Coverage Report

Created: 2025-11-05 08:08

next uncovered line (L), next uncovered region (R), next uncovered branch (B)
/rust/registry/src/index.crates.io-1949cf8c6b5b557f/rayon-1.11.0/src/lib.rs
Line
Count
Source
1
//! Rayon is a data-parallelism library that makes it easy to convert sequential
2
//! computations into parallel.
3
//!
4
//! It is lightweight and convenient for introducing parallelism into existing
5
//! code. It guarantees data-race free executions and takes advantage of
6
//! parallelism when sensible, based on work-load at runtime.
7
//!
8
//! # How to use Rayon
9
//!
10
//! There are two ways to use Rayon:
11
//!
12
//! - **High-level parallel constructs** are the simplest way to use Rayon and also
13
//!   typically the most efficient.
14
//!   - [Parallel iterators] make it easy to convert a sequential iterator to
15
//!     execute in parallel.
16
//!     - The [`ParallelIterator`] trait defines general methods for all parallel iterators.
17
//!     - The [`IndexedParallelIterator`] trait adds methods for iterators that support random
18
//!       access.
19
//!   - The [`par_sort`] method sorts `&mut [T]` slices (or vectors) in parallel.
20
//!   - [`par_extend`] can be used to efficiently grow collections with items produced
21
//!     by a parallel iterator.
22
//! - **Custom tasks** let you divide your work into parallel tasks yourself.
23
//!   - [`join`] is used to subdivide a task into two pieces.
24
//!   - [`scope`] creates a scope within which you can create any number of parallel tasks.
25
//!   - [`ThreadPoolBuilder`] can be used to create your own thread pools or customize
26
//!     the global one.
27
//!
28
//! [Parallel iterators]: iter
29
//! [`par_sort`]: slice::ParallelSliceMut::par_sort
30
//! [`par_extend`]: iter::ParallelExtend::par_extend
31
//! [`ParallelIterator`]: iter::ParallelIterator
32
//! [`IndexedParallelIterator`]: iter::IndexedParallelIterator
33
//!
34
//! # Basic usage and the Rayon prelude
35
//!
36
//! First, you will need to add `rayon` to your `Cargo.toml`.
37
//!
38
//! Next, to use parallel iterators or the other high-level methods,
39
//! you need to import several traits. Those traits are bundled into
40
//! the module [`rayon::prelude`]. It is recommended that you import
41
//! all of these traits at once by adding `use rayon::prelude::*` at
42
//! the top of each module that uses Rayon methods.
43
//!
44
//! These traits give you access to the `par_iter` method which provides
45
//! parallel implementations of many iterative functions such as [`map`],
46
//! [`for_each`], [`filter`], [`fold`], and [more].
47
//!
48
//! [`rayon::prelude`]: prelude
49
//! [`map`]: iter::ParallelIterator::map
50
//! [`for_each`]: iter::ParallelIterator::for_each
51
//! [`filter`]: iter::ParallelIterator::filter
52
//! [`fold`]: iter::ParallelIterator::fold
53
//! [more]: iter::ParallelIterator#provided-methods
54
//!
55
//! # Crate Layout
56
//!
57
//! Rayon extends many of the types found in the standard library with
58
//! parallel iterator implementations. The modules in the `rayon`
59
//! crate mirror [`std`] itself: so, e.g., the `option` module in
60
//! Rayon contains parallel iterators for the `Option` type, which is
61
//! found in [the `option` module of `std`]. Similarly, the
62
//! `collections` module in Rayon offers parallel iterator types for
63
//! [the `collections` from `std`]. You will rarely need to access
64
//! these submodules unless you need to name iterator types
65
//! explicitly.
66
//!
67
//! [the `option` module of `std`]: std::option
68
//! [the `collections` from `std`]: std::collections
69
//!
70
//! # Targets without threading
71
//!
72
//! Rayon has limited support for targets without `std` threading implementations.
73
//! See the [`rayon_core`] documentation for more information about its global fallback.
74
//!
75
//! # Other questions?
76
//!
77
//! See [the Rayon FAQ][faq].
78
//!
79
//! [faq]: https://github.com/rayon-rs/rayon/blob/main/FAQ.md
80
81
#![deny(missing_debug_implementations)]
82
#![deny(missing_docs)]
83
#![deny(unreachable_pub)]
84
#![warn(rust_2018_idioms)]
85
86
#[macro_use]
87
mod delegate;
88
89
#[macro_use]
90
mod private;
91
92
mod split_producer;
93
94
pub mod array;
95
pub mod collections;
96
pub mod iter;
97
pub mod option;
98
pub mod prelude;
99
pub mod range;
100
pub mod range_inclusive;
101
pub mod result;
102
pub mod slice;
103
pub mod str;
104
pub mod string;
105
pub mod vec;
106
107
mod math;
108
mod par_either;
109
110
mod compile_fail;
111
112
pub use rayon_core::FnContext;
113
pub use rayon_core::ThreadBuilder;
114
pub use rayon_core::ThreadPool;
115
pub use rayon_core::ThreadPoolBuildError;
116
pub use rayon_core::ThreadPoolBuilder;
117
pub use rayon_core::{broadcast, spawn_broadcast, BroadcastContext};
118
pub use rayon_core::{current_num_threads, current_thread_index, max_num_threads};
119
pub use rayon_core::{in_place_scope, scope, Scope};
120
pub use rayon_core::{in_place_scope_fifo, scope_fifo, ScopeFifo};
121
pub use rayon_core::{join, join_context};
122
pub use rayon_core::{spawn, spawn_fifo};
123
pub use rayon_core::{yield_local, yield_now, Yield};
124
125
/// We need to transmit raw pointers across threads. It is possible to do this
126
/// without any unsafe code by converting pointers to usize or to AtomicPtr<T>
127
/// then back to a raw pointer for use. We prefer this approach because code
128
/// that uses this type is more explicit.
129
///
130
/// Unsafe code is still required to dereference the pointer, so this type is
131
/// not unsound on its own, although it does partly lift the unconditional
132
/// !Send and !Sync on raw pointers. As always, dereference with care.
133
struct SendPtr<T>(*mut T);
134
135
// SAFETY: !Send for raw pointers is not for safety, just as a lint
136
unsafe impl<T: Send> Send for SendPtr<T> {}
137
138
// SAFETY: !Sync for raw pointers is not for safety, just as a lint
139
unsafe impl<T: Send> Sync for SendPtr<T> {}
140
141
impl<T> SendPtr<T> {
142
    // Helper to avoid disjoint captures of `send_ptr.0`
143
0
    fn get(self) -> *mut T {
144
0
        self.0
145
0
    }
146
}
147
148
// Implement Clone without the T: Clone bound from the derive
149
impl<T> Clone for SendPtr<T> {
150
0
    fn clone(&self) -> Self {
151
0
        *self
152
0
    }
153
}
154
155
// Implement Copy without the T: Copy bound from the derive
156
impl<T> Copy for SendPtr<T> {}