/rust/registry/src/index.crates.io-1949cf8c6b5b557f/pxfm-0.1.25/src/logs/log1pf.rs
Line | Count | Source |
1 | | /* |
2 | | * // Copyright (c) Radzivon Bartoshyk 6/2025. All rights reserved. |
3 | | * // |
4 | | * // Redistribution and use in source and binary forms, with or without modification, |
5 | | * // are permitted provided that the following conditions are met: |
6 | | * // |
7 | | * // 1. Redistributions of source code must retain the above copyright notice, this |
8 | | * // list of conditions and the following disclaimer. |
9 | | * // |
10 | | * // 2. Redistributions in binary form must reproduce the above copyright notice, |
11 | | * // this list of conditions and the following disclaimer in the documentation |
12 | | * // and/or other materials provided with the distribution. |
13 | | * // |
14 | | * // 3. Neither the name of the copyright holder nor the names of its |
15 | | * // contributors may be used to endorse or promote products derived from |
16 | | * // this software without specific prior written permission. |
17 | | * // |
18 | | * // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" |
19 | | * // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
20 | | * // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE |
21 | | * // DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE |
22 | | * // FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL |
23 | | * // DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR |
24 | | * // SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER |
25 | | * // CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, |
26 | | * // OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE |
27 | | * // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
28 | | */ |
29 | | use crate::common::f_fmla; |
30 | | use crate::logs::{LOG_R_DD, LOG_RANGE_REDUCTION}; |
31 | | use crate::polyeval::{f_estrin_polyeval8, f_polyeval6}; |
32 | | |
33 | | #[inline] |
34 | 0 | pub(crate) fn core_logf(x: f64) -> f64 { |
35 | 0 | let x_u = x.to_bits(); |
36 | | |
37 | | const E_BIAS: u64 = (1u64 << (11 - 1u64)) - 1u64; |
38 | | |
39 | 0 | let mut x_e: i32 = -(E_BIAS as i32); |
40 | | |
41 | | // log2(x) = log2(2^x_e * x_m) |
42 | | // = x_e + log2(x_m) |
43 | | // Range reduction for log2(x_m): |
44 | | // For each x_m, we would like to find r such that: |
45 | | // -2^-8 <= r * x_m - 1 < 2^-7 |
46 | 0 | let shifted = (x_u >> 45) as i32; |
47 | 0 | let index = shifted & 0x7F; |
48 | 0 | let r = f64::from_bits(LOG_RANGE_REDUCTION[index as usize]); |
49 | | |
50 | | // Add unbiased exponent. Add an extra 1 if the 8 leading fractional bits are |
51 | | // all 1's. |
52 | 0 | x_e = x_e.wrapping_add(x_u.wrapping_add(1u64 << 45).wrapping_shr(52) as i32); |
53 | 0 | let e_x = x_e as f64; |
54 | | |
55 | | const LOG_2_HI: f64 = f64::from_bits(0x3fe62e42fefa3800); |
56 | | const LOG_2_LO: f64 = f64::from_bits(0x3d2ef35793c76730); |
57 | | |
58 | 0 | let log_r_dd = LOG_R_DD[index as usize]; |
59 | | |
60 | | // hi is exact |
61 | 0 | let hi = f_fmla(e_x, LOG_2_HI, f64::from_bits(log_r_dd.1)); |
62 | 0 | let lo = f_fmla(e_x, LOG_2_LO, f64::from_bits(log_r_dd.0)); |
63 | | |
64 | | // Set m = 1.mantissa. |
65 | 0 | let x_m = (x_u & 0x000F_FFFF_FFFF_FFFFu64) | 0x3FF0_0000_0000_0000u64; |
66 | 0 | let m = f64::from_bits(x_m); |
67 | | |
68 | | let u; |
69 | | #[cfg(any( |
70 | | all( |
71 | | any(target_arch = "x86", target_arch = "x86_64"), |
72 | | target_feature = "fma" |
73 | | ), |
74 | | target_arch = "aarch64" |
75 | | ))] |
76 | | { |
77 | | u = f_fmla(r, m, -1.0); // exact |
78 | | } |
79 | | #[cfg(not(any( |
80 | | all( |
81 | | any(target_arch = "x86", target_arch = "x86_64"), |
82 | | target_feature = "fma" |
83 | | ), |
84 | | target_arch = "aarch64" |
85 | | )))] |
86 | | { |
87 | | use crate::logs::LOG_CD; |
88 | 0 | let c_m = x_m & 0x3FFF_E000_0000_0000u64; |
89 | 0 | let c = f64::from_bits(c_m); |
90 | 0 | u = f_fmla(r, m - c, f64::from_bits(LOG_CD[index as usize])); // exact |
91 | | } |
92 | | |
93 | 0 | let r1 = hi; |
94 | | // Polynomial for log(1+x)/x generated in Sollya: |
95 | | // d = [-2^-8, 2^-7]; |
96 | | // f_log = log(1 + x)/x; |
97 | | // Q = fpminimax(f_log, 5, [|D...|], d); |
98 | | // See ./notes/log1pf_core.sollya |
99 | 0 | let p = f_polyeval6( |
100 | 0 | u, |
101 | 0 | f64::from_bits(0x3fefffffffffffff), |
102 | 0 | f64::from_bits(0xbfdffffffffff3e6), |
103 | 0 | f64::from_bits(0x3fd5555555626b74), |
104 | 0 | f64::from_bits(0xbfd0000026aeecc8), |
105 | 0 | f64::from_bits(0x3fc9999114d16c06), |
106 | 0 | f64::from_bits(0xbfc51e433a85278a), |
107 | | ); |
108 | 0 | f_fmla(p, u, r1) + lo |
109 | 0 | } |
110 | | |
111 | | /// Computes log(x+1) |
112 | | /// |
113 | | /// Max ULP 0.5 |
114 | | #[inline] |
115 | 0 | pub fn f_log1pf(x: f32) -> f32 { |
116 | 0 | let ux = x.to_bits().wrapping_shl(1); |
117 | 0 | if ux >= 0xffu32 << 24 || ux == 0 { |
118 | | // |x| == 0, |x| == inf, x == NaN |
119 | 0 | if ux == 0 { |
120 | 0 | return x; |
121 | 0 | } |
122 | 0 | if x.is_infinite() { |
123 | 0 | return if x.is_sign_positive() { |
124 | 0 | f32::INFINITY |
125 | | } else { |
126 | 0 | f32::NAN |
127 | | }; |
128 | 0 | } |
129 | 0 | return x + f32::NAN; |
130 | 0 | } |
131 | | |
132 | 0 | let xd = x as f64; |
133 | 0 | let ax = x.to_bits() & 0x7fff_ffffu32; |
134 | | |
135 | | // Use log1p(x) = log(1 + x) for |x| > 2^-6; |
136 | 0 | if ax > 0x3c80_0000u32 { |
137 | 0 | if x == -1. { |
138 | 0 | return f32::NEG_INFINITY; |
139 | 0 | } |
140 | 0 | let x1p = xd + 1.; |
141 | 0 | if x1p <= 0. { |
142 | 0 | if x1p == 0. { |
143 | 0 | return f32::NEG_INFINITY; |
144 | 0 | } |
145 | 0 | return f32::NAN; |
146 | 0 | } |
147 | 0 | return core_logf(x1p) as f32; |
148 | 0 | } |
149 | | |
150 | | // log(1+x) is expected to be used near zero |
151 | | // Polynomial generated by Sollya: |
152 | | // d = [-2^-6; 2^-6]; |
153 | | // f_log1pf = log(1+x)/x; |
154 | | // Q = fpminimax(f_log1pf, 7, [|0, D...|], d); |
155 | | // See ./notes/log1pf.sollya |
156 | | |
157 | 0 | let p = f_estrin_polyeval8( |
158 | 0 | xd, |
159 | 0 | f64::from_bits(0x3ff0000000000000), |
160 | 0 | f64::from_bits(0xbfe0000000000000), |
161 | 0 | f64::from_bits(0x3fd5555555556aad), |
162 | 0 | f64::from_bits(0xbfd000000000181a), |
163 | 0 | f64::from_bits(0x3fc999998998124e), |
164 | 0 | f64::from_bits(0xbfc55555452e2a2b), |
165 | 0 | f64::from_bits(0x3fc24adb8cde4aa7), |
166 | 0 | f64::from_bits(0xbfc0019db915ef6f), |
167 | 0 | ) * xd; |
168 | 0 | p as f32 |
169 | 0 | } |
170 | | |
171 | | #[inline] |
172 | 0 | pub(crate) fn core_log1pf(x: f32) -> f64 { |
173 | 0 | let xd = x as f64; |
174 | 0 | let ax = x.to_bits() & 0x7fff_ffffu32; |
175 | | |
176 | | // Use log1p(x) = log(1 + x) for |x| > 2^-6; |
177 | 0 | if ax > 0x3c80_0000u32 { |
178 | 0 | let x1p = xd + 1.; |
179 | 0 | return core_logf(x1p); |
180 | 0 | } |
181 | | |
182 | | // log(1+x) is expected to be used near zero |
183 | | // Polynomial generated by Sollya: |
184 | | // d = [-2^-6; 2^-6]; |
185 | | // f_log1pf = log(1+x)/x; |
186 | | // Q = fpminimax(f_log1pf, 7, [|0, D...|], d); |
187 | | // See ./notes/log1pf.sollya |
188 | | |
189 | 0 | f_estrin_polyeval8( |
190 | 0 | xd, |
191 | 0 | f64::from_bits(0x3ff0000000000000), |
192 | 0 | f64::from_bits(0xbfe0000000000000), |
193 | 0 | f64::from_bits(0x3fd5555555556aad), |
194 | 0 | f64::from_bits(0xbfd000000000181a), |
195 | 0 | f64::from_bits(0x3fc999998998124e), |
196 | 0 | f64::from_bits(0xbfc55555452e2a2b), |
197 | 0 | f64::from_bits(0x3fc24adb8cde4aa7), |
198 | 0 | f64::from_bits(0xbfc0019db915ef6f), |
199 | 0 | ) * xd |
200 | 0 | } |
201 | | |
202 | | #[cfg(test)] |
203 | | mod tests { |
204 | | use super::*; |
205 | | |
206 | | #[test] |
207 | | fn log1pf_works() { |
208 | | assert!(f_log1pf(f32::from_bits(0xffefb9a7)).is_nan()); |
209 | | assert!(f_log1pf(f32::NAN).is_nan()); |
210 | | assert_eq!(f_log1pf(f32::from_bits(0x41078feb)), 2.2484074); |
211 | | assert_eq!(f_log1pf(-0.0000014305108), -0.0000014305118); |
212 | | assert_eq!(f_log1pf(0.0), 0.0); |
213 | | assert_eq!(f_log1pf(2.0), 1.0986123); |
214 | | assert_eq!(f_log1pf(-0.7), -1.2039728); |
215 | | assert_eq!(f_log1pf(-0.0000000000043243), -4.3243e-12); |
216 | | assert_eq!(f_log1pf(f32::INFINITY), f32::INFINITY); |
217 | | assert!(f_log1pf(-2.0).is_nan()); |
218 | | assert!(f_log1pf(f32::NAN).is_nan()); |
219 | | } |
220 | | } |