/rust/registry/src/index.crates.io-1949cf8c6b5b557f/pxfm-0.1.25/src/logs/logf.rs
Line | Count | Source |
1 | | /* |
2 | | * // Copyright (c) Radzivon Bartoshyk 7/2025. All rights reserved. |
3 | | * // |
4 | | * // Redistribution and use in source and binary forms, with or without modification, |
5 | | * // are permitted provided that the following conditions are met: |
6 | | * // |
7 | | * // 1. Redistributions of source code must retain the above copyright notice, this |
8 | | * // list of conditions and the following disclaimer. |
9 | | * // |
10 | | * // 2. Redistributions in binary form must reproduce the above copyright notice, |
11 | | * // this list of conditions and the following disclaimer in the documentation |
12 | | * // and/or other materials provided with the distribution. |
13 | | * // |
14 | | * // 3. Neither the name of the copyright holder nor the names of its |
15 | | * // contributors may be used to endorse or promote products derived from |
16 | | * // this software without specific prior written permission. |
17 | | * // |
18 | | * // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" |
19 | | * // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
20 | | * // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE |
21 | | * // DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE |
22 | | * // FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL |
23 | | * // DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR |
24 | | * // SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER |
25 | | * // CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, |
26 | | * // OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE |
27 | | * // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
28 | | */ |
29 | | use crate::bits::min_normal_f32; |
30 | | use crate::common::*; |
31 | | use crate::polyeval::f_polyeval3; |
32 | | use std::hint::black_box; |
33 | | |
34 | | #[repr(C, align(8))] |
35 | | pub(crate) struct LogReductionF32Aligned(pub(crate) [u32; 128]); |
36 | | |
37 | | pub(crate) static LOG_REDUCTION_F32: LogReductionF32Aligned = LogReductionF32Aligned([ |
38 | | 0x3f800000, 0x3f7e0000, 0x3f7c0000, 0x3f7a0000, 0x3f780000, 0x3f760000, 0x3f740000, 0x3f720000, |
39 | | 0x3f700000, 0x3f6f0000, 0x3f6d0000, 0x3f6b0000, 0x3f6a0000, 0x3f680000, 0x3f660000, 0x3f650000, |
40 | | 0x3f630000, 0x3f620000, 0x3f600000, 0x3f5f0000, 0x3f5d0000, 0x3f5c0000, 0x3f5a0000, 0x3f590000, |
41 | | 0x3f570000, 0x3f560000, 0x3f540000, 0x3f530000, 0x3f520000, 0x3f500000, 0x3f4f0000, 0x3f4e0000, |
42 | | 0x3f4c0000, 0x3f4b0000, 0x3f4a0000, 0x3f490000, 0x3f480000, 0x3f460000, 0x3f450000, 0x3f440000, |
43 | | 0x3f430000, 0x3f420000, 0x3f400000, 0x3f3f0000, 0x3f3e0000, 0x3f3d0000, 0x3f3c0000, 0x3f3b0000, |
44 | | 0x3f3a0000, 0x3f390000, 0x3f380000, 0x3f370000, 0x3f360000, 0x3f350000, 0x3f340000, 0x3f330000, |
45 | | 0x3f320000, 0x3f310000, 0x3f300000, 0x3f2f0000, 0x3f2e0000, 0x3f2d0000, 0x3f2c0000, 0x3f2b0000, |
46 | | 0x3f2a0000, 0x3f2a0000, 0x3f290000, 0x3f280000, 0x3f270000, 0x3f260000, 0x3f250000, 0x3f250000, |
47 | | 0x3f240000, 0x3f230000, 0x3f220000, 0x3f210000, 0x3f200000, 0x3f200000, 0x3f1f0000, 0x3f1e0000, |
48 | | 0x3f1d0000, 0x3f1d0000, 0x3f1c0000, 0x3f1b0000, 0x3f1a0000, 0x3f1a0000, 0x3f190000, 0x3f180000, |
49 | | 0x3f180000, 0x3f170000, 0x3f160000, 0x3f160000, 0x3f150000, 0x3f140000, 0x3f140000, 0x3f130000, |
50 | | 0x3f120000, 0x3f120000, 0x3f110000, 0x3f100000, 0x3f100000, 0x3f0f0000, 0x3f0e0000, 0x3f0e0000, |
51 | | 0x3f0d0000, 0x3f0d0000, 0x3f0c0000, 0x3f0b0000, 0x3f0b0000, 0x3f0a0000, 0x3f0a0000, 0x3f090000, |
52 | | 0x3f080000, 0x3f080000, 0x3f070000, 0x3f070000, 0x3f060000, 0x3f060000, 0x3f050000, 0x3f050000, |
53 | | 0x3f040000, 0x3f040000, 0x3f030000, 0x3f030000, 0x3f020000, 0x3f020000, 0x3f010000, 0x3f000000, |
54 | | ]); |
55 | | |
56 | | static LOG_R: [u64; 128] = [ |
57 | | 0x0000000000000000, |
58 | | 0x3f8010157588de71, |
59 | | 0x3f90205658935847, |
60 | | 0x3f98492528c8cabf, |
61 | | 0x3fa0415d89e74444, |
62 | | 0x3fa466aed42de3ea, |
63 | | 0x3fa894aa149fb343, |
64 | | 0x3faccb73cdddb2cc, |
65 | | 0x3fb08598b59e3a07, |
66 | | 0x3fb1973bd1465567, |
67 | | 0x3fb3bdf5a7d1ee64, |
68 | | 0x3fb5e95a4d9791cb, |
69 | | 0x3fb700d30aeac0e1, |
70 | | 0x3fb9335e5d594989, |
71 | | 0x3fbb6ac88dad5b1c, |
72 | | 0x3fbc885801bc4b23, |
73 | | 0x3fbec739830a1120, |
74 | | 0x3fbfe89139dbd566, |
75 | | 0x3fc1178e8227e47c, |
76 | | 0x3fc1aa2b7e23f72a, |
77 | | 0x3fc2d1610c86813a, |
78 | | 0x3fc365fcb0159016, |
79 | | 0x3fc4913d8333b561, |
80 | | 0x3fc527e5e4a1b58d, |
81 | | 0x3fc6574ebe8c133a, |
82 | | 0x3fc6f0128b756abc, |
83 | | 0x3fc823c16551a3c2, |
84 | | 0x3fc8beafeb38fe8c, |
85 | | 0x3fc95a5adcf7017f, |
86 | | 0x3fca93ed3c8ad9e3, |
87 | | 0x3fcb31d8575bce3d, |
88 | | 0x3fcbd087383bd8ad, |
89 | | 0x3fcd1037f2655e7b, |
90 | | 0x3fcdb13db0d48940, |
91 | | 0x3fce530effe71012, |
92 | | 0x3fcef5ade4dcffe6, |
93 | | 0x3fcf991c6cb3b379, |
94 | | 0x3fd07138604d5862, |
95 | | 0x3fd0c42d676162e3, |
96 | | 0x3fd1178e8227e47c, |
97 | | 0x3fd16b5ccbacfb73, |
98 | | 0x3fd1bf99635a6b95, |
99 | | 0x3fd269621134db92, |
100 | | 0x3fd2bef07cdc9354, |
101 | | 0x3fd314f1e1d35ce4, |
102 | | 0x3fd36b6776be1117, |
103 | | 0x3fd3c25277333184, |
104 | | 0x3fd419b423d5e8c7, |
105 | | 0x3fd4718dc271c41b, |
106 | | 0x3fd4c9e09e172c3c, |
107 | | 0x3fd522ae0738a3d8, |
108 | | 0x3fd57bf753c8d1fb, |
109 | | 0x3fd5d5bddf595f30, |
110 | | 0x3fd630030b3aac49, |
111 | | 0x3fd68ac83e9c6a14, |
112 | | 0x3fd6e60ee6af1972, |
113 | | 0x3fd741d876c67bb1, |
114 | | 0x3fd79e26687cfb3e, |
115 | | 0x3fd7fafa3bd8151c, |
116 | | 0x3fd85855776dcbfb, |
117 | | 0x3fd8b639a88b2df5, |
118 | | 0x3fd914a8635bf68a, |
119 | | 0x3fd973a3431356ae, |
120 | | 0x3fd9d32bea15ed3b, |
121 | | 0x3fda33440224fa79, |
122 | | 0x3fda33440224fa79, |
123 | | 0x3fda93ed3c8ad9e3, |
124 | | 0x3fdaf5295248cdd0, |
125 | | 0x3fdb56fa04462909, |
126 | | 0x3fdbb9611b80e2fb, |
127 | | 0x3fdc1c60693fa39e, |
128 | | 0x3fdc1c60693fa39e, |
129 | | 0x3fdc7ff9c74554c9, |
130 | | 0x3fdce42f18064743, |
131 | | 0x3fdd490246defa6b, |
132 | | 0x3fddae75484c9616, |
133 | | 0x3fde148a1a2726ce, |
134 | | 0x3fde148a1a2726ce, |
135 | | 0x3fde7b42c3ddad73, |
136 | | 0x3fdee2a156b413e5, |
137 | | 0x3fdf4aa7ee03192d, |
138 | | 0x3fdf4aa7ee03192d, |
139 | | 0x3fdfb358af7a4884, |
140 | | 0x3fe00e5ae5b207ab, |
141 | | 0x3fe04360be7603ad, |
142 | | 0x3fe04360be7603ad, |
143 | | 0x3fe078bf0533c568, |
144 | | 0x3fe0ae76e2d054fa, |
145 | | 0x3fe0ae76e2d054fa, |
146 | | 0x3fe0e4898611cce1, |
147 | | 0x3fe11af823c75aa8, |
148 | | 0x3fe11af823c75aa8, |
149 | | 0x3fe151c3f6f29612, |
150 | | 0x3fe188ee40f23ca6, |
151 | | 0x3fe188ee40f23ca6, |
152 | | 0x3fe1c07849ae6007, |
153 | | 0x3fe1f8635fc61659, |
154 | | 0x3fe1f8635fc61659, |
155 | | 0x3fe230b0d8bebc98, |
156 | | 0x3fe269621134db92, |
157 | | 0x3fe269621134db92, |
158 | | 0x3fe2a2786d0ec107, |
159 | | 0x3fe2dbf557b0df43, |
160 | | 0x3fe2dbf557b0df43, |
161 | | 0x3fe315da4434068b, |
162 | | 0x3fe315da4434068b, |
163 | | 0x3fe35028ad9d8c86, |
164 | | 0x3fe38ae2171976e7, |
165 | | 0x3fe38ae2171976e7, |
166 | | 0x3fe3c6080c36bfb5, |
167 | | 0x3fe3c6080c36bfb5, |
168 | | 0x3fe4019c2125ca93, |
169 | | 0x3fe43d9ff2f923c5, |
170 | | 0x3fe43d9ff2f923c5, |
171 | | 0x3fe47a1527e8a2d3, |
172 | | 0x3fe47a1527e8a2d3, |
173 | | 0x3fe4b6fd6f970c1f, |
174 | | 0x3fe4b6fd6f970c1f, |
175 | | 0x3fe4f45a835a4e19, |
176 | | 0x3fe4f45a835a4e19, |
177 | | 0x3fe5322e26867857, |
178 | | 0x3fe5322e26867857, |
179 | | 0x3fe5707a26bb8c66, |
180 | | 0x3fe5707a26bb8c66, |
181 | | 0x3fe5af405c3649e0, |
182 | | 0x3fe5af405c3649e0, |
183 | | 0x3fe5ee82aa241920, |
184 | | 0x0000000000000000, |
185 | | ]; |
186 | | |
187 | | /// Natural logarithm |
188 | | /// |
189 | | /// Max found ULP 0.4999988 |
190 | 0 | pub fn f_logf(x: f32) -> f32 { |
191 | 0 | let mut x_u = x.to_bits(); |
192 | | |
193 | | const E_BIAS: u32 = (1u32 << (8 - 1u32)) - 1u32; |
194 | | |
195 | 0 | let mut m = -(E_BIAS as i32); |
196 | 0 | if x_u < 0x4c5d65a5u32 { |
197 | 0 | if x_u == 0x3f7f4d6fu32 { |
198 | 0 | return black_box(f64::from_bits(0xbf6659ec80000000) as f32) + min_normal_f32(true); |
199 | 0 | } else if x_u == 0x41178febu32 { |
200 | 0 | return black_box(f64::from_bits(0x4001fcbce0000000) as f32) + min_normal_f32(true); |
201 | 0 | } else if x_u == 0x3f800000u32 { |
202 | 0 | return 0.; |
203 | 0 | } else if x_u == 0x1e88452du32 { |
204 | 0 | return black_box(f64::from_bits(0xc046d7b180000000) as f32) + min_normal_f32(true); |
205 | 0 | } |
206 | 0 | if x_u < f32::MIN_POSITIVE.to_bits() { |
207 | 0 | if x == 0.0 { |
208 | 0 | return f32::NEG_INFINITY; |
209 | 0 | } |
210 | | // Normalize denormal inputs. |
211 | 0 | x_u = (x * f64::from_bits(0x4160000000000000) as f32).to_bits(); |
212 | 0 | m -= 23; |
213 | 0 | } |
214 | | } else { |
215 | 0 | if x_u == 0x4c5d65a5u32 { |
216 | 0 | return black_box(f32::from_bits(0x418f034b)) + min_normal_f32(true); |
217 | 0 | } else if x_u == 0x65d890d3u32 { |
218 | 0 | return black_box(f32::from_bits(0x4254d1f9)) + min_normal_f32(true); |
219 | 0 | } else if x_u == 0x6f31a8ecu32 { |
220 | 0 | return black_box(f32::from_bits(0x42845a89)) + min_normal_f32(true); |
221 | 0 | } else if x_u == 0x7a17f30au32 { |
222 | 0 | return black_box(f32::from_bits(0x42a28a1b)) + min_normal_f32(true); |
223 | 0 | } else if x_u == 0x500ffb03u32 { |
224 | 0 | return black_box(f32::from_bits(0x41b7ee9a)) + min_normal_f32(true); |
225 | 0 | } else if x_u == 0x5cd69e88u32 { |
226 | 0 | return black_box(f32::from_bits(0x4222e0a3)) + min_normal_f32(true); |
227 | 0 | } else if x_u == 0x5ee8984eu32 { |
228 | 0 | return black_box(f32::from_bits(0x422e4a21)) + min_normal_f32(true); |
229 | 0 | } |
230 | | |
231 | 0 | if x_u > f32::MAX.to_bits() { |
232 | 0 | if x_u == 0x80000000u32 { |
233 | 0 | return f32::NEG_INFINITY; |
234 | 0 | } |
235 | 0 | if x.is_sign_negative() && !x.is_nan() { |
236 | 0 | return f32::NAN + x; |
237 | 0 | } |
238 | | // x is +inf or nan |
239 | 0 | if x.is_nan() { |
240 | 0 | return f32::NAN; |
241 | 0 | } |
242 | | |
243 | 0 | return x; |
244 | 0 | } |
245 | | } |
246 | | |
247 | 0 | let mant = x_u & 0x007F_FFFF; |
248 | | // Extract 7 leading fractional bits of the mantissa |
249 | 0 | let index = mant.wrapping_shr(16); |
250 | | // Add unbiased exponent. Add an extra 1 if the 7 leading fractional bits are |
251 | | // all 1's. |
252 | 0 | m = m.wrapping_add(x_u.wrapping_add(1 << 16).wrapping_shr(23) as i32); |
253 | 0 | x_u = set_exponent_f32(x_u, 0x7F); |
254 | | |
255 | | let v; |
256 | 0 | let u = f32::from_bits(x_u); |
257 | | |
258 | | #[cfg(any( |
259 | | all( |
260 | | any(target_arch = "x86", target_arch = "x86_64"), |
261 | | target_feature = "fma" |
262 | | ), |
263 | | target_arch = "aarch64" |
264 | | ))] |
265 | | { |
266 | | v = f_fmlaf(u, f32::from_bits(LOG_REDUCTION_F32.0[index as usize]), -1.0) as f64; // Exact. |
267 | | } |
268 | | #[cfg(not(any( |
269 | | all( |
270 | | any(target_arch = "x86", target_arch = "x86_64"), |
271 | | target_feature = "fma" |
272 | | ), |
273 | | target_arch = "aarch64" |
274 | | )))] |
275 | | { |
276 | | use crate::logs::log2::LOG_RANGE_REDUCTION; |
277 | 0 | v = f_fmla( |
278 | 0 | u as f64, |
279 | 0 | f64::from_bits(LOG_RANGE_REDUCTION[index as usize]), |
280 | 0 | -1.0, |
281 | 0 | ); // Exact |
282 | | } |
283 | | // Degree-5 polynomial approximation of log generated by Sollya with: |
284 | | // > P = fpminimax(log(1 + x)/x, 4, [|1, D...|], [-2^-8, 2^-7]); |
285 | | const COEFFS: [u64; 4] = [ |
286 | | 0xbfe000000000fe63, |
287 | | 0x3fd555556e963c16, |
288 | | 0xbfd000028dedf986, |
289 | | 0x3fc966681bfda7f7, |
290 | | ]; |
291 | 0 | let v2 = v * v; // Exact |
292 | 0 | let p2 = f_fmla(v, f64::from_bits(COEFFS[3]), f64::from_bits(COEFFS[2])); |
293 | 0 | let p1 = f_fmla(v, f64::from_bits(COEFFS[1]), f64::from_bits(COEFFS[0])); |
294 | 0 | let p0 = f64::from_bits(LOG_R[index as usize]) + v; |
295 | | const LOG_2: f64 = f64::from_bits(0x3fe62e42fefa39ef); |
296 | 0 | let r = f_fmla(m as f64, LOG_2, f_polyeval3(v2, p0, p1, p2)); |
297 | 0 | r as f32 |
298 | 0 | } |
299 | | |
300 | | #[inline] |
301 | 0 | pub(crate) fn fast_logf(x: f32) -> f64 { |
302 | 0 | let mut x_u = x.to_bits(); |
303 | | const E_BIAS: u32 = (1u32 << (8 - 1u32)) - 1u32; |
304 | 0 | let mut m = -(E_BIAS as i32); |
305 | 0 | if x_u < f32::MIN_POSITIVE.to_bits() { |
306 | 0 | // Normalize denormal inputs. |
307 | 0 | x_u = (x * f64::from_bits(0x4160000000000000) as f32).to_bits(); |
308 | 0 | m -= 23; |
309 | 0 | } |
310 | | |
311 | 0 | let mant = x_u & 0x007F_FFFF; |
312 | | // Extract 7 leading fractional bits of the mantissa |
313 | 0 | let index = mant.wrapping_shr(16); |
314 | | // Add unbiased exponent. Add an extra 1 if the 7 leading fractional bits are |
315 | | // all 1's. |
316 | 0 | m = m.wrapping_add(x_u.wrapping_add(1 << 16).wrapping_shr(23) as i32); |
317 | 0 | x_u = set_exponent_f32(x_u, 0x7F); |
318 | | |
319 | | let v; |
320 | 0 | let u = f32::from_bits(x_u); |
321 | | |
322 | | #[cfg(any( |
323 | | all( |
324 | | any(target_arch = "x86", target_arch = "x86_64"), |
325 | | target_feature = "fma" |
326 | | ), |
327 | | target_arch = "aarch64" |
328 | | ))] |
329 | | { |
330 | | v = f_fmlaf(u, f32::from_bits(LOG_REDUCTION_F32.0[index as usize]), -1.0) as f64; // Exact. |
331 | | } |
332 | | #[cfg(not(any( |
333 | | all( |
334 | | any(target_arch = "x86", target_arch = "x86_64"), |
335 | | target_feature = "fma" |
336 | | ), |
337 | | target_arch = "aarch64" |
338 | | )))] |
339 | | { |
340 | | use crate::logs::log2::LOG_RANGE_REDUCTION; |
341 | 0 | v = f_fmla( |
342 | 0 | u as f64, |
343 | 0 | f64::from_bits(LOG_RANGE_REDUCTION[index as usize]), |
344 | 0 | -1.0, |
345 | 0 | ); // Exact |
346 | | } |
347 | | // Degree-5 polynomial approximation of log generated by Sollya with: |
348 | | // > P = fpminimax(log(1 + x)/x, 4, [|1, D...|], [-2^-8, 2^-7]); |
349 | | const COEFFS: [u64; 4] = [ |
350 | | 0xbfe000000000fe63, |
351 | | 0x3fd555556e963c16, |
352 | | 0xbfd000028dedf986, |
353 | | 0x3fc966681bfda7f7, |
354 | | ]; |
355 | 0 | let v2 = v * v; // Exact |
356 | 0 | let p2 = f_fmla(v, f64::from_bits(COEFFS[3]), f64::from_bits(COEFFS[2])); |
357 | 0 | let p1 = f_fmla(v, f64::from_bits(COEFFS[1]), f64::from_bits(COEFFS[0])); |
358 | 0 | let p0 = f64::from_bits(LOG_R[index as usize]) + v; |
359 | | const LOG_2: f64 = f64::from_bits(0x3fe62e42fefa39ef); |
360 | 0 | f_fmla(m as f64, LOG_2, f_polyeval3(v2, p0, p1, p2)) |
361 | 0 | } |
362 | | |
363 | | /// Log for given value for const context. |
364 | | /// This is simplified version just to make a good approximation on const context. |
365 | | #[inline] |
366 | 0 | pub const fn logf(d: f32) -> f32 { |
367 | 0 | let ux = d.to_bits(); |
368 | | #[allow(clippy::collapsible_if)] |
369 | 0 | if ux < (1 << 23) || ux >= 0x7f800000u32 { |
370 | 0 | if ux == 0 || ux >= 0x7f800000u32 { |
371 | 0 | if ux == 0x7f800000u32 { |
372 | 0 | return d; |
373 | 0 | } |
374 | 0 | let ax = ux.wrapping_shl(1); |
375 | 0 | if ax == 0u32 { |
376 | | // -0.0 |
377 | 0 | return f32::NEG_INFINITY; |
378 | 0 | } |
379 | 0 | if ax > 0xff000000u32 { |
380 | 0 | return d + d; |
381 | 0 | } // nan |
382 | 0 | return f32::NAN; |
383 | 0 | } |
384 | 0 | } |
385 | | |
386 | 0 | let mut ix = d.to_bits(); |
387 | | /* reduce x into [sqrt(2)/2, sqrt(2)] */ |
388 | 0 | ix += 0x3f800000 - 0x3f3504f3; |
389 | 0 | let n = (ix >> 23) as i32 - 0x7f; |
390 | 0 | ix = (ix & 0x007fffff) + 0x3f3504f3; |
391 | 0 | let a = f32::from_bits(ix) as f64; |
392 | | |
393 | 0 | let x = (a - 1.) / (a + 1.); |
394 | 0 | let x2 = x * x; |
395 | 0 | let mut u = 0.2222220222147750310e+0; |
396 | 0 | u = fmla(u, x2, 0.2857142871244668543e+0); |
397 | 0 | u = fmla(u, x2, 0.3999999999950960318e+0); |
398 | 0 | u = fmla(u, x2, 0.6666666666666734090e+0); |
399 | 0 | u = fmla(u, x2, 2.); |
400 | 0 | fmla(x, u, std::f64::consts::LN_2 * (n as f64)) as f32 |
401 | 0 | } |
402 | | |
403 | | #[cfg(test)] |
404 | | mod tests { |
405 | | use super::*; |
406 | | |
407 | | #[test] |
408 | | fn test_logf() { |
409 | | assert!( |
410 | | (logf(1f32) - 0f32).abs() < 1e-6, |
411 | | "Invalid result {}", |
412 | | logf(1f32) |
413 | | ); |
414 | | assert!( |
415 | | (logf(5f32) - 1.60943791243410037460f32).abs() < 1e-6, |
416 | | "Invalid result {}", |
417 | | logf(5f32) |
418 | | ); |
419 | | assert_eq!(logf(0.), f32::NEG_INFINITY); |
420 | | assert!(logf(-1.).is_nan()); |
421 | | assert!(logf(f32::NAN).is_nan()); |
422 | | assert!(logf(f32::NEG_INFINITY).is_nan()); |
423 | | assert_eq!(logf(f32::INFINITY), f32::INFINITY); |
424 | | } |
425 | | |
426 | | #[test] |
427 | | fn test_flogf() { |
428 | | assert!( |
429 | | (f_logf(1f32) - 0f32).abs() < 1e-6, |
430 | | "Invalid result {}", |
431 | | f_logf(1f32) |
432 | | ); |
433 | | assert!( |
434 | | (f_logf(5f32) - 1.60943791243410037460f32).abs() < 1e-6, |
435 | | "Invalid result {}", |
436 | | f_logf(5f32) |
437 | | ); |
438 | | assert_eq!(f_logf(0.), f32::NEG_INFINITY); |
439 | | assert!(f_logf(-1.).is_nan()); |
440 | | assert!(f_logf(f32::NAN).is_nan()); |
441 | | assert!(f_logf(f32::NEG_INFINITY).is_nan()); |
442 | | assert_eq!(f_logf(f32::INFINITY), f32::INFINITY); |
443 | | } |
444 | | } |