Coverage Report

Created: 2025-11-05 08:08

next uncovered line (L), next uncovered region (R), next uncovered branch (B)
/rust/registry/src/index.crates.io-1949cf8c6b5b557f/pxfm-0.1.25/src/asin.rs
Line
Count
Source
1
/*
2
 * // Copyright (c) Radzivon Bartoshyk 6/2025. All rights reserved.
3
 * //
4
 * // Redistribution and use in source and binary forms, with or without modification,
5
 * // are permitted provided that the following conditions are met:
6
 * //
7
 * // 1.  Redistributions of source code must retain the above copyright notice, this
8
 * // list of conditions and the following disclaimer.
9
 * //
10
 * // 2.  Redistributions in binary form must reproduce the above copyright notice,
11
 * // this list of conditions and the following disclaimer in the documentation
12
 * // and/or other materials provided with the distribution.
13
 * //
14
 * // 3.  Neither the name of the copyright holder nor the names of its
15
 * // contributors may be used to endorse or promote products derived from
16
 * // this software without specific prior written permission.
17
 * //
18
 * // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
19
 * // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
20
 * // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
21
 * // DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
22
 * // FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
23
 * // DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
24
 * // SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
25
 * // CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
26
 * // OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
27
 * // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
28
 */
29
use crate::asin_eval_dyadic::asin_eval_dyadic;
30
use crate::common::f_fmla;
31
use crate::double_double::DoubleDouble;
32
use crate::dyadic_float::{DyadicFloat128, DyadicSign};
33
use crate::rounding::CpuRound;
34
35
static ASIN_COEFFS: [[u64; 12]; 9] = [
36
    [
37
        0x3ff0000000000000,
38
        0x0000000000000000,
39
        0x3fc5555555555555,
40
        0x3c65555555555555,
41
        0x3fb3333333333333,
42
        0x3fa6db6db6db6db7,
43
        0x3f9f1c71c71c71c7,
44
        0x3f96e8ba2e8ba2e9,
45
        0x3f91c4ec4ec4ec4f,
46
        0x3f8c99999999999a,
47
        0x3f87a87878787878,
48
        0x3f83fde50d79435e,
49
    ],
50
    [
51
        0x3ff015a397cf0f1c,
52
        0xbc8eebd6ccfe3ee3,
53
        0x3fc5f3581be7b08b,
54
        0xbc65df80d0e7237d,
55
        0x3fb4519ddf1ae530,
56
        0x3fa8eb4b6eeb1696,
57
        0x3fa17bc85420fec8,
58
        0x3f9a8e39b5dcad81,
59
        0x3f953f8df127539b,
60
        0x3f91a485a0b0130a,
61
        0x3f8e20e6e4930020,
62
        0x3f8a466a7030f4c9,
63
    ],
64
    [
65
        0x3ff02be9ce0b87cd,
66
        0x3c7e5d09da2e0f04,
67
        0x3fc69ab5325bc359,
68
        0xbc692f480cfede2d,
69
        0x3fb58a4c3097aab1,
70
        0x3fab3db36068dd80,
71
        0x3fa3b94821846250,
72
        0x3f9eedc823765d21,
73
        0x3f998e35d756be6b,
74
        0x3f95ea4f1b32731a,
75
        0x3f9355115764148e,
76
        0x3f916a5853847c91,
77
    ],
78
    [
79
        0x3ff042dc6a65ffbf,
80
        0xbc8c7ea28dce95d1,
81
        0x3fc74c4bd7412f9d,
82
        0x3c5447024c0a3c87,
83
        0x3fb6e09c6d2b72b9,
84
        0x3faddd9dcdae5315,
85
        0x3fa656f1f64058b8,
86
        0x3fa21a42e4437101,
87
        0x3f9eed0350b7edb2,
88
        0x3f9b6bc877e58c52,
89
        0x3f9903a0872eb2a4,
90
        0x3f974da839ddd6d8,
91
    ],
92
    [
93
        0x3ff05a8621feb16b,
94
        0xbc7e5b33b1407c5f,
95
        0x3fc809186c2e57dd,
96
        0xbc33dcb4d6069407,
97
        0x3fb8587d99442dc5,
98
        0x3fb06c23d1e75be3,
99
        0x3fa969024051c67d,
100
        0x3fa54e4f934aacfd,
101
        0x3fa2d60a732dbc9c,
102
        0x3fa149f0c046eac7,
103
        0x3fa053a56dba1fba,
104
        0x3f9f7face3343992,
105
    ],
106
    [
107
        0x3ff072f2b6f1e601,
108
        0xbc92dcbb05419970,
109
        0x3fc8d2397127aeba,
110
        0x3c6ead0c497955fb,
111
        0x3fb9f68df88da518,
112
        0x3fb21ee26a5900d7,
113
        0x3fad08e7081b53a9,
114
        0x3fa938dd661713f7,
115
        0x3fa71b9f299b72e6,
116
        0x3fa5fbc7d2450527,
117
        0x3fa58573247ec325,
118
        0x3fa585a174a6a4ce,
119
    ],
120
    [
121
        0x3ff08c2f1d638e4c,
122
        0x3c7b47c159534a3d,
123
        0x3fc9a8f592078624,
124
        0xbc6ea339145b65cd,
125
        0x3fbbc04165b57aab,
126
        0x3fb410df5f58441d,
127
        0x3fb0ab6bdf5f8f70,
128
        0x3fae0b92eea1fce1,
129
        0x3fac9094e443a971,
130
        0x3fac34651d64bc74,
131
        0x3facaa008d1af080,
132
        0x3fadc165bc0c4fc5,
133
    ],
134
    [
135
        0x3ff0a649a73e61f2,
136
        0x3c874ac0d817e9c7,
137
        0x3fca8ec30dc93890,
138
        0xbc48ab1c0eef300c,
139
        0x3fbdbc11ea95061b,
140
        0x3fb64e371d661328,
141
        0x3fb33e0023b3d895,
142
        0x3fb2042269c243ce,
143
        0x3fb1cce74bda2230,
144
        0x3fb244d425572ce9,
145
        0x3fb34d475c7f1e3e,
146
        0x3fb4d4e653082ad3,
147
    ],
148
    [
149
        0x3ff0c152382d7366,
150
        0xbc9ee6913347c2a6,
151
        0x3fcb8550d62bfb6d,
152
        0xbc6d10aec3f116d5,
153
        0x3fbff1bde0fa3ca0,
154
        0x3fb8e5f3ab69f6a4,
155
        0x3fb656be8b6527ce,
156
        0x3fb5c39755dc041a,
157
        0x3fb661e6ebd40599,
158
        0x3fb7ea3dddee2a4f,
159
        0x3fba4f439abb4869,
160
        0x3fbd9181c0fda658,
161
    ],
162
];
163
164
#[inline]
165
0
pub(crate) fn asin_eval(u: DoubleDouble, err: f64) -> (DoubleDouble, f64) {
166
    // k = round(u * 32).
167
0
    let k = (u.hi * f64::from_bits(0x4040000000000000)).cpu_round();
168
0
    let idx = k as u64;
169
    // y = u - k/32.
170
0
    let y_hi = f_fmla(k, f64::from_bits(0xbfa0000000000000), u.hi); // Exact
171
0
    let y = DoubleDouble::from_exact_add(y_hi, u.lo);
172
0
    let y2 = y.hi * y.hi;
173
    // Add double-double errors in addition to the relative errors from y2.
174
0
    let err = f_fmla(err, y2, f64::from_bits(0x3990000000000000));
175
0
    let coeffs = ASIN_COEFFS[idx as usize];
176
0
    let c0 = DoubleDouble::quick_mult(
177
0
        y,
178
0
        DoubleDouble::new(f64::from_bits(coeffs[3]), f64::from_bits(coeffs[2])),
179
    );
180
0
    let c1 = f_fmla(y.hi, f64::from_bits(coeffs[5]), f64::from_bits(coeffs[4]));
181
0
    let c2 = f_fmla(y.hi, f64::from_bits(coeffs[7]), f64::from_bits(coeffs[6]));
182
0
    let c3 = f_fmla(y.hi, f64::from_bits(coeffs[9]), f64::from_bits(coeffs[8]));
183
0
    let c4 = f_fmla(y.hi, f64::from_bits(coeffs[11]), f64::from_bits(coeffs[10]));
184
185
0
    let y4 = y2 * y2;
186
0
    let d0 = f_fmla(y2, c2, c1);
187
0
    let d1 = f_fmla(y2, c4, c3);
188
189
0
    let mut r = DoubleDouble::from_exact_add(f64::from_bits(coeffs[0]), c0.hi);
190
191
0
    let e1 = f_fmla(y4, d1, d0);
192
193
0
    r.lo = f_fmla(y2, e1, f64::from_bits(coeffs[1]) + c0.lo + r.lo);
194
195
0
    (r, err)
196
0
}
197
198
/// Computes asin(x)
199
///
200
/// Max found ULP 0.5
201
0
pub fn f_asin(x: f64) -> f64 {
202
0
    let x_e = (x.to_bits() >> 52) & 0x7ff;
203
    const E_BIAS: u64 = (1u64 << (11 - 1u64)) - 1u64;
204
205
0
    let x_abs = f64::from_bits(x.to_bits() & 0x7fff_ffff_ffff_ffff);
206
207
    // |x| < 0.5.
208
0
    if x_e < E_BIAS - 1 {
209
        // |x| < 2^-26.
210
0
        if x_e < E_BIAS - 26 {
211
            // When |x| < 2^-26, the relative error of the approximation asin(x) ~ x
212
            // is:
213
            //   |asin(x) - x| / |asin(x)| < |x^3| / (6|x|)
214
            //                             = x^2 / 6
215
            //                             < 2^-54
216
            //                             < epsilon(1)/2.
217
            //   = x otherwise. ,
218
0
            if x.abs() == 0. {
219
0
                return x;
220
0
            }
221
            // Get sign(x) * min_normal.
222
0
            let eps = f64::copysign(f64::MIN_POSITIVE, x);
223
0
            let normalize_const = if x_e == 0 { eps } else { 0.0 };
224
0
            let scaled_normal =
225
0
                f_fmla(x + normalize_const, f64::from_bits(0x4350000000000000), eps);
226
0
            return f_fmla(
227
0
                scaled_normal,
228
0
                f64::from_bits(0x3c90000000000000),
229
0
                -normalize_const,
230
            );
231
0
        }
232
233
0
        let x_sq = DoubleDouble::from_exact_mult(x, x);
234
0
        let err = x_abs * f64::from_bits(0x3cc0000000000000);
235
        // Polynomial approximation:
236
        //   p ~ asin(x)/x
237
238
0
        let (p, err) = asin_eval(x_sq, err);
239
        // asin(x) ~ x * (ASIN_COEFFS[idx][0] + p)
240
0
        let r0 = DoubleDouble::from_exact_mult(x, p.hi);
241
0
        let r_lo = f_fmla(x, p.lo, r0.lo);
242
243
0
        let r_upper = r0.hi + (r_lo + err);
244
0
        let r_lower = r0.hi + (r_lo - err);
245
246
0
        if r_upper == r_lower {
247
0
            return r_upper;
248
0
        }
249
250
        // Ziv's accuracy test failed, perform 128-bit calculation.
251
252
        // Recalculate mod 1/64.
253
0
        let idx = (x_sq.hi * f64::from_bits(0x4050000000000000)).cpu_round() as usize;
254
255
        // Get x^2 - idx/64 exactly.  When FMA is available, double-double
256
        // multiplication will be correct for all rounding modes. Otherwise, we use
257
        // Float128 directly.
258
0
        let x_f128 = DyadicFloat128::new_from_f64(x);
259
260
        let u: DyadicFloat128;
261
        #[cfg(any(
262
            all(
263
                any(target_arch = "x86", target_arch = "x86_64"),
264
                target_feature = "fma"
265
            ),
266
            target_arch = "aarch64"
267
        ))]
268
        {
269
            // u = x^2 - idx/64
270
            let u_hi = DyadicFloat128::new_from_f64(f_fmla(
271
                idx as f64,
272
                f64::from_bits(0xbf90000000000000),
273
                x_sq.hi,
274
            ));
275
            u = u_hi.quick_add(&DyadicFloat128::new_from_f64(x_sq.lo));
276
        }
277
278
        #[cfg(not(any(
279
            all(
280
                any(target_arch = "x86", target_arch = "x86_64"),
281
                target_feature = "fma"
282
            ),
283
            target_arch = "aarch64"
284
        )))]
285
0
        {
286
0
            let x_sq_f128 = x_f128.quick_mul(&x_f128);
287
0
            u = x_sq_f128.quick_add(&DyadicFloat128::new_from_f64(
288
0
                idx as f64 * (f64::from_bits(0xbf90000000000000)),
289
0
            ));
290
0
        }
291
292
0
        let p_f128 = asin_eval_dyadic(u, idx);
293
0
        let r = x_f128.quick_mul(&p_f128);
294
0
        return r.fast_as_f64();
295
0
    }
296
297
    const PI_OVER_TWO: DoubleDouble = DoubleDouble::new(
298
        f64::from_bits(0x3c91a62633145c07),
299
        f64::from_bits(0x3ff921fb54442d18),
300
    );
301
302
0
    let x_sign = if x.is_sign_negative() { -1.0 } else { 1.0 };
303
304
    // |x| >= 1
305
0
    if x_e >= E_BIAS {
306
        // x = +-1, asin(x) = +- pi/2
307
0
        if x_abs == 1.0 {
308
            // return +- pi/2
309
0
            return f_fmla(x_sign, PI_OVER_TWO.hi, x_sign * PI_OVER_TWO.lo);
310
0
        }
311
        // |x| > 1, return NaN.
312
0
        if x.is_nan() {
313
0
            return x;
314
0
        }
315
0
        return f64::NAN;
316
0
    }
317
318
    // u = (1 - |x|)/2
319
0
    let u = f_fmla(x_abs, -0.5, 0.5);
320
    // v_hi + v_lo ~ sqrt(u).
321
    // Let:
322
    //   h = u - v_hi^2 = (sqrt(u) - v_hi) * (sqrt(u) + v_hi)
323
    // Then:
324
    //   sqrt(u) = v_hi + h / (sqrt(u) + v_hi)
325
    //           ~ v_hi + h / (2 * v_hi)
326
    // So we can use:
327
    //   v_lo = h / (2 * v_hi).
328
    // Then,
329
    //   asin(x) ~ pi/2 - 2*(v_hi + v_lo) * P(u)
330
0
    let v_hi = u.sqrt();
331
    let h;
332
    #[cfg(any(
333
        all(
334
            any(target_arch = "x86", target_arch = "x86_64"),
335
            target_feature = "fma"
336
        ),
337
        target_arch = "aarch64"
338
    ))]
339
    {
340
        h = f_fmla(v_hi, -v_hi, u);
341
    }
342
    #[cfg(not(any(
343
        all(
344
            any(target_arch = "x86", target_arch = "x86_64"),
345
            target_feature = "fma"
346
        ),
347
        target_arch = "aarch64"
348
    )))]
349
0
    {
350
0
        let v_hi_sq = DoubleDouble::from_exact_mult(v_hi, v_hi);
351
0
        h = (u - v_hi_sq.hi) - v_hi_sq.lo;
352
0
    }
353
    // Scale v_lo and v_hi by 2 from the formula:
354
    //   vh = v_hi * 2
355
    //   vl = 2*v_lo = h / v_hi.
356
0
    let vh = v_hi * 2.0;
357
0
    let vl = h / v_hi;
358
359
    // Polynomial approximation:
360
    //   p ~ asin(sqrt(u))/sqrt(u)
361
0
    let err = vh * f64::from_bits(0x3cc0000000000000);
362
363
0
    let (p, err) = asin_eval(DoubleDouble::new(0.0, u), err);
364
365
    // Perform computations in double-double arithmetic:
366
    //   asin(x) = pi/2 - (v_hi + v_lo) * (ASIN_COEFFS[idx][0] + p)
367
0
    let r0 = DoubleDouble::quick_mult(DoubleDouble::new(vl, vh), p);
368
0
    let r = DoubleDouble::from_exact_add(PI_OVER_TWO.hi, -r0.hi);
369
370
0
    let r_lo = PI_OVER_TWO.lo - r0.lo + r.lo;
371
372
    let (r_upper, r_lower);
373
374
    #[cfg(any(
375
        all(
376
            any(target_arch = "x86", target_arch = "x86_64"),
377
            target_feature = "fma"
378
        ),
379
        target_arch = "aarch64"
380
    ))]
381
    {
382
        r_upper = f_fmla(r.hi, x_sign, f_fmla(r_lo, x_sign, err));
383
        r_lower = f_fmla(r.hi, x_sign, f_fmla(r_lo, x_sign, -err));
384
    }
385
    #[cfg(not(any(
386
        all(
387
            any(target_arch = "x86", target_arch = "x86_64"),
388
            target_feature = "fma"
389
        ),
390
        target_arch = "aarch64"
391
    )))]
392
0
    {
393
0
        let r_lo = r_lo * x_sign;
394
0
        let r_hi = r.hi * x_sign;
395
0
        r_upper = r_hi + (r_lo + err);
396
0
        r_lower = r.hi + (r_lo - err);
397
0
    }
398
399
0
    if r_upper == r_lower {
400
0
        return r_upper;
401
0
    }
402
403
    // Ziv's accuracy test failed, we redo the computations in Float128.
404
    // Recalculate mod 1/64.
405
0
    let idx = (u * f64::from_bits(0x4050000000000000)).cpu_round() as usize;
406
407
    // After the first step of Newton-Raphson approximating v = sqrt(u), we have
408
    // that:
409
    //   sqrt(u) = v_hi + h / (sqrt(u) + v_hi)
410
    //      v_lo = h / (2 * v_hi)
411
    // With error:
412
    //   sqrt(u) - (v_hi + v_lo) = h * ( 1/(sqrt(u) + v_hi) - 1/(2*v_hi) )
413
    //                           = -h^2 / (2*v * (sqrt(u) + v)^2).
414
    // Since:
415
    //   (sqrt(u) + v_hi)^2 ~ (2sqrt(u))^2 = 4u,
416
    // we can add another correction term to (v_hi + v_lo) that is:
417
    //   v_ll = -h^2 / (2*v_hi * 4u)
418
    //        = -v_lo * (h / 4u)
419
    //        = -vl * (h / 8u),
420
    // making the errors:
421
    //   sqrt(u) - (v_hi + v_lo + v_ll) = O(h^3)
422
    // well beyond 128-bit precision needed.
423
424
    // Get the rounding error of vl = 2 * v_lo ~ h / vh
425
    // Get full product of vh * vl
426
    let vl_lo;
427
    #[cfg(any(
428
        all(
429
            any(target_arch = "x86", target_arch = "x86_64"),
430
            target_feature = "fma"
431
        ),
432
        target_arch = "aarch64"
433
    ))]
434
    {
435
        vl_lo = f_fmla(-v_hi, vl, h) / v_hi;
436
    }
437
    #[cfg(not(any(
438
        all(
439
            any(target_arch = "x86", target_arch = "x86_64"),
440
            target_feature = "fma"
441
        ),
442
        target_arch = "aarch64"
443
    )))]
444
0
    {
445
0
        let vh_vl = DoubleDouble::from_exact_mult(v_hi, vl);
446
0
        vl_lo = ((h - vh_vl.hi) - vh_vl.lo) / v_hi;
447
0
    }
448
449
    // vll = 2*v_ll = -vl * (h / (4u)).
450
0
    let t = h * (-0.25) / u;
451
0
    let vll = f_fmla(vl, t, vl_lo);
452
    // m_v = -(v_hi + v_lo + v_ll).
453
0
    let mv0 = DyadicFloat128::new_from_f64(vl) + DyadicFloat128::new_from_f64(vll);
454
0
    let mut m_v = DyadicFloat128::new_from_f64(vh) + mv0;
455
0
    m_v.sign = DyadicSign::Neg;
456
457
    // Perform computations in Float128:
458
    //   asin(x) = pi/2 - (v_hi + v_lo + vll) * P(u).
459
0
    let y_f128 =
460
0
        DyadicFloat128::new_from_f64(f_fmla(idx as f64, f64::from_bits(0xbf90000000000000), u));
461
462
    const PI_OVER_TWO_F128: DyadicFloat128 = DyadicFloat128 {
463
        sign: DyadicSign::Pos,
464
        exponent: -127,
465
        mantissa: 0xc90fdaa2_2168c234_c4c6628b_80dc1cd1_u128,
466
    };
467
468
0
    let p_f128 = asin_eval_dyadic(y_f128, idx);
469
0
    let r0_f128 = m_v.quick_mul(&p_f128);
470
0
    let mut r_f128 = PI_OVER_TWO_F128.quick_add(&r0_f128);
471
472
0
    if x.is_sign_negative() {
473
0
        r_f128.sign = DyadicSign::Neg;
474
0
    }
475
476
0
    r_f128.fast_as_f64()
477
0
}
478
479
#[cfg(test)]
480
mod tests {
481
    use super::*;
482
483
    #[test]
484
    fn f_asin_test() {
485
        assert_eq!(f_asin(-0.4), -0.41151684606748806);
486
        assert_eq!(f_asin(-0.8), -0.9272952180016123);
487
        assert_eq!(f_asin(0.3), 0.3046926540153975);
488
        assert_eq!(f_asin(0.6), 0.6435011087932844);
489
    }
490
}