Coverage Report

Created: 2025-11-05 08:08

next uncovered line (L), next uncovered region (R), next uncovered branch (B)
/rust/registry/src/index.crates.io-1949cf8c6b5b557f/pxfm-0.1.25/src/sin_helper.rs
Line
Count
Source
1
/*
2
 * // Copyright (c) Radzivon Bartoshyk 7/2025. All rights reserved.
3
 * //
4
 * // Redistribution and use in source and binary forms, with or without modification,
5
 * // are permitted provided that the following conditions are met:
6
 * //
7
 * // 1.  Redistributions of source code must retain the above copyright notice, this
8
 * // list of conditions and the following disclaimer.
9
 * //
10
 * // 2.  Redistributions in binary form must reproduce the above copyright notice,
11
 * // this list of conditions and the following disclaimer in the documentation
12
 * // and/or other materials provided with the distribution.
13
 * //
14
 * // 3.  Neither the name of the copyright holder nor the names of its
15
 * // contributors may be used to endorse or promote products derived from
16
 * // this software without specific prior written permission.
17
 * //
18
 * // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
19
 * // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
20
 * // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
21
 * // DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
22
 * // FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
23
 * // DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
24
 * // SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
25
 * // CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
26
 * // OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
27
 * // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
28
 */
29
use crate::double_double::DoubleDouble;
30
use crate::dyadic_float::DyadicFloat128;
31
use crate::rounding::CpuRound;
32
use crate::sin::{SinCos, get_sin_k_rational, sincos_eval};
33
use crate::sin_table::SIN_K_PI_OVER_128;
34
use crate::sincos_dyadic::{range_reduction_small_f128_f128, sincos_eval_dyadic};
35
36
#[inline]
37
0
fn sin_eval_dd(z: DoubleDouble) -> DoubleDouble {
38
    const SIN_C: [(u64, u64); 5] = [
39
        (0x0000000000000000, 0x3ff0000000000000),
40
        (0xbc65555555555555, 0xbfc5555555555555),
41
        (0x3c01111111111111, 0x3f81111111111111),
42
        (0xbb6a01a01a01a01a, 0xbf2a01a01a01a01a),
43
        (0xbb6c154f8ddc6c00, 0x3ec71de3a556c734),
44
    ];
45
0
    let x2 = DoubleDouble::quick_mult(z, z);
46
0
    let mut p = DoubleDouble::mul_add(
47
0
        x2,
48
0
        DoubleDouble::from_bit_pair(SIN_C[4]),
49
0
        DoubleDouble::from_bit_pair(SIN_C[3]),
50
    );
51
52
0
    p = DoubleDouble::mul_add(x2, p, DoubleDouble::from_bit_pair(SIN_C[2]));
53
0
    p = DoubleDouble::mul_add(x2, p, DoubleDouble::from_bit_pair(SIN_C[1]));
54
0
    p = DoubleDouble::mul_add(x2, p, DoubleDouble::from_bit_pair(SIN_C[0]));
55
0
    DoubleDouble::quick_mult(p, z)
56
0
}
57
58
0
pub(crate) fn sin_dd_small(z: DoubleDouble) -> DoubleDouble {
59
0
    let x_e = (z.hi.to_bits() >> 52) & 0x7ff;
60
    const E_BIAS: u64 = (1u64 << (11 - 1u64)) - 1u64;
61
62
0
    if x_e < E_BIAS - 8 {
63
0
        return sin_eval_dd(z);
64
0
    }
65
66
0
    let (u_f128, k) = range_reduction_small_dd(z);
67
68
0
    let sin_cos = sincos_eval_dd(u_f128);
69
70
    // Fast look up version, but needs 256-entry table.
71
    // cos(k * pi/128) = sin(k * pi/128 + pi/2) = sin((k + 64) * pi/128).
72
0
    let sk = SIN_K_PI_OVER_128[(k & 255) as usize];
73
0
    let ck = SIN_K_PI_OVER_128[((k.wrapping_add(64)) & 255) as usize];
74
75
0
    let sin_k = DoubleDouble::from_bit_pair(sk);
76
0
    let cos_k = DoubleDouble::from_bit_pair(ck);
77
78
0
    let sin_k_cos_y = DoubleDouble::quick_mult(sin_cos.v_cos, sin_k);
79
0
    let cos_k_sin_y = DoubleDouble::quick_mult(sin_cos.v_sin, cos_k);
80
81
    // sin_k_cos_y is always >> cos_k_sin_y
82
0
    let mut rr = DoubleDouble::from_exact_add(sin_k_cos_y.hi, cos_k_sin_y.hi);
83
0
    rr.lo += sin_k_cos_y.lo + cos_k_sin_y.lo;
84
0
    rr
85
0
}
86
87
0
pub(crate) fn sin_dd_small_fast(z: DoubleDouble) -> DoubleDouble {
88
0
    let x_e = (z.hi.to_bits() >> 52) & 0x7ff;
89
    const E_BIAS: u64 = (1u64 << (11 - 1u64)) - 1u64;
90
91
0
    if x_e < E_BIAS - 8 {
92
0
        return sin_eval_dd(z);
93
0
    }
94
95
0
    let (u_f128, k) = range_reduction_small_dd(z);
96
97
0
    let sin_cos = sincos_eval(u_f128);
98
99
    // Fast look up version, but needs 256-entry table.
100
    // cos(k * pi/128) = sin(k * pi/128 + pi/2) = sin((k + 64) * pi/128).
101
0
    let sk = SIN_K_PI_OVER_128[(k & 255) as usize];
102
0
    let ck = SIN_K_PI_OVER_128[((k.wrapping_add(64)) & 255) as usize];
103
104
0
    let sin_k = DoubleDouble::from_bit_pair(sk);
105
0
    let cos_k = DoubleDouble::from_bit_pair(ck);
106
107
0
    let sin_k_cos_y = DoubleDouble::quick_mult(sin_cos.v_cos, sin_k);
108
0
    let cos_k_sin_y = DoubleDouble::quick_mult(sin_cos.v_sin, cos_k);
109
110
    // sin_k_cos_y is always >> cos_k_sin_y
111
0
    let mut rr = DoubleDouble::from_exact_add(sin_k_cos_y.hi, cos_k_sin_y.hi);
112
0
    rr.lo += sin_k_cos_y.lo + cos_k_sin_y.lo;
113
0
    rr
114
0
}
115
116
#[inline]
117
0
fn cos_eval_dd(z: DoubleDouble) -> DoubleDouble {
118
0
    let x2 = DoubleDouble::quick_mult(z, z);
119
    const COS_C: [(u64, u64); 5] = [
120
        (0x0000000000000000, 0x3ff0000000000000),
121
        (0x0000000000000000, 0xbfe0000000000000),
122
        (0x3c45555555555555, 0x3fa5555555555555),
123
        (0x3bef49f49f49f49f, 0xbf56c16c16c16c17),
124
        (0x3b3a01a01a01a01a, 0x3efa01a01a01a01a),
125
    ];
126
127
0
    let mut p = DoubleDouble::mul_add(
128
0
        x2,
129
0
        DoubleDouble::from_bit_pair(COS_C[4]),
130
0
        DoubleDouble::from_bit_pair(COS_C[3]),
131
    );
132
133
0
    p = DoubleDouble::mul_add(x2, p, DoubleDouble::from_bit_pair(COS_C[2]));
134
0
    p = DoubleDouble::mul_add(x2, p, DoubleDouble::from_bit_pair(COS_C[1]));
135
0
    p = DoubleDouble::mul_add(x2, p, DoubleDouble::from_bit_pair(COS_C[0]));
136
137
0
    p
138
0
}
139
140
0
pub(crate) fn cos_dd_small(z: DoubleDouble) -> DoubleDouble {
141
0
    let x_e = (z.hi.to_bits() >> 52) & 0x7ff;
142
    const E_BIAS: u64 = (1u64 << (11 - 1u64)) - 1u64;
143
144
0
    if x_e < E_BIAS - 8 {
145
0
        return cos_eval_dd(z);
146
0
    }
147
148
0
    let (u_f128, k) = range_reduction_small_dd(z);
149
150
0
    let sin_cos = sincos_eval_dd(u_f128);
151
152
    // cos(k * pi/128) = sin(k * pi/128 + pi/2) = sin((k + 64) * pi/128).
153
0
    let sk = SIN_K_PI_OVER_128[(k.wrapping_add(128) & 255) as usize];
154
0
    let ck = SIN_K_PI_OVER_128[((k.wrapping_add(64)) & 255) as usize];
155
0
    let msin_k = DoubleDouble::from_bit_pair(sk);
156
0
    let cos_k = DoubleDouble::from_bit_pair(ck);
157
158
0
    let cos_k_cos_y = DoubleDouble::quick_mult(sin_cos.v_cos, cos_k);
159
0
    let cos_k_msin_y = DoubleDouble::quick_mult(sin_cos.v_sin, msin_k);
160
161
    // cos_k_cos_y is always >> cos_k_msin_y
162
0
    let mut rr = DoubleDouble::from_exact_add(cos_k_cos_y.hi, cos_k_msin_y.hi);
163
0
    rr.lo += cos_k_cos_y.lo + cos_k_msin_y.lo;
164
165
0
    rr
166
0
}
167
168
0
pub(crate) fn cos_dd_small_fast(z: DoubleDouble) -> DoubleDouble {
169
0
    let x_e = (z.hi.to_bits() >> 52) & 0x7ff;
170
    const E_BIAS: u64 = (1u64 << (11 - 1u64)) - 1u64;
171
172
0
    if x_e < E_BIAS - 8 {
173
0
        return cos_eval_dd(z);
174
0
    }
175
176
0
    let (u_f128, k) = range_reduction_small_dd(z);
177
178
0
    let sin_cos = sincos_eval(u_f128);
179
180
    // cos(k * pi/128) = sin(k * pi/128 + pi/2) = sin((k + 64) * pi/128).
181
0
    let sk = SIN_K_PI_OVER_128[(k.wrapping_add(128) & 255) as usize];
182
0
    let ck = SIN_K_PI_OVER_128[((k.wrapping_add(64)) & 255) as usize];
183
0
    let msin_k = DoubleDouble::from_bit_pair(sk);
184
0
    let cos_k = DoubleDouble::from_bit_pair(ck);
185
186
0
    let cos_k_cos_y = DoubleDouble::quick_mult(sin_cos.v_cos, cos_k);
187
0
    let cos_k_msin_y = DoubleDouble::quick_mult(sin_cos.v_sin, msin_k);
188
189
    // cos_k_cos_y is always >> cos_k_msin_y
190
0
    let mut rr = DoubleDouble::from_exact_add(cos_k_cos_y.hi, cos_k_msin_y.hi);
191
0
    rr.lo += cos_k_cos_y.lo + cos_k_msin_y.lo;
192
193
0
    rr
194
0
}
195
196
0
pub(crate) fn sin_f128_small(z: DyadicFloat128) -> DyadicFloat128 {
197
0
    let (u_f128, k) = range_reduction_small_f128_f128(z);
198
199
0
    let sin_cos = sincos_eval_dyadic(&u_f128);
200
    // cos(k * pi/128) = sin(k * pi/128 + pi/2) = sin((k + 64) * pi/128).
201
0
    let sin_k_f128 = get_sin_k_rational(k as u64);
202
0
    let cos_k_f128 = get_sin_k_rational((k as u64).wrapping_add(64));
203
204
    // sin(x) = sin(k * pi/128 + u)
205
    //        = sin(u) * cos(k*pi/128) + cos(u) * sin(k*pi/128)
206
0
    (sin_k_f128 * sin_cos.v_cos) + (cos_k_f128 * sin_cos.v_sin)
207
0
}
208
209
0
pub(crate) fn cos_f128_small(z: DyadicFloat128) -> DyadicFloat128 {
210
0
    let (u_f128, k) = range_reduction_small_f128_f128(z);
211
212
0
    let sin_cos = sincos_eval_dyadic(&u_f128);
213
    // -sin(k * pi/128) = sin((k + 128) * pi/128)
214
    // cos(k * pi/128) = sin(k * pi/128 + pi/2) = sin((k + 64) * pi/128).
215
0
    let msin_k_f128 = get_sin_k_rational((k as u64).wrapping_add(128));
216
0
    let cos_k_f128 = get_sin_k_rational((k as u64).wrapping_add(64));
217
218
    // cos(x) = cos((k * pi/128 + u)
219
    //        = cos(u) * cos(k*pi/128) - sin(u) * sin(k*pi/128)
220
0
    (cos_k_f128 * sin_cos.v_cos) + (msin_k_f128 * sin_cos.v_sin)
221
0
}
222
223
#[inline]
224
0
pub(crate) fn sincos_eval_dd(u: DoubleDouble) -> SinCos {
225
    const SIN_C: [(u64, u64); 5] = [
226
        (0x0000000000000000, 0x3ff0000000000000),
227
        (0xbc65555555555555, 0xbfc5555555555555),
228
        (0x3c01111111111111, 0x3f81111111111111),
229
        (0xbb6a01a01a01a01a, 0xbf2a01a01a01a01a),
230
        (0xbb6c154f8ddc6c00, 0x3ec71de3a556c734),
231
    ];
232
0
    let x2 = DoubleDouble::quick_mult(u, u);
233
0
    let mut p = DoubleDouble::quick_mul_add(
234
0
        x2,
235
0
        DoubleDouble::from_bit_pair(SIN_C[4]),
236
0
        DoubleDouble::from_bit_pair(SIN_C[3]),
237
    );
238
239
0
    p = DoubleDouble::quick_mul_add(x2, p, DoubleDouble::from_bit_pair(SIN_C[2]));
240
0
    p = DoubleDouble::quick_mul_add(x2, p, DoubleDouble::from_bit_pair(SIN_C[1]));
241
0
    p = DoubleDouble::quick_mul_add(x2, p, DoubleDouble::from_bit_pair(SIN_C[0]));
242
0
    let sin_u = DoubleDouble::quick_mult(p, u);
243
244
    const COS_C: [(u64, u64); 5] = [
245
        (0x0000000000000000, 0x3ff0000000000000),
246
        (0x0000000000000000, 0xbfe0000000000000),
247
        (0x3c45555555555555, 0x3fa5555555555555),
248
        (0x3bef49f49f49f49f, 0xbf56c16c16c16c17),
249
        (0x3b3a01a01a01a01a, 0x3efa01a01a01a01a),
250
    ];
251
252
0
    let mut p = DoubleDouble::quick_mul_add(
253
0
        x2,
254
0
        DoubleDouble::from_bit_pair(COS_C[4]),
255
0
        DoubleDouble::from_bit_pair(COS_C[3]),
256
    );
257
258
0
    p = DoubleDouble::quick_mul_add(x2, p, DoubleDouble::from_bit_pair(COS_C[2]));
259
0
    p = DoubleDouble::quick_mul_add(x2, p, DoubleDouble::from_bit_pair(COS_C[1]));
260
0
    p = DoubleDouble::quick_mul_add(x2, p, DoubleDouble::from_bit_pair(COS_C[0]));
261
262
0
    let cos_u = p;
263
0
    SinCos {
264
0
        v_sin: sin_u,
265
0
        v_cos: cos_u,
266
0
        err: 0.,
267
0
    }
268
0
}
269
270
#[inline]
271
0
pub(crate) fn range_reduction_small_dd(x: DoubleDouble) -> (DoubleDouble, i64) {
272
    const MPI_OVER_128: [u64; 5] = [
273
        0xbf9921fb54400000,
274
        0xbd70b4611a600000,
275
        0xbb43198a2e000000,
276
        0xb91b839a25200000,
277
        0xb6b2704453400000,
278
    ];
279
    const ONE_TWENTY_EIGHT_OVER_PI_D: f64 = f64::from_bits(0x40445f306dc9c883);
280
0
    let prod_hi = DoubleDouble::quick_mult_f64(x, ONE_TWENTY_EIGHT_OVER_PI_D);
281
0
    let kd = prod_hi.to_f64().cpu_round();
282
283
0
    let p_hi = f64::from_bits(MPI_OVER_128[0]); // hi
284
0
    let p_mid = f64::from_bits(MPI_OVER_128[1]); // mid
285
0
    let p_lo = f64::from_bits(MPI_OVER_128[2]); // lo
286
0
    let p_lo_lo = f64::from_bits(MPI_OVER_128[3]); // lo_lo
287
288
0
    let mut q = DoubleDouble::f64_mul_f64_add(kd, p_hi, x);
289
0
    q = DoubleDouble::f64_mul_f64_add(kd, p_mid, q);
290
0
    q = DoubleDouble::f64_mul_f64_add(kd, p_lo, q);
291
0
    q = DoubleDouble::f64_mul_f64_add(kd, p_lo_lo, q);
292
293
0
    (q, unsafe { kd.to_int_unchecked::<i64>() })
294
0
}