Coverage Report

Created: 2025-10-12 08:06

next uncovered line (L), next uncovered region (R), next uncovered branch (B)
/rust/registry/src/index.crates.io-1949cf8c6b5b557f/rayon-1.11.0/src/slice/mod.rs
Line
Count
Source
1
//! Parallel iterator types for [slices]
2
//!
3
//! You will rarely need to interact with this module directly unless you need
4
//! to name one of the iterator types.
5
//!
6
//! [slices]: std::slice
7
8
mod chunk_by;
9
mod chunks;
10
mod rchunks;
11
mod sort;
12
13
mod test;
14
15
use self::sort::par_mergesort;
16
use self::sort::par_quicksort;
17
use crate::iter::plumbing::*;
18
use crate::iter::*;
19
use crate::split_producer::*;
20
21
use std::cmp::Ordering;
22
use std::fmt::{self, Debug};
23
24
pub use self::chunk_by::{ChunkBy, ChunkByMut};
25
pub use self::chunks::{Chunks, ChunksExact, ChunksExactMut, ChunksMut};
26
pub use self::rchunks::{RChunks, RChunksExact, RChunksExactMut, RChunksMut};
27
28
/// Parallel extensions for slices.
29
pub trait ParallelSlice<T: Sync> {
30
    /// Returns a plain slice, which is used to implement the rest of the
31
    /// parallel methods.
32
    fn as_parallel_slice(&self) -> &[T];
33
34
    /// Returns a parallel iterator over subslices separated by elements that
35
    /// match the separator.
36
    ///
37
    /// # Examples
38
    ///
39
    /// ```
40
    /// use rayon::prelude::*;
41
    /// let products: Vec<_> = [1, 2, 3, 0, 2, 4, 8, 0, 3, 6, 9]
42
    ///     .par_split(|i| *i == 0)
43
    ///     .map(|numbers| numbers.iter().product::<i32>())
44
    ///     .collect();
45
    /// assert_eq!(products, [6, 64, 162]);
46
    /// ```
47
0
    fn par_split<P>(&self, separator: P) -> Split<'_, T, P>
48
0
    where
49
0
        P: Fn(&T) -> bool + Sync + Send,
50
    {
51
0
        Split {
52
0
            slice: self.as_parallel_slice(),
53
0
            separator,
54
0
        }
55
0
    }
56
57
    /// Returns a parallel iterator over subslices separated by elements that
58
    /// match the separator, including the matched part as a terminator.
59
    ///
60
    /// # Examples
61
    ///
62
    /// ```
63
    /// use rayon::prelude::*;
64
    /// let lengths: Vec<_> = [1, 2, 3, 0, 2, 4, 8, 0, 3, 6, 9]
65
    ///     .par_split_inclusive(|i| *i == 0)
66
    ///     .map(|numbers| numbers.len())
67
    ///     .collect();
68
    /// assert_eq!(lengths, [4, 4, 3]);
69
    /// ```
70
0
    fn par_split_inclusive<P>(&self, separator: P) -> SplitInclusive<'_, T, P>
71
0
    where
72
0
        P: Fn(&T) -> bool + Sync + Send,
73
    {
74
0
        SplitInclusive {
75
0
            slice: self.as_parallel_slice(),
76
0
            separator,
77
0
        }
78
0
    }
79
80
    /// Returns a parallel iterator over all contiguous windows of length
81
    /// `window_size`. The windows overlap.
82
    ///
83
    /// # Examples
84
    ///
85
    /// ```
86
    /// use rayon::prelude::*;
87
    /// let windows: Vec<_> = [1, 2, 3].par_windows(2).collect();
88
    /// assert_eq!(vec![[1, 2], [2, 3]], windows);
89
    /// ```
90
0
    fn par_windows(&self, window_size: usize) -> Windows<'_, T> {
91
0
        Windows {
92
0
            window_size,
93
0
            slice: self.as_parallel_slice(),
94
0
        }
95
0
    }
96
97
    /// Returns a parallel iterator over at most `chunk_size` elements of
98
    /// `self` at a time. The chunks do not overlap.
99
    ///
100
    /// If the number of elements in the iterator is not divisible by
101
    /// `chunk_size`, the last chunk may be shorter than `chunk_size`.  All
102
    /// other chunks will have that exact length.
103
    ///
104
    /// # Examples
105
    ///
106
    /// ```
107
    /// use rayon::prelude::*;
108
    /// let chunks: Vec<_> = [1, 2, 3, 4, 5].par_chunks(2).collect();
109
    /// assert_eq!(chunks, vec![&[1, 2][..], &[3, 4], &[5]]);
110
    /// ```
111
    #[track_caller]
112
0
    fn par_chunks(&self, chunk_size: usize) -> Chunks<'_, T> {
113
0
        assert!(chunk_size != 0, "chunk_size must not be zero");
114
0
        Chunks::new(chunk_size, self.as_parallel_slice())
115
0
    }
116
117
    /// Returns a parallel iterator over `chunk_size` elements of
118
    /// `self` at a time. The chunks do not overlap.
119
    ///
120
    /// If `chunk_size` does not divide the length of the slice, then the
121
    /// last up to `chunk_size-1` elements will be omitted and can be
122
    /// retrieved from the remainder function of the iterator.
123
    ///
124
    /// # Examples
125
    ///
126
    /// ```
127
    /// use rayon::prelude::*;
128
    /// let chunks: Vec<_> = [1, 2, 3, 4, 5].par_chunks_exact(2).collect();
129
    /// assert_eq!(chunks, vec![&[1, 2][..], &[3, 4]]);
130
    /// ```
131
    #[track_caller]
132
0
    fn par_chunks_exact(&self, chunk_size: usize) -> ChunksExact<'_, T> {
133
0
        assert!(chunk_size != 0, "chunk_size must not be zero");
134
0
        ChunksExact::new(chunk_size, self.as_parallel_slice())
135
0
    }
136
137
    /// Returns a parallel iterator over at most `chunk_size` elements of `self` at a time,
138
    /// starting at the end. The chunks do not overlap.
139
    ///
140
    /// If the number of elements in the iterator is not divisible by
141
    /// `chunk_size`, the last chunk may be shorter than `chunk_size`.  All
142
    /// other chunks will have that exact length.
143
    ///
144
    /// # Examples
145
    ///
146
    /// ```
147
    /// use rayon::prelude::*;
148
    /// let chunks: Vec<_> = [1, 2, 3, 4, 5].par_rchunks(2).collect();
149
    /// assert_eq!(chunks, vec![&[4, 5][..], &[2, 3], &[1]]);
150
    /// ```
151
    #[track_caller]
152
0
    fn par_rchunks(&self, chunk_size: usize) -> RChunks<'_, T> {
153
0
        assert!(chunk_size != 0, "chunk_size must not be zero");
154
0
        RChunks::new(chunk_size, self.as_parallel_slice())
155
0
    }
156
157
    /// Returns a parallel iterator over `chunk_size` elements of `self` at a time,
158
    /// starting at the end. The chunks do not overlap.
159
    ///
160
    /// If `chunk_size` does not divide the length of the slice, then the
161
    /// last up to `chunk_size-1` elements will be omitted and can be
162
    /// retrieved from the remainder function of the iterator.
163
    ///
164
    /// # Examples
165
    ///
166
    /// ```
167
    /// use rayon::prelude::*;
168
    /// let chunks: Vec<_> = [1, 2, 3, 4, 5].par_rchunks_exact(2).collect();
169
    /// assert_eq!(chunks, vec![&[4, 5][..], &[2, 3]]);
170
    /// ```
171
    #[track_caller]
172
0
    fn par_rchunks_exact(&self, chunk_size: usize) -> RChunksExact<'_, T> {
173
0
        assert!(chunk_size != 0, "chunk_size must not be zero");
174
0
        RChunksExact::new(chunk_size, self.as_parallel_slice())
175
0
    }
176
177
    /// Returns a parallel iterator over the slice producing non-overlapping runs
178
    /// of elements using the predicate to separate them.
179
    ///
180
    /// The predicate is called on two elements following themselves,
181
    /// it means the predicate is called on `slice[0]` and `slice[1]`
182
    /// then on `slice[1]` and `slice[2]` and so on.
183
    ///
184
    /// # Examples
185
    ///
186
    /// ```
187
    /// use rayon::prelude::*;
188
    /// let chunks: Vec<_> = [1, 2, 2, 3, 3, 3].par_chunk_by(|&x, &y| x == y).collect();
189
    /// assert_eq!(chunks[0], &[1]);
190
    /// assert_eq!(chunks[1], &[2, 2]);
191
    /// assert_eq!(chunks[2], &[3, 3, 3]);
192
    /// ```
193
0
    fn par_chunk_by<F>(&self, pred: F) -> ChunkBy<'_, T, F>
194
0
    where
195
0
        F: Fn(&T, &T) -> bool + Send + Sync,
196
    {
197
0
        ChunkBy::new(self.as_parallel_slice(), pred)
198
0
    }
199
}
200
201
impl<T: Sync> ParallelSlice<T> for [T] {
202
    #[inline]
203
0
    fn as_parallel_slice(&self) -> &[T] {
204
0
        self
205
0
    }
206
}
207
208
/// Parallel extensions for mutable slices.
209
pub trait ParallelSliceMut<T: Send> {
210
    /// Returns a plain mutable slice, which is used to implement the rest of
211
    /// the parallel methods.
212
    fn as_parallel_slice_mut(&mut self) -> &mut [T];
213
214
    /// Returns a parallel iterator over mutable subslices separated by
215
    /// elements that match the separator.
216
    ///
217
    /// # Examples
218
    ///
219
    /// ```
220
    /// use rayon::prelude::*;
221
    /// let mut array = [1, 2, 3, 0, 2, 4, 8, 0, 3, 6, 9];
222
    /// array.par_split_mut(|i| *i == 0)
223
    ///      .for_each(|slice| slice.reverse());
224
    /// assert_eq!(array, [3, 2, 1, 0, 8, 4, 2, 0, 9, 6, 3]);
225
    /// ```
226
0
    fn par_split_mut<P>(&mut self, separator: P) -> SplitMut<'_, T, P>
227
0
    where
228
0
        P: Fn(&T) -> bool + Sync + Send,
229
    {
230
0
        SplitMut {
231
0
            slice: self.as_parallel_slice_mut(),
232
0
            separator,
233
0
        }
234
0
    }
235
236
    /// Returns a parallel iterator over mutable subslices separated by elements
237
    /// that match the separator, including the matched part as a terminator.
238
    ///
239
    /// # Examples
240
    ///
241
    /// ```
242
    /// use rayon::prelude::*;
243
    /// let mut array = [1, 2, 3, 0, 2, 4, 8, 0, 3, 6, 9];
244
    /// array.par_split_inclusive_mut(|i| *i == 0)
245
    ///      .for_each(|slice| slice.reverse());
246
    /// assert_eq!(array, [0, 3, 2, 1, 0, 8, 4, 2, 9, 6, 3]);
247
    /// ```
248
0
    fn par_split_inclusive_mut<P>(&mut self, separator: P) -> SplitInclusiveMut<'_, T, P>
249
0
    where
250
0
        P: Fn(&T) -> bool + Sync + Send,
251
    {
252
0
        SplitInclusiveMut {
253
0
            slice: self.as_parallel_slice_mut(),
254
0
            separator,
255
0
        }
256
0
    }
257
258
    /// Returns a parallel iterator over at most `chunk_size` elements of
259
    /// `self` at a time. The chunks are mutable and do not overlap.
260
    ///
261
    /// If the number of elements in the iterator is not divisible by
262
    /// `chunk_size`, the last chunk may be shorter than `chunk_size`.  All
263
    /// other chunks will have that exact length.
264
    ///
265
    /// # Examples
266
    ///
267
    /// ```
268
    /// use rayon::prelude::*;
269
    /// let mut array = [1, 2, 3, 4, 5];
270
    /// array.par_chunks_mut(2)
271
    ///      .for_each(|slice| slice.reverse());
272
    /// assert_eq!(array, [2, 1, 4, 3, 5]);
273
    /// ```
274
    #[track_caller]
275
0
    fn par_chunks_mut(&mut self, chunk_size: usize) -> ChunksMut<'_, T> {
276
0
        assert!(chunk_size != 0, "chunk_size must not be zero");
277
0
        ChunksMut::new(chunk_size, self.as_parallel_slice_mut())
278
0
    }
279
280
    /// Returns a parallel iterator over `chunk_size` elements of
281
    /// `self` at a time. The chunks are mutable and do not overlap.
282
    ///
283
    /// If `chunk_size` does not divide the length of the slice, then the
284
    /// last up to `chunk_size-1` elements will be omitted and can be
285
    /// retrieved from the remainder function of the iterator.
286
    ///
287
    /// # Examples
288
    ///
289
    /// ```
290
    /// use rayon::prelude::*;
291
    /// let mut array = [1, 2, 3, 4, 5];
292
    /// array.par_chunks_exact_mut(3)
293
    ///      .for_each(|slice| slice.reverse());
294
    /// assert_eq!(array, [3, 2, 1, 4, 5]);
295
    /// ```
296
    #[track_caller]
297
0
    fn par_chunks_exact_mut(&mut self, chunk_size: usize) -> ChunksExactMut<'_, T> {
298
0
        assert!(chunk_size != 0, "chunk_size must not be zero");
299
0
        ChunksExactMut::new(chunk_size, self.as_parallel_slice_mut())
300
0
    }
301
302
    /// Returns a parallel iterator over at most `chunk_size` elements of `self` at a time,
303
    /// starting at the end. The chunks are mutable and do not overlap.
304
    ///
305
    /// If the number of elements in the iterator is not divisible by
306
    /// `chunk_size`, the last chunk may be shorter than `chunk_size`.  All
307
    /// other chunks will have that exact length.
308
    ///
309
    /// # Examples
310
    ///
311
    /// ```
312
    /// use rayon::prelude::*;
313
    /// let mut array = [1, 2, 3, 4, 5];
314
    /// array.par_rchunks_mut(2)
315
    ///      .for_each(|slice| slice.reverse());
316
    /// assert_eq!(array, [1, 3, 2, 5, 4]);
317
    /// ```
318
    #[track_caller]
319
0
    fn par_rchunks_mut(&mut self, chunk_size: usize) -> RChunksMut<'_, T> {
320
0
        assert!(chunk_size != 0, "chunk_size must not be zero");
321
0
        RChunksMut::new(chunk_size, self.as_parallel_slice_mut())
322
0
    }
323
324
    /// Returns a parallel iterator over `chunk_size` elements of `self` at a time,
325
    /// starting at the end. The chunks are mutable and do not overlap.
326
    ///
327
    /// If `chunk_size` does not divide the length of the slice, then the
328
    /// last up to `chunk_size-1` elements will be omitted and can be
329
    /// retrieved from the remainder function of the iterator.
330
    ///
331
    /// # Examples
332
    ///
333
    /// ```
334
    /// use rayon::prelude::*;
335
    /// let mut array = [1, 2, 3, 4, 5];
336
    /// array.par_rchunks_exact_mut(3)
337
    ///      .for_each(|slice| slice.reverse());
338
    /// assert_eq!(array, [1, 2, 5, 4, 3]);
339
    /// ```
340
    #[track_caller]
341
0
    fn par_rchunks_exact_mut(&mut self, chunk_size: usize) -> RChunksExactMut<'_, T> {
342
0
        assert!(chunk_size != 0, "chunk_size must not be zero");
343
0
        RChunksExactMut::new(chunk_size, self.as_parallel_slice_mut())
344
0
    }
345
346
    /// Sorts the slice in parallel.
347
    ///
348
    /// This sort is stable (i.e., does not reorder equal elements) and *O*(*n* \* log(*n*)) worst-case.
349
    ///
350
    /// When applicable, unstable sorting is preferred because it is generally faster than stable
351
    /// sorting and it doesn't allocate auxiliary memory.
352
    /// See [`par_sort_unstable`](#method.par_sort_unstable).
353
    ///
354
    /// # Current implementation
355
    ///
356
    /// The current algorithm is an adaptive merge sort inspired by
357
    /// [timsort](https://en.wikipedia.org/wiki/Timsort).
358
    /// It is designed to be very fast in cases where the slice is nearly sorted, or consists of
359
    /// two or more sorted sequences concatenated one after another.
360
    ///
361
    /// Also, it allocates temporary storage the same size as `self`, but for very short slices a
362
    /// non-allocating insertion sort is used instead.
363
    ///
364
    /// In order to sort the slice in parallel, the slice is first divided into smaller chunks and
365
    /// all chunks are sorted in parallel. Then, adjacent chunks that together form non-descending
366
    /// or descending runs are concatenated. Finally, the remaining chunks are merged together using
367
    /// parallel subdivision of chunks and parallel merge operation.
368
    ///
369
    /// # Examples
370
    ///
371
    /// ```
372
    /// use rayon::prelude::*;
373
    ///
374
    /// let mut v = [-5, 4, 1, -3, 2];
375
    ///
376
    /// v.par_sort();
377
    /// assert_eq!(v, [-5, -3, 1, 2, 4]);
378
    /// ```
379
0
    fn par_sort(&mut self)
380
0
    where
381
0
        T: Ord,
382
    {
383
0
        par_mergesort(self.as_parallel_slice_mut(), T::lt);
384
0
    }
385
386
    /// Sorts the slice in parallel with a comparator function.
387
    ///
388
    /// This sort is stable (i.e., does not reorder equal elements) and *O*(*n* \* log(*n*)) worst-case.
389
    ///
390
    /// The comparator function must define a total ordering for the elements in the slice. If
391
    /// the ordering is not total, the order of the elements is unspecified. An order is a
392
    /// total order if it is (for all `a`, `b` and `c`):
393
    ///
394
    /// * total and antisymmetric: exactly one of `a < b`, `a == b` or `a > b` is true, and
395
    /// * transitive, `a < b` and `b < c` implies `a < c`. The same must hold for both `==` and `>`.
396
    ///
397
    /// For example, while [`f64`] doesn't implement [`Ord`] because `NaN != NaN`, we can use
398
    /// `partial_cmp` as our sort function when we know the slice doesn't contain a `NaN`.
399
    ///
400
    /// ```
401
    /// use rayon::prelude::*;
402
    ///
403
    /// let mut floats = [5f64, 4.0, 1.0, 3.0, 2.0];
404
    /// floats.par_sort_by(|a, b| a.partial_cmp(b).unwrap());
405
    /// assert_eq!(floats, [1.0, 2.0, 3.0, 4.0, 5.0]);
406
    /// ```
407
    ///
408
    /// When applicable, unstable sorting is preferred because it is generally faster than stable
409
    /// sorting and it doesn't allocate auxiliary memory.
410
    /// See [`par_sort_unstable_by`](#method.par_sort_unstable_by).
411
    ///
412
    /// # Current implementation
413
    ///
414
    /// The current algorithm is an adaptive merge sort inspired by
415
    /// [timsort](https://en.wikipedia.org/wiki/Timsort).
416
    /// It is designed to be very fast in cases where the slice is nearly sorted, or consists of
417
    /// two or more sorted sequences concatenated one after another.
418
    ///
419
    /// Also, it allocates temporary storage the same size as `self`, but for very short slices a
420
    /// non-allocating insertion sort is used instead.
421
    ///
422
    /// In order to sort the slice in parallel, the slice is first divided into smaller chunks and
423
    /// all chunks are sorted in parallel. Then, adjacent chunks that together form non-descending
424
    /// or descending runs are concatenated. Finally, the remaining chunks are merged together using
425
    /// parallel subdivision of chunks and parallel merge operation.
426
    ///
427
    /// # Examples
428
    ///
429
    /// ```
430
    /// use rayon::prelude::*;
431
    ///
432
    /// let mut v = [5, 4, 1, 3, 2];
433
    /// v.par_sort_by(|a, b| a.cmp(b));
434
    /// assert_eq!(v, [1, 2, 3, 4, 5]);
435
    ///
436
    /// // reverse sorting
437
    /// v.par_sort_by(|a, b| b.cmp(a));
438
    /// assert_eq!(v, [5, 4, 3, 2, 1]);
439
    /// ```
440
0
    fn par_sort_by<F>(&mut self, compare: F)
441
0
    where
442
0
        F: Fn(&T, &T) -> Ordering + Sync,
443
    {
444
0
        par_mergesort(self.as_parallel_slice_mut(), |a, b| {
445
0
            compare(a, b) == Ordering::Less
446
0
        });
447
0
    }
448
449
    /// Sorts the slice in parallel with a key extraction function.
450
    ///
451
    /// This sort is stable (i.e., does not reorder equal elements) and *O*(*m* \* *n* \* log(*n*))
452
    /// worst-case, where the key function is *O*(*m*).
453
    ///
454
    /// For expensive key functions (e.g. functions that are not simple property accesses or
455
    /// basic operations), [`par_sort_by_cached_key`](#method.par_sort_by_cached_key) is likely to
456
    /// be significantly faster, as it does not recompute element keys.
457
    ///
458
    /// When applicable, unstable sorting is preferred because it is generally faster than stable
459
    /// sorting and it doesn't allocate auxiliary memory.
460
    /// See [`par_sort_unstable_by_key`](#method.par_sort_unstable_by_key).
461
    ///
462
    /// # Current implementation
463
    ///
464
    /// The current algorithm is an adaptive merge sort inspired by
465
    /// [timsort](https://en.wikipedia.org/wiki/Timsort).
466
    /// It is designed to be very fast in cases where the slice is nearly sorted, or consists of
467
    /// two or more sorted sequences concatenated one after another.
468
    ///
469
    /// Also, it allocates temporary storage the same size as `self`, but for very short slices a
470
    /// non-allocating insertion sort is used instead.
471
    ///
472
    /// In order to sort the slice in parallel, the slice is first divided into smaller chunks and
473
    /// all chunks are sorted in parallel. Then, adjacent chunks that together form non-descending
474
    /// or descending runs are concatenated. Finally, the remaining chunks are merged together using
475
    /// parallel subdivision of chunks and parallel merge operation.
476
    ///
477
    /// # Examples
478
    ///
479
    /// ```
480
    /// use rayon::prelude::*;
481
    ///
482
    /// let mut v = [-5i32, 4, 1, -3, 2];
483
    ///
484
    /// v.par_sort_by_key(|k| k.abs());
485
    /// assert_eq!(v, [1, 2, -3, 4, -5]);
486
    /// ```
487
0
    fn par_sort_by_key<K, F>(&mut self, f: F)
488
0
    where
489
0
        K: Ord,
490
0
        F: Fn(&T) -> K + Sync,
491
    {
492
0
        par_mergesort(self.as_parallel_slice_mut(), |a, b| f(a).lt(&f(b)));
493
0
    }
494
495
    /// Sorts the slice in parallel with a key extraction function.
496
    ///
497
    /// During sorting, the key function is called at most once per element, by using
498
    /// temporary storage to remember the results of key evaluation.
499
    /// The key function is called in parallel, so the order of calls is completely unspecified.
500
    ///
501
    /// This sort is stable (i.e., does not reorder equal elements) and *O*(*m* \* *n* + *n* \* log(*n*))
502
    /// worst-case, where the key function is *O*(*m*).
503
    ///
504
    /// For simple key functions (e.g., functions that are property accesses or
505
    /// basic operations), [`par_sort_by_key`](#method.par_sort_by_key) is likely to be
506
    /// faster.
507
    ///
508
    /// # Current implementation
509
    ///
510
    /// The current algorithm is based on [pattern-defeating quicksort][pdqsort] by Orson Peters,
511
    /// which combines the fast average case of randomized quicksort with the fast worst case of
512
    /// heapsort, while achieving linear time on slices with certain patterns. It uses some
513
    /// randomization to avoid degenerate cases, but with a fixed seed to always provide
514
    /// deterministic behavior.
515
    ///
516
    /// In the worst case, the algorithm allocates temporary storage in a `Vec<(K, usize)>` the
517
    /// length of the slice.
518
    ///
519
    /// All quicksorts work in two stages: partitioning into two halves followed by recursive
520
    /// calls. The partitioning phase is sequential, but the two recursive calls are performed in
521
    /// parallel. Finally, after sorting the cached keys, the item positions are updated sequentially.
522
    ///
523
    /// [pdqsort]: https://github.com/orlp/pdqsort
524
    ///
525
    /// # Examples
526
    ///
527
    /// ```
528
    /// use rayon::prelude::*;
529
    ///
530
    /// let mut v = [-5i32, 4, 32, -3, 2];
531
    ///
532
    /// v.par_sort_by_cached_key(|k| k.to_string());
533
    /// assert!(v == [-3, -5, 2, 32, 4]);
534
    /// ```
535
0
    fn par_sort_by_cached_key<K, F>(&mut self, f: F)
536
0
    where
537
0
        F: Fn(&T) -> K + Sync,
538
0
        K: Ord + Send,
539
    {
540
0
        let slice = self.as_parallel_slice_mut();
541
0
        let len = slice.len();
542
0
        if len < 2 {
543
0
            return;
544
0
        }
545
546
        // Helper macro for indexing our vector by the smallest possible type, to reduce allocation.
547
        macro_rules! sort_by_key {
548
            ($t:ty) => {{
549
                let mut indices: Vec<_> = slice
550
                    .par_iter_mut()
551
                    .enumerate()
552
0
                    .map(|(i, x)| (f(&*x), i as $t))
Unexecuted instantiation: <_ as rayon::slice::ParallelSliceMut<_>>::par_sort_by_cached_key::<_, _>::{closure#0}
Unexecuted instantiation: <_ as rayon::slice::ParallelSliceMut<_>>::par_sort_by_cached_key::<_, _>::{closure#2}
Unexecuted instantiation: <_ as rayon::slice::ParallelSliceMut<_>>::par_sort_by_cached_key::<_, _>::{closure#3}
Unexecuted instantiation: <_ as rayon::slice::ParallelSliceMut<_>>::par_sort_by_cached_key::<_, _>::{closure#1}
553
                    .collect();
554
                // The elements of `indices` are unique, as they are indexed, so any sort will be
555
                // stable with respect to the original slice. We use `sort_unstable` here because
556
                // it requires less memory allocation.
557
                indices.par_sort_unstable();
558
                for i in 0..len {
559
                    let mut index = indices[i].1;
560
                    while (index as usize) < i {
561
                        index = indices[index as usize].1;
562
                    }
563
                    indices[i].1 = index;
564
                    slice.swap(i, index as usize);
565
                }
566
            }};
567
        }
568
569
0
        let sz_u8 = size_of::<(K, u8)>();
570
0
        let sz_u16 = size_of::<(K, u16)>();
571
0
        let sz_u32 = size_of::<(K, u32)>();
572
0
        let sz_usize = size_of::<(K, usize)>();
573
574
0
        if sz_u8 < sz_u16 && len <= (u8::MAX as usize) {
575
0
            return sort_by_key!(u8);
576
0
        }
577
0
        if sz_u16 < sz_u32 && len <= (u16::MAX as usize) {
578
0
            return sort_by_key!(u16);
579
0
        }
580
0
        if sz_u32 < sz_usize && len <= (u32::MAX as usize) {
581
0
            return sort_by_key!(u32);
582
0
        }
583
0
        sort_by_key!(usize)
584
0
    }
585
586
    /// Sorts the slice in parallel, but might not preserve the order of equal elements.
587
    ///
588
    /// This sort is unstable (i.e., may reorder equal elements), in-place
589
    /// (i.e., does not allocate), and *O*(*n* \* log(*n*)) worst-case.
590
    ///
591
    /// # Current implementation
592
    ///
593
    /// The current algorithm is based on [pattern-defeating quicksort][pdqsort] by Orson Peters,
594
    /// which combines the fast average case of randomized quicksort with the fast worst case of
595
    /// heapsort, while achieving linear time on slices with certain patterns. It uses some
596
    /// randomization to avoid degenerate cases, but with a fixed seed to always provide
597
    /// deterministic behavior.
598
    ///
599
    /// It is typically faster than stable sorting, except in a few special cases, e.g., when the
600
    /// slice consists of several concatenated sorted sequences.
601
    ///
602
    /// All quicksorts work in two stages: partitioning into two halves followed by recursive
603
    /// calls. The partitioning phase is sequential, but the two recursive calls are performed in
604
    /// parallel.
605
    ///
606
    /// [pdqsort]: https://github.com/orlp/pdqsort
607
    ///
608
    /// # Examples
609
    ///
610
    /// ```
611
    /// use rayon::prelude::*;
612
    ///
613
    /// let mut v = [-5, 4, 1, -3, 2];
614
    ///
615
    /// v.par_sort_unstable();
616
    /// assert_eq!(v, [-5, -3, 1, 2, 4]);
617
    /// ```
618
0
    fn par_sort_unstable(&mut self)
619
0
    where
620
0
        T: Ord,
621
    {
622
0
        par_quicksort(self.as_parallel_slice_mut(), T::lt);
623
0
    }
624
625
    /// Sorts the slice in parallel with a comparator function, but might not preserve the order of
626
    /// equal elements.
627
    ///
628
    /// This sort is unstable (i.e., may reorder equal elements), in-place
629
    /// (i.e., does not allocate), and *O*(*n* \* log(*n*)) worst-case.
630
    ///
631
    /// The comparator function must define a total ordering for the elements in the slice. If
632
    /// the ordering is not total, the order of the elements is unspecified. An order is a
633
    /// total order if it is (for all `a`, `b` and `c`):
634
    ///
635
    /// * total and antisymmetric: exactly one of `a < b`, `a == b` or `a > b` is true, and
636
    /// * transitive, `a < b` and `b < c` implies `a < c`. The same must hold for both `==` and `>`.
637
    ///
638
    /// For example, while [`f64`] doesn't implement [`Ord`] because `NaN != NaN`, we can use
639
    /// `partial_cmp` as our sort function when we know the slice doesn't contain a `NaN`.
640
    ///
641
    /// ```
642
    /// use rayon::prelude::*;
643
    ///
644
    /// let mut floats = [5f64, 4.0, 1.0, 3.0, 2.0];
645
    /// floats.par_sort_unstable_by(|a, b| a.partial_cmp(b).unwrap());
646
    /// assert_eq!(floats, [1.0, 2.0, 3.0, 4.0, 5.0]);
647
    /// ```
648
    ///
649
    /// # Current implementation
650
    ///
651
    /// The current algorithm is based on [pattern-defeating quicksort][pdqsort] by Orson Peters,
652
    /// which combines the fast average case of randomized quicksort with the fast worst case of
653
    /// heapsort, while achieving linear time on slices with certain patterns. It uses some
654
    /// randomization to avoid degenerate cases, but with a fixed seed to always provide
655
    /// deterministic behavior.
656
    ///
657
    /// It is typically faster than stable sorting, except in a few special cases, e.g., when the
658
    /// slice consists of several concatenated sorted sequences.
659
    ///
660
    /// All quicksorts work in two stages: partitioning into two halves followed by recursive
661
    /// calls. The partitioning phase is sequential, but the two recursive calls are performed in
662
    /// parallel.
663
    ///
664
    /// [pdqsort]: https://github.com/orlp/pdqsort
665
    ///
666
    /// # Examples
667
    ///
668
    /// ```
669
    /// use rayon::prelude::*;
670
    ///
671
    /// let mut v = [5, 4, 1, 3, 2];
672
    /// v.par_sort_unstable_by(|a, b| a.cmp(b));
673
    /// assert_eq!(v, [1, 2, 3, 4, 5]);
674
    ///
675
    /// // reverse sorting
676
    /// v.par_sort_unstable_by(|a, b| b.cmp(a));
677
    /// assert_eq!(v, [5, 4, 3, 2, 1]);
678
    /// ```
679
0
    fn par_sort_unstable_by<F>(&mut self, compare: F)
680
0
    where
681
0
        F: Fn(&T, &T) -> Ordering + Sync,
682
    {
683
0
        par_quicksort(self.as_parallel_slice_mut(), |a, b| {
684
0
            compare(a, b) == Ordering::Less
685
0
        });
686
0
    }
687
688
    /// Sorts the slice in parallel with a key extraction function, but might not preserve the order
689
    /// of equal elements.
690
    ///
691
    /// This sort is unstable (i.e., may reorder equal elements), in-place
692
    /// (i.e., does not allocate), and *O*(m \* *n* \* log(*n*)) worst-case,
693
    /// where the key function is *O*(*m*).
694
    ///
695
    /// # Current implementation
696
    ///
697
    /// The current algorithm is based on [pattern-defeating quicksort][pdqsort] by Orson Peters,
698
    /// which combines the fast average case of randomized quicksort with the fast worst case of
699
    /// heapsort, while achieving linear time on slices with certain patterns. It uses some
700
    /// randomization to avoid degenerate cases, but with a fixed seed to always provide
701
    /// deterministic behavior.
702
    ///
703
    /// Due to its key calling strategy, `par_sort_unstable_by_key` is likely to be slower than
704
    /// [`par_sort_by_cached_key`](#method.par_sort_by_cached_key) in cases where the key function
705
    /// is expensive.
706
    ///
707
    /// All quicksorts work in two stages: partitioning into two halves followed by recursive
708
    /// calls. The partitioning phase is sequential, but the two recursive calls are performed in
709
    /// parallel.
710
    ///
711
    /// [pdqsort]: https://github.com/orlp/pdqsort
712
    ///
713
    /// # Examples
714
    ///
715
    /// ```
716
    /// use rayon::prelude::*;
717
    ///
718
    /// let mut v = [-5i32, 4, 1, -3, 2];
719
    ///
720
    /// v.par_sort_unstable_by_key(|k| k.abs());
721
    /// assert_eq!(v, [1, 2, -3, 4, -5]);
722
    /// ```
723
0
    fn par_sort_unstable_by_key<K, F>(&mut self, f: F)
724
0
    where
725
0
        K: Ord,
726
0
        F: Fn(&T) -> K + Sync,
727
    {
728
0
        par_quicksort(self.as_parallel_slice_mut(), |a, b| f(a).lt(&f(b)));
729
0
    }
730
731
    /// Returns a parallel iterator over the slice producing non-overlapping mutable
732
    /// runs of elements using the predicate to separate them.
733
    ///
734
    /// The predicate is called on two elements following themselves,
735
    /// it means the predicate is called on `slice[0]` and `slice[1]`
736
    /// then on `slice[1]` and `slice[2]` and so on.
737
    ///
738
    /// # Examples
739
    ///
740
    /// ```
741
    /// use rayon::prelude::*;
742
    /// let mut xs = [1, 2, 2, 3, 3, 3];
743
    /// let chunks: Vec<_> = xs.par_chunk_by_mut(|&x, &y| x == y).collect();
744
    /// assert_eq!(chunks[0], &mut [1]);
745
    /// assert_eq!(chunks[1], &mut [2, 2]);
746
    /// assert_eq!(chunks[2], &mut [3, 3, 3]);
747
    /// ```
748
0
    fn par_chunk_by_mut<F>(&mut self, pred: F) -> ChunkByMut<'_, T, F>
749
0
    where
750
0
        F: Fn(&T, &T) -> bool + Send + Sync,
751
    {
752
0
        ChunkByMut::new(self.as_parallel_slice_mut(), pred)
753
0
    }
754
}
755
756
impl<T: Send> ParallelSliceMut<T> for [T] {
757
    #[inline]
758
0
    fn as_parallel_slice_mut(&mut self) -> &mut [T] {
759
0
        self
760
0
    }
761
}
762
763
impl<'data, T: Sync> IntoParallelIterator for &'data [T] {
764
    type Item = &'data T;
765
    type Iter = Iter<'data, T>;
766
767
0
    fn into_par_iter(self) -> Self::Iter {
768
0
        Iter { slice: self }
769
0
    }
770
}
771
772
impl<'data, T: Sync> IntoParallelIterator for &'data Box<[T]> {
773
    type Item = &'data T;
774
    type Iter = Iter<'data, T>;
775
776
0
    fn into_par_iter(self) -> Self::Iter {
777
0
        Iter { slice: self }
778
0
    }
779
}
780
781
impl<'data, T: Send> IntoParallelIterator for &'data mut [T] {
782
    type Item = &'data mut T;
783
    type Iter = IterMut<'data, T>;
784
785
0
    fn into_par_iter(self) -> Self::Iter {
786
0
        IterMut { slice: self }
787
0
    }
Unexecuted instantiation: <&mut [rav1e::tiling::plane_region::PlaneRegionMut<u16>] as rayon::iter::IntoParallelIterator>::into_par_iter
Unexecuted instantiation: <&mut [rav1e::tiling::plane_region::PlaneRegionMut<u8>] as rayon::iter::IntoParallelIterator>::into_par_iter
Unexecuted instantiation: <&mut [_] as rayon::iter::IntoParallelIterator>::into_par_iter
788
}
789
790
impl<'data, T: Send> IntoParallelIterator for &'data mut Box<[T]> {
791
    type Item = &'data mut T;
792
    type Iter = IterMut<'data, T>;
793
794
0
    fn into_par_iter(self) -> Self::Iter {
795
0
        IterMut { slice: self }
796
0
    }
797
}
798
799
/// Parallel iterator over immutable items in a slice
800
#[derive(Debug)]
801
pub struct Iter<'data, T> {
802
    slice: &'data [T],
803
}
804
805
impl<T> Clone for Iter<'_, T> {
806
0
    fn clone(&self) -> Self {
807
0
        Iter { ..*self }
808
0
    }
809
}
810
811
impl<'data, T: Sync> ParallelIterator for Iter<'data, T> {
812
    type Item = &'data T;
813
814
0
    fn drive_unindexed<C>(self, consumer: C) -> C::Result
815
0
    where
816
0
        C: UnindexedConsumer<Self::Item>,
817
    {
818
0
        bridge(self, consumer)
819
0
    }
820
821
0
    fn opt_len(&self) -> Option<usize> {
822
0
        Some(self.len())
823
0
    }
824
}
825
826
impl<T: Sync> IndexedParallelIterator for Iter<'_, T> {
827
0
    fn drive<C>(self, consumer: C) -> C::Result
828
0
    where
829
0
        C: Consumer<Self::Item>,
830
    {
831
0
        bridge(self, consumer)
832
0
    }
833
834
0
    fn len(&self) -> usize {
835
0
        self.slice.len()
836
0
    }
837
838
0
    fn with_producer<CB>(self, callback: CB) -> CB::Output
839
0
    where
840
0
        CB: ProducerCallback<Self::Item>,
841
    {
842
0
        callback.callback(IterProducer { slice: self.slice })
843
0
    }
844
}
845
846
struct IterProducer<'data, T: Sync> {
847
    slice: &'data [T],
848
}
849
850
impl<'data, T: 'data + Sync> Producer for IterProducer<'data, T> {
851
    type Item = &'data T;
852
    type IntoIter = ::std::slice::Iter<'data, T>;
853
854
0
    fn into_iter(self) -> Self::IntoIter {
855
0
        self.slice.iter()
856
0
    }
857
858
0
    fn split_at(self, index: usize) -> (Self, Self) {
859
0
        let (left, right) = self.slice.split_at(index);
860
0
        (IterProducer { slice: left }, IterProducer { slice: right })
861
0
    }
862
}
863
864
/// Parallel iterator over immutable overlapping windows of a slice
865
#[derive(Debug)]
866
pub struct Windows<'data, T> {
867
    window_size: usize,
868
    slice: &'data [T],
869
}
870
871
impl<T> Clone for Windows<'_, T> {
872
0
    fn clone(&self) -> Self {
873
0
        Windows { ..*self }
874
0
    }
875
}
876
877
impl<'data, T: Sync> ParallelIterator for Windows<'data, T> {
878
    type Item = &'data [T];
879
880
0
    fn drive_unindexed<C>(self, consumer: C) -> C::Result
881
0
    where
882
0
        C: UnindexedConsumer<Self::Item>,
883
    {
884
0
        bridge(self, consumer)
885
0
    }
886
887
0
    fn opt_len(&self) -> Option<usize> {
888
0
        Some(self.len())
889
0
    }
890
}
891
892
impl<T: Sync> IndexedParallelIterator for Windows<'_, T> {
893
0
    fn drive<C>(self, consumer: C) -> C::Result
894
0
    where
895
0
        C: Consumer<Self::Item>,
896
    {
897
0
        bridge(self, consumer)
898
0
    }
899
900
0
    fn len(&self) -> usize {
901
0
        assert!(self.window_size >= 1);
902
0
        self.slice.len().saturating_sub(self.window_size - 1)
903
0
    }
904
905
0
    fn with_producer<CB>(self, callback: CB) -> CB::Output
906
0
    where
907
0
        CB: ProducerCallback<Self::Item>,
908
    {
909
0
        callback.callback(WindowsProducer {
910
0
            window_size: self.window_size,
911
0
            slice: self.slice,
912
0
        })
913
0
    }
914
}
915
916
struct WindowsProducer<'data, T: Sync> {
917
    window_size: usize,
918
    slice: &'data [T],
919
}
920
921
impl<'data, T: 'data + Sync> Producer for WindowsProducer<'data, T> {
922
    type Item = &'data [T];
923
    type IntoIter = ::std::slice::Windows<'data, T>;
924
925
0
    fn into_iter(self) -> Self::IntoIter {
926
0
        self.slice.windows(self.window_size)
927
0
    }
928
929
0
    fn split_at(self, index: usize) -> (Self, Self) {
930
0
        let left_index = Ord::min(self.slice.len(), index + (self.window_size - 1));
931
0
        let left = &self.slice[..left_index];
932
0
        let right = &self.slice[index..];
933
0
        (
934
0
            WindowsProducer {
935
0
                window_size: self.window_size,
936
0
                slice: left,
937
0
            },
938
0
            WindowsProducer {
939
0
                window_size: self.window_size,
940
0
                slice: right,
941
0
            },
942
0
        )
943
0
    }
944
}
945
946
/// Parallel iterator over mutable items in a slice
947
#[derive(Debug)]
948
pub struct IterMut<'data, T> {
949
    slice: &'data mut [T],
950
}
951
952
impl<'data, T: Send> ParallelIterator for IterMut<'data, T> {
953
    type Item = &'data mut T;
954
955
0
    fn drive_unindexed<C>(self, consumer: C) -> C::Result
956
0
    where
957
0
        C: UnindexedConsumer<Self::Item>,
958
    {
959
0
        bridge(self, consumer)
960
0
    }
961
962
0
    fn opt_len(&self) -> Option<usize> {
963
0
        Some(self.len())
964
0
    }
965
}
966
967
impl<T: Send> IndexedParallelIterator for IterMut<'_, T> {
968
0
    fn drive<C>(self, consumer: C) -> C::Result
969
0
    where
970
0
        C: Consumer<Self::Item>,
971
    {
972
0
        bridge(self, consumer)
973
0
    }
974
975
0
    fn len(&self) -> usize {
976
0
        self.slice.len()
977
0
    }
Unexecuted instantiation: <rayon::slice::IterMut<rav1e::tiling::plane_region::PlaneRegionMut<u16>> as rayon::iter::IndexedParallelIterator>::len
Unexecuted instantiation: <rayon::slice::IterMut<rav1e::tiling::plane_region::PlaneRegionMut<u8>> as rayon::iter::IndexedParallelIterator>::len
Unexecuted instantiation: <rayon::slice::IterMut<_> as rayon::iter::IndexedParallelIterator>::len
978
979
0
    fn with_producer<CB>(self, callback: CB) -> CB::Output
980
0
    where
981
0
        CB: ProducerCallback<Self::Item>,
982
    {
983
0
        callback.callback(IterMutProducer { slice: self.slice })
984
0
    }
Unexecuted instantiation: <rayon::slice::IterMut<rav1e::tiling::plane_region::PlaneRegionMut<u16>> as rayon::iter::IndexedParallelIterator>::with_producer::<<rayon::iter::enumerate::Enumerate<_> as rayon::iter::IndexedParallelIterator>::with_producer::Callback<rayon::iter::plumbing::bridge::Callback<rayon::iter::for_each::ForEachConsumer<rav1e::deblock::deblock_filter_frame<u16>::{closure#0}>>>>
Unexecuted instantiation: <rayon::slice::IterMut<rav1e::tiling::plane_region::PlaneRegionMut<u8>> as rayon::iter::IndexedParallelIterator>::with_producer::<<rayon::iter::enumerate::Enumerate<_> as rayon::iter::IndexedParallelIterator>::with_producer::Callback<rayon::iter::plumbing::bridge::Callback<rayon::iter::for_each::ForEachConsumer<rav1e::deblock::deblock_filter_frame<u8>::{closure#0}>>>>
Unexecuted instantiation: <rayon::slice::IterMut<_> as rayon::iter::IndexedParallelIterator>::with_producer::<_>
985
}
986
987
struct IterMutProducer<'data, T: Send> {
988
    slice: &'data mut [T],
989
}
990
991
impl<'data, T: 'data + Send> Producer for IterMutProducer<'data, T> {
992
    type Item = &'data mut T;
993
    type IntoIter = ::std::slice::IterMut<'data, T>;
994
995
0
    fn into_iter(self) -> Self::IntoIter {
996
0
        self.slice.iter_mut()
997
0
    }
Unexecuted instantiation: <rayon::slice::IterMutProducer<rav1e::tiling::plane_region::PlaneRegionMut<u16>> as rayon::iter::plumbing::Producer>::into_iter
Unexecuted instantiation: <rayon::slice::IterMutProducer<rav1e::tiling::plane_region::PlaneRegionMut<u8>> as rayon::iter::plumbing::Producer>::into_iter
Unexecuted instantiation: <rayon::slice::IterMutProducer<_> as rayon::iter::plumbing::Producer>::into_iter
998
999
0
    fn split_at(self, index: usize) -> (Self, Self) {
1000
0
        let (left, right) = self.slice.split_at_mut(index);
1001
0
        (
1002
0
            IterMutProducer { slice: left },
1003
0
            IterMutProducer { slice: right },
1004
0
        )
1005
0
    }
Unexecuted instantiation: <rayon::slice::IterMutProducer<rav1e::tiling::plane_region::PlaneRegionMut<u16>> as rayon::iter::plumbing::Producer>::split_at
Unexecuted instantiation: <rayon::slice::IterMutProducer<rav1e::tiling::plane_region::PlaneRegionMut<u8>> as rayon::iter::plumbing::Producer>::split_at
Unexecuted instantiation: <rayon::slice::IterMutProducer<_> as rayon::iter::plumbing::Producer>::split_at
1006
}
1007
1008
/// Parallel iterator over slices separated by a predicate
1009
pub struct Split<'data, T, P> {
1010
    slice: &'data [T],
1011
    separator: P,
1012
}
1013
1014
impl<T, P: Clone> Clone for Split<'_, T, P> {
1015
0
    fn clone(&self) -> Self {
1016
0
        Split {
1017
0
            separator: self.separator.clone(),
1018
0
            ..*self
1019
0
        }
1020
0
    }
1021
}
1022
1023
impl<T: Debug, P> Debug for Split<'_, T, P> {
1024
0
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
1025
0
        f.debug_struct("Split").field("slice", &self.slice).finish()
1026
0
    }
1027
}
1028
1029
impl<'data, T, P> ParallelIterator for Split<'data, T, P>
1030
where
1031
    P: Fn(&T) -> bool + Sync + Send,
1032
    T: Sync,
1033
{
1034
    type Item = &'data [T];
1035
1036
0
    fn drive_unindexed<C>(self, consumer: C) -> C::Result
1037
0
    where
1038
0
        C: UnindexedConsumer<Self::Item>,
1039
    {
1040
0
        let producer = SplitProducer::new(self.slice, &self.separator);
1041
0
        bridge_unindexed(producer, consumer)
1042
0
    }
1043
}
1044
1045
/// Parallel iterator over slices separated by a predicate,
1046
/// including the matched part as a terminator.
1047
pub struct SplitInclusive<'data, T, P> {
1048
    slice: &'data [T],
1049
    separator: P,
1050
}
1051
1052
impl<T, P: Clone> Clone for SplitInclusive<'_, T, P> {
1053
0
    fn clone(&self) -> Self {
1054
0
        SplitInclusive {
1055
0
            separator: self.separator.clone(),
1056
0
            ..*self
1057
0
        }
1058
0
    }
1059
}
1060
1061
impl<T: Debug, P> Debug for SplitInclusive<'_, T, P> {
1062
0
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
1063
0
        f.debug_struct("SplitInclusive")
1064
0
            .field("slice", &self.slice)
1065
0
            .finish()
1066
0
    }
1067
}
1068
1069
impl<'data, T, P> ParallelIterator for SplitInclusive<'data, T, P>
1070
where
1071
    P: Fn(&T) -> bool + Sync + Send,
1072
    T: Sync,
1073
{
1074
    type Item = &'data [T];
1075
1076
0
    fn drive_unindexed<C>(self, consumer: C) -> C::Result
1077
0
    where
1078
0
        C: UnindexedConsumer<Self::Item>,
1079
    {
1080
0
        let producer = SplitInclusiveProducer::new_incl(self.slice, &self.separator);
1081
0
        bridge_unindexed(producer, consumer)
1082
0
    }
1083
}
1084
1085
/// Implement support for `SplitProducer`.
1086
impl<T, P> Fissile<P> for &[T]
1087
where
1088
    P: Fn(&T) -> bool,
1089
{
1090
0
    fn length(&self) -> usize {
1091
0
        self.len()
1092
0
    }
1093
1094
0
    fn midpoint(&self, end: usize) -> usize {
1095
0
        end / 2
1096
0
    }
1097
1098
0
    fn find(&self, separator: &P, start: usize, end: usize) -> Option<usize> {
1099
0
        self[start..end].iter().position(separator)
1100
0
    }
1101
1102
0
    fn rfind(&self, separator: &P, end: usize) -> Option<usize> {
1103
0
        self[..end].iter().rposition(separator)
1104
0
    }
1105
1106
0
    fn split_once<const INCL: bool>(self, index: usize) -> (Self, Self) {
1107
0
        if INCL {
1108
            // include the separator in the left side
1109
0
            self.split_at(index + 1)
1110
        } else {
1111
0
            let (left, right) = self.split_at(index);
1112
0
            (left, &right[1..]) // skip the separator
1113
        }
1114
0
    }
1115
1116
0
    fn fold_splits<F, const INCL: bool>(self, separator: &P, folder: F, skip_last: bool) -> F
1117
0
    where
1118
0
        F: Folder<Self>,
1119
0
        Self: Send,
1120
    {
1121
0
        if INCL {
1122
0
            debug_assert!(!skip_last);
1123
0
            folder.consume_iter(self.split_inclusive(separator))
1124
        } else {
1125
0
            let mut split = self.split(separator);
1126
0
            if skip_last {
1127
0
                split.next_back();
1128
0
            }
1129
0
            folder.consume_iter(split)
1130
        }
1131
0
    }
1132
}
1133
1134
/// Parallel iterator over mutable slices separated by a predicate
1135
pub struct SplitMut<'data, T, P> {
1136
    slice: &'data mut [T],
1137
    separator: P,
1138
}
1139
1140
impl<T: Debug, P> Debug for SplitMut<'_, T, P> {
1141
0
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
1142
0
        f.debug_struct("SplitMut")
1143
0
            .field("slice", &self.slice)
1144
0
            .finish()
1145
0
    }
1146
}
1147
1148
impl<'data, T, P> ParallelIterator for SplitMut<'data, T, P>
1149
where
1150
    P: Fn(&T) -> bool + Sync + Send,
1151
    T: Send,
1152
{
1153
    type Item = &'data mut [T];
1154
1155
0
    fn drive_unindexed<C>(self, consumer: C) -> C::Result
1156
0
    where
1157
0
        C: UnindexedConsumer<Self::Item>,
1158
    {
1159
0
        let producer = SplitProducer::new(self.slice, &self.separator);
1160
0
        bridge_unindexed(producer, consumer)
1161
0
    }
1162
}
1163
1164
/// Parallel iterator over mutable slices separated by a predicate,
1165
/// including the matched part as a terminator.
1166
pub struct SplitInclusiveMut<'data, T, P> {
1167
    slice: &'data mut [T],
1168
    separator: P,
1169
}
1170
1171
impl<T: Debug, P> Debug for SplitInclusiveMut<'_, T, P> {
1172
0
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
1173
0
        f.debug_struct("SplitInclusiveMut")
1174
0
            .field("slice", &self.slice)
1175
0
            .finish()
1176
0
    }
1177
}
1178
1179
impl<'data, T, P> ParallelIterator for SplitInclusiveMut<'data, T, P>
1180
where
1181
    P: Fn(&T) -> bool + Sync + Send,
1182
    T: Send,
1183
{
1184
    type Item = &'data mut [T];
1185
1186
0
    fn drive_unindexed<C>(self, consumer: C) -> C::Result
1187
0
    where
1188
0
        C: UnindexedConsumer<Self::Item>,
1189
    {
1190
0
        let producer = SplitInclusiveProducer::new_incl(self.slice, &self.separator);
1191
0
        bridge_unindexed(producer, consumer)
1192
0
    }
1193
}
1194
1195
/// Implement support for `SplitProducer`.
1196
impl<T, P> Fissile<P> for &mut [T]
1197
where
1198
    P: Fn(&T) -> bool,
1199
{
1200
0
    fn length(&self) -> usize {
1201
0
        self.len()
1202
0
    }
1203
1204
0
    fn midpoint(&self, end: usize) -> usize {
1205
0
        end / 2
1206
0
    }
1207
1208
0
    fn find(&self, separator: &P, start: usize, end: usize) -> Option<usize> {
1209
0
        self[start..end].iter().position(separator)
1210
0
    }
1211
1212
0
    fn rfind(&self, separator: &P, end: usize) -> Option<usize> {
1213
0
        self[..end].iter().rposition(separator)
1214
0
    }
1215
1216
0
    fn split_once<const INCL: bool>(self, index: usize) -> (Self, Self) {
1217
0
        if INCL {
1218
            // include the separator in the left side
1219
0
            self.split_at_mut(index + 1)
1220
        } else {
1221
0
            let (left, right) = self.split_at_mut(index);
1222
0
            (left, &mut right[1..]) // skip the separator
1223
        }
1224
0
    }
1225
1226
0
    fn fold_splits<F, const INCL: bool>(self, separator: &P, folder: F, skip_last: bool) -> F
1227
0
    where
1228
0
        F: Folder<Self>,
1229
0
        Self: Send,
1230
    {
1231
0
        if INCL {
1232
0
            debug_assert!(!skip_last);
1233
0
            folder.consume_iter(self.split_inclusive_mut(separator))
1234
        } else {
1235
0
            let mut split = self.split_mut(separator);
1236
0
            if skip_last {
1237
0
                split.next_back();
1238
0
            }
1239
0
            folder.consume_iter(split)
1240
        }
1241
0
    }
1242
}