { |
924 | 0 | let t = DoubleDouble::from_exact_add(b, a.hi); |
925 | 0 | let l = a.lo + t.lo; |
926 | 0 | Self { lo: l, hi: t.hi } |
927 | 0 | } |
928 | | |
929 | | #[inline] |
930 | 0 | pub(crate) const fn to_f64(self) -> f64 { |
931 | 0 | self.lo + self.hi |
932 | 0 | } Unexecuted instantiation: <pxfm::double_double::DoubleDouble>::to_f64 Unexecuted instantiation: <pxfm::double_double::DoubleDouble>::to_f64 |
933 | | |
934 | | // #[inline] |
935 | | // pub(crate) fn from_rsqrt(x: f64) -> DoubleDouble { |
936 | | // let r = DoubleDouble::div_dd_f64(DoubleDouble::from_sqrt(x), x); |
937 | | // let rx = DoubleDouble::quick_mult_safe_f64(r, x); |
938 | | // let drx = DoubleDouble::mul_f64_safe_add(r, x, -rx); |
939 | | // let h = DoubleDouble::mul_add(r, drx, DoubleDouble::mul_add_f64(r, rx, -1.0)); |
940 | | // let dr = DoubleDouble::quick_mult(DoubleDouble::quick_mult_f64(r, 0.5), h); |
941 | | // DoubleDouble::add(r, dr) |
942 | | // } |
943 | | |
944 | | #[inline] |
945 | 0 | pub(crate) fn from_rsqrt_fast(x: f64) -> DoubleDouble { |
946 | 0 | let sqrt_x = DoubleDouble::from_sqrt(x); |
947 | 0 | sqrt_x.recip() |
948 | 0 | } |
949 | | } |
950 | | |
951 | | impl Mul<DoubleDouble> for DoubleDouble { |
952 | | type Output = Self; |
953 | | |
954 | | #[inline] |
955 | 0 | fn mul(self, rhs: DoubleDouble) -> Self::Output { |
956 | 0 | DoubleDouble::quick_mult(self, rhs) |
957 | 0 | } |
958 | | } |
959 | | |
960 | | /// check if number is valid for Exact mult |
961 | | #[allow(dead_code)] |
962 | | #[inline] |
963 | 0 | pub(crate) fn two_product_compatible(x: f64) -> bool { |
964 | 0 | let exp = get_exponent_f64(x); |
965 | 0 | !(exp >= 970 || exp <= -970) |
966 | 0 | } |
967 | | |
968 | | #[cfg(test)] |
969 | | mod tests { |
970 | | use super::*; |
971 | | #[test] |
972 | | fn test_f64_mult() { |
973 | | let d1 = 1.1231; |
974 | | let d2 = DoubleDouble::new(1e-22, 3.2341); |
975 | | let p = DoubleDouble::quick_f64_mult(d1, d2); |
976 | | assert_eq!(p.hi, 3.6322177100000004); |
977 | | assert_eq!(p.lo, -1.971941841373783e-16); |
978 | | } |
979 | | |
980 | | #[test] |
981 | | fn test_mult_64() { |
982 | | let d1 = 1.1231; |
983 | | let d2 = DoubleDouble::new(1e-22, 3.2341); |
984 | | let p = DoubleDouble::mult_f64(d2, d1); |
985 | | assert_eq!(p.hi, 3.6322177100000004); |
986 | | assert_eq!(p.lo, -1.971941841373783e-16); |
987 | | } |
988 | | |
989 | | #[test] |
990 | | fn recip_test() { |
991 | | let d1 = 1.54352432142; |
992 | | let recip = DoubleDouble::new(0., d1).recip(); |
993 | | assert_eq!(recip.hi, d1.recip()); |
994 | | assert_ne!(recip.lo, 0.); |
995 | | } |
996 | | |
997 | | #[test] |
998 | | fn from_recip_test() { |
999 | | let d1 = 1.54352432142; |
1000 | | let recip = DoubleDouble::from_recip(d1); |
1001 | | assert_eq!(recip.hi, d1.recip()); |
1002 | | assert_ne!(recip.lo, 0.); |
1003 | | } |
1004 | | |
1005 | | #[test] |
1006 | | fn from_quick_recip_test() { |
1007 | | let d1 = 1.54352432142; |
1008 | | let recip = DoubleDouble::from_quick_recip(d1); |
1009 | | assert_eq!(recip.hi, d1.recip()); |
1010 | | assert_ne!(recip.lo, 0.); |
1011 | | } |
1012 | | } |