/rust/registry/src/index.crates.io-1949cf8c6b5b557f/pxfm-0.1.25/src/tangent/cot.rs
Line | Count | Source |
1 | | /* |
2 | | * // Copyright (c) Radzivon Bartoshyk 7/2025. All rights reserved. |
3 | | * // |
4 | | * // Redistribution and use in source and binary forms, with or without modification, |
5 | | * // are permitted provided that the following conditions are met: |
6 | | * // |
7 | | * // 1. Redistributions of source code must retain the above copyright notice, this |
8 | | * // list of conditions and the following disclaimer. |
9 | | * // |
10 | | * // 2. Redistributions in binary form must reproduce the above copyright notice, |
11 | | * // this list of conditions and the following disclaimer in the documentation |
12 | | * // and/or other materials provided with the distribution. |
13 | | * // |
14 | | * // 3. Neither the name of the copyright holder nor the names of its |
15 | | * // contributors may be used to endorse or promote products derived from |
16 | | * // this software without specific prior written permission. |
17 | | * // |
18 | | * // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" |
19 | | * // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
20 | | * // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE |
21 | | * // DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE |
22 | | * // FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL |
23 | | * // DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR |
24 | | * // SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER |
25 | | * // CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, |
26 | | * // OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE |
27 | | * // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
28 | | */ |
29 | | use crate::bits::EXP_MASK; |
30 | | use crate::common::f_fmla; |
31 | | use crate::double_double::DoubleDouble; |
32 | | use crate::sin::range_reduction_small; |
33 | | use crate::sincos_reduce::LargeArgumentReduction; |
34 | | use crate::tangent::tan::{tan_eval, tan_eval_dd}; |
35 | | use crate::tangent::tanpi_table::TAN_K_PI_OVER_128; |
36 | | |
37 | | #[cold] |
38 | 0 | fn cot_accurate(y: DoubleDouble, tan_k: DoubleDouble) -> f64 { |
39 | | // Computes tan(x) through identities |
40 | | // tan(a+b) = (tan(a) + tan(b)) / (1 - tan(a)tan(b)) = (tan(y) + tan(k*pi/128)) / (1 - tan(y)*tan(k*pi/128)) |
41 | 0 | let tan_y = tan_eval_dd(y); |
42 | | |
43 | | // num = tan(y) + tan(k*pi/64) |
44 | 0 | let num_dd = DoubleDouble::full_dd_add(tan_y, tan_k); |
45 | | // den = 1 - tan(y)*tan(k*pi/64) |
46 | 0 | let den_dd = DoubleDouble::mul_add_f64(tan_y, -tan_k, 1.); |
47 | | |
48 | 0 | let cot_x = DoubleDouble::div(den_dd, num_dd); |
49 | 0 | cot_x.to_f64() |
50 | 0 | } |
51 | | |
52 | | /// Cotangent in double precision |
53 | | /// |
54 | | /// ULP 0.5 |
55 | 0 | pub fn f_cot(x: f64) -> f64 { |
56 | 0 | let x_e = (x.to_bits() >> 52) & 0x7ff; |
57 | | const E_BIAS: u64 = (1u64 << (11 - 1u64)) - 1u64; |
58 | | |
59 | | let y: DoubleDouble; |
60 | | let k; |
61 | | |
62 | 0 | let mut argument_reduction = LargeArgumentReduction::default(); |
63 | | |
64 | 0 | if x_e < E_BIAS + 16 { |
65 | | // |x| < 2^16 |
66 | 0 | if x_e < E_BIAS - 7 { |
67 | | // |x| < 2^-7 |
68 | 0 | if x_e < E_BIAS - 27 { |
69 | | // |x| < 2^-27, |cot(x) - x| < ulp(x)/2. |
70 | 0 | if x == 0.0 { |
71 | | // Signed zeros. |
72 | 0 | return if x.is_sign_negative() { |
73 | 0 | f64::NEG_INFINITY |
74 | | } else { |
75 | 0 | f64::INFINITY |
76 | | }; |
77 | 0 | } |
78 | | |
79 | 0 | if x_e < E_BIAS - 53 { |
80 | 0 | return 1. / x; |
81 | 0 | } |
82 | | |
83 | 0 | let dx = DoubleDouble::from_quick_recip(x); |
84 | | // taylor order 3 |
85 | 0 | return DoubleDouble::f64_mul_f64_add(x, f64::from_bits(0xbfd5555555555555), dx) |
86 | 0 | .to_f64(); |
87 | 0 | } |
88 | | // No range reduction needed. |
89 | 0 | k = 0; |
90 | 0 | y = DoubleDouble::new(0., x); |
91 | 0 | } else { |
92 | 0 | // Small range reduction. |
93 | 0 | (y, k) = range_reduction_small(x); |
94 | 0 | } |
95 | | } else { |
96 | | // Inf or NaN |
97 | 0 | if x_e > 2 * E_BIAS { |
98 | 0 | if x.is_nan() { |
99 | 0 | return f64::NAN; |
100 | 0 | } |
101 | | // tan(+-Inf) = NaN |
102 | 0 | return x + f64::NAN; |
103 | 0 | } |
104 | | |
105 | | // Large range reduction. |
106 | 0 | (k, y) = argument_reduction.reduce(x); |
107 | | } |
108 | | |
109 | 0 | let (tan_y, err) = tan_eval(y); |
110 | | |
111 | | // Computes tan(x) through identities. |
112 | | // tan(a+b) = (tan(a) + tan(b)) / (1 - tan(a)tan(b)) = (tan(y) + tan(k*pi/128)) / (1 - tan(y)*tan(k*pi/128)) |
113 | 0 | let tan_k = DoubleDouble::from_bit_pair(TAN_K_PI_OVER_128[(k & 255) as usize]); |
114 | | |
115 | | // num = tan(y) + tan(k*pi/64) |
116 | 0 | let num_dd = DoubleDouble::add(tan_y, tan_k); |
117 | | // den = 1 - tan(y)*tan(k*pi/64) |
118 | 0 | let den_dd = DoubleDouble::mul_add_f64(tan_y, -tan_k, 1.); |
119 | | |
120 | | // num and den shifted for cot |
121 | 0 | let cot_x = DoubleDouble::div(den_dd, num_dd); |
122 | | |
123 | | // Simple error bound: |1 / den_dd| < 2^(1 + floor(-log2(den_dd)))). |
124 | 0 | let den_inv = ((E_BIAS + 1) << (52 + 1)) - (den_dd.hi.to_bits() & EXP_MASK); |
125 | | // For tan_x = (num_dd + err) / (den_dd + err), the error is bounded by: |
126 | | // | tan_x - num_dd / den_dd | <= err * ( 1 + | tan_x * den_dd | ). |
127 | 0 | let tan_err = err * f_fmla(f64::from_bits(den_inv), cot_x.hi.abs(), 1.0); |
128 | | |
129 | 0 | let err_higher = cot_x.lo + tan_err; |
130 | 0 | let err_lower = cot_x.lo - tan_err; |
131 | | |
132 | 0 | let tan_upper = cot_x.hi + err_higher; |
133 | 0 | let tan_lower = cot_x.hi + err_lower; |
134 | | |
135 | | // Ziv_s rounding test. |
136 | 0 | if tan_upper == tan_lower { |
137 | 0 | return tan_upper; |
138 | 0 | } |
139 | | |
140 | 0 | cot_accurate(y, tan_k) |
141 | 0 | } |
142 | | |
143 | | #[cfg(test)] |
144 | | mod tests { |
145 | | use super::*; |
146 | | |
147 | | #[test] |
148 | | fn cot_test() { |
149 | | assert_eq!(f_cot(2.3006805685393681E-308), 4.346539948546049e307); |
150 | | assert_eq!(f_cot(5070552515158872000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000.), 25.068466719883585); |
151 | | assert_eq!(f_cot(4.9406564584124654E-324), f64::INFINITY); |
152 | | assert_eq!(f_cot(0.0), f64::INFINITY); |
153 | | assert_eq!(f_cot(1.0), 0.6420926159343308); |
154 | | assert_eq!(f_cot(-0.5), -1.830487721712452); |
155 | | assert_eq!(f_cot(12.0), -1.5726734063976893); |
156 | | assert_eq!(f_cot(-12.0), 1.5726734063976893); |
157 | | assert!(f_cot(f64::INFINITY).is_nan()); |
158 | | assert!(f_cot(f64::NEG_INFINITY).is_nan()); |
159 | | assert!(f_cot(f64::NAN).is_nan()); |
160 | | } |
161 | | } |