/rust/registry/src/index.crates.io-1949cf8c6b5b557f/pxfm-0.1.25/src/bessel/i0f.rs
Line | Count | Source |
1 | | /* |
2 | | * // Copyright (c) Radzivon Bartoshyk 7/2025. All rights reserved. |
3 | | * // |
4 | | * // Redistribution and use in source and binary forms, with or without modification, |
5 | | * // are permitted provided that the following conditions are met: |
6 | | * // |
7 | | * // 1. Redistributions of source code must retain the above copyright notice, this |
8 | | * // list of conditions and the following disclaimer. |
9 | | * // |
10 | | * // 2. Redistributions in binary form must reproduce the above copyright notice, |
11 | | * // this list of conditions and the following disclaimer in the documentation |
12 | | * // and/or other materials provided with the distribution. |
13 | | * // |
14 | | * // 3. Neither the name of the copyright holder nor the names of its |
15 | | * // contributors may be used to endorse or promote products derived from |
16 | | * // this software without specific prior written permission. |
17 | | * // |
18 | | * // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" |
19 | | * // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
20 | | * // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE |
21 | | * // DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE |
22 | | * // FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL |
23 | | * // DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR |
24 | | * // SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER |
25 | | * // CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, |
26 | | * // OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE |
27 | | * // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
28 | | */ |
29 | | use crate::bessel::j0f::j1f_rsqrt; |
30 | | use crate::common::f_fmla; |
31 | | use crate::exponents::core_expf; |
32 | | use crate::polyeval::{ |
33 | | f_estrin_polyeval5, f_estrin_polyeval7, f_estrin_polyeval8, f_estrin_polyeval9, f_polyeval6, |
34 | | }; |
35 | | |
36 | | /// Modified Bessel of the first kind of order 0 |
37 | | /// |
38 | | /// Max ULP 0.5 |
39 | 0 | pub fn f_i0f(x: f32) -> f32 { |
40 | 0 | let ux = x.to_bits().wrapping_shl(1); |
41 | 0 | if ux >= 0xffu32 << 24 || ux == 0 { |
42 | | // |x| == 0, |x| == inf, |x| == NaN |
43 | 0 | if ux == 0 { |
44 | | // |x| == 0 |
45 | 0 | return 1.; |
46 | 0 | } |
47 | 0 | if x.is_infinite() { |
48 | 0 | return f32::INFINITY; |
49 | 0 | } |
50 | 0 | return x + f32::NAN; // x == NaN |
51 | 0 | } |
52 | | |
53 | 0 | let xb = x.to_bits() & 0x7fff_ffff; |
54 | | |
55 | 0 | if xb >= 0x42b7cd32u32 { |
56 | | // |x| >= 91.90077 |
57 | 0 | return f32::INFINITY; |
58 | 0 | } |
59 | | |
60 | 0 | if xb < 0x40f00000u32 { |
61 | | // |x| < 7.5 |
62 | 0 | if xb < 0x3f800000u32 { |
63 | | // |x| < 1 |
64 | 0 | if xb <= 0x34000000u32 { |
65 | | // |x| < f32::EPSILON |
66 | | // taylor series for I0(x) ~ 1 + x^2/4 + O(x^4) |
67 | | #[cfg(any( |
68 | | all( |
69 | | any(target_arch = "x86", target_arch = "x86_64"), |
70 | | target_feature = "fma" |
71 | | ), |
72 | | target_arch = "aarch64" |
73 | | ))] |
74 | | { |
75 | | use crate::common::f_fmlaf; |
76 | | return f_fmlaf(x, x * 0.25, 1.); |
77 | | } |
78 | | #[cfg(not(any( |
79 | | all( |
80 | | any(target_arch = "x86", target_arch = "x86_64"), |
81 | | target_feature = "fma" |
82 | | ), |
83 | | target_arch = "aarch64" |
84 | | )))] |
85 | | { |
86 | 0 | let dx = x as f64; |
87 | 0 | return f_fmla(dx, dx * 0.25, 1.) as f32; |
88 | | } |
89 | 0 | } |
90 | 0 | return i0f_small(f32::from_bits(xb)) as f32; |
91 | 0 | } else if xb <= 0x40600000u32 { |
92 | | // |x| < 3.5 |
93 | 0 | return i0f_1_to_3p5(f32::from_bits(xb)); |
94 | 0 | } else if xb <= 0x40c00000u32 { |
95 | | // |x| < 6 |
96 | 0 | return i0f_3p5_to_6(f32::from_bits(xb)); |
97 | 0 | } |
98 | 0 | return i0f_6_to_7p5(f32::from_bits(xb)); |
99 | 0 | } |
100 | | |
101 | 0 | i0f_asympt(f32::from_bits(xb)) |
102 | 0 | } |
103 | | |
104 | | /** |
105 | | How polynomial is obtained described at [i0f_1_to_7p5]. |
106 | | |
107 | | Computes I0(x) as follows: |
108 | | I0(x) = 1 + (x/2)^2 * P(x) |
109 | | |
110 | | This method valid only [0;1] |
111 | | |
112 | | Generated by Wolfram Mathematica: |
113 | | ```text |
114 | | <<FunctionApproximations` |
115 | | ClearAll["Global`*"] |
116 | | f[x_]:=(BesselI[0,x]-1)/(x/2)^2 |
117 | | g[z_]:=f[2 Sqrt[z]] |
118 | | {err, approx}=MiniMaxApproximation[g[z],{z,{0.0000001,1},6,0},WorkingPrecision->60] |
119 | | poly=Numerator[approx][[1]]; |
120 | | coeffs=CoefficientList[poly,z]; |
121 | | TableForm[Table[Row[{"'",NumberForm[coeffs[[i+1]],{50,50}, ExponentFunction->(Null&)],"',"}],{i,0,Length[coeffs]-1}]] |
122 | | ``` |
123 | | **/ |
124 | | #[inline] |
125 | 0 | pub(crate) fn i0f_small(x: f32) -> f64 { |
126 | 0 | let dx = x as f64; |
127 | | const C: f64 = 1. / 4.; |
128 | 0 | let eval_x = dx * dx * C; |
129 | | |
130 | 0 | let p = f_estrin_polyeval7( |
131 | 0 | eval_x, |
132 | 0 | f64::from_bits(0x3ff000000000013a), |
133 | 0 | f64::from_bits(0x3fcffffffffc20b6), |
134 | 0 | f64::from_bits(0x3f9c71c71e6cd6a2), |
135 | 0 | f64::from_bits(0x3f5c71c65b0af15f), |
136 | 0 | f64::from_bits(0x3f1234796fceb081), |
137 | 0 | f64::from_bits(0x3ec0280faf31678c), |
138 | 0 | f64::from_bits(0x3e664fd494223545), |
139 | | ); |
140 | 0 | f_fmla(p, eval_x, 1.) |
141 | 0 | } |
142 | | |
143 | | /** |
144 | | Computes I0. |
145 | | |
146 | | /// Valid only on interval [1;3.5] |
147 | | |
148 | | as rational approximation I0 = 1 + (x/2)^2 * Pn((x/2)^2)/Qm((x/2)^2)) |
149 | | |
150 | | Generated by Wolram Mathematica: |
151 | | ```python |
152 | | <<FunctionApproximations` |
153 | | ClearAll["Global`*"] |
154 | | f[x_]:=(BesselI[0,x]-1)/(x/2)^2 |
155 | | g[z_]:=f[2 Sqrt[z]] |
156 | | {err, approx}=MiniMaxApproximation[g[z],{z,{1,3.5},5,4},WorkingPrecision->60] |
157 | | poly=Numerator[approx][[1]]; |
158 | | coeffs=CoefficientList[poly,z]; |
159 | | TableForm[Table[Row[{"'",NumberForm[coeffs[[i+1]],{50,50}, ExponentFunction->(Null&)],"',"}],{i,0,Length[coeffs]-1}]] |
160 | | poly=Denominator[approx][[1]]; |
161 | | coeffs=CoefficientList[poly,z]; |
162 | | TableForm[Table[Row[{"'",NumberForm[coeffs[[i+1]],{50,50}, ExponentFunction->(Null&)],"',"}],{i,0,Length[coeffs]-1}]] |
163 | | ``` |
164 | | **/ |
165 | | #[inline] |
166 | 0 | fn i0f_1_to_3p5(x: f32) -> f32 { |
167 | 0 | let dx = x as f64; |
168 | | const C: f64 = 1. / 4.; |
169 | 0 | let eval_x = dx * dx * C; |
170 | | |
171 | 0 | let p_num = f_polyeval6( |
172 | 0 | eval_x, |
173 | 0 | f64::from_bits(0x3feffffffffffb69), |
174 | 0 | f64::from_bits(0x3fc9ed7bd9dc97a7), |
175 | 0 | f64::from_bits(0x3f915c14693c842e), |
176 | 0 | f64::from_bits(0x3f45c6dc6a719e42), |
177 | 0 | f64::from_bits(0x3eeacb79eba725f7), |
178 | 0 | f64::from_bits(0x3e7b51e2acfc4355), |
179 | | ); |
180 | 0 | let p_den = f_estrin_polyeval5( |
181 | 0 | eval_x, |
182 | 0 | f64::from_bits(0x3ff0000000000000), |
183 | 0 | f64::from_bits(0xbfa84a10988f28eb), |
184 | 0 | f64::from_bits(0x3f50f5599197a4be), |
185 | 0 | f64::from_bits(0xbeea420cf9b13b1b), |
186 | 0 | f64::from_bits(0x3e735d0c1eb6ed7d), |
187 | | ); |
188 | | |
189 | 0 | f_fmla(p_num / p_den, eval_x, 1.) as f32 |
190 | 0 | } |
191 | | |
192 | | // Valid only on interval [6;7] |
193 | | // Generated by Wolfram Mathematica: |
194 | | // <<FunctionApproximations` |
195 | | // ClearAll["Global`*"] |
196 | | // f[x_]:=(BesselI[0,x]-1)/(x/2)^2 |
197 | | // g[z_]:=f[2 Sqrt[z]] |
198 | | // {err, approx}=MiniMaxApproximation[g[z],{z,{6,7},7,6},WorkingPrecision->60] |
199 | | // poly=Numerator[approx][[1]]; |
200 | | // coeffs=CoefficientList[poly,z]; |
201 | | // TableForm[Table[Row[{"'",NumberForm[coeffs[[i+1]],{50,50}, ExponentFunction->(Null&)],"',"}],{i,0,Length[coeffs]-1}]] |
202 | | // poly=Denominator[approx][[1]]; |
203 | | // coeffs=CoefficientList[poly,z]; |
204 | | // TableForm[Table[Row[{"'",NumberForm[coeffs[[i+1]],{50,50}, ExponentFunction->(Null&)],"',"}],{i,0,Length[coeffs]-1}]] |
205 | | #[inline] |
206 | 0 | fn i0f_6_to_7p5(x: f32) -> f32 { |
207 | 0 | let dx = x as f64; |
208 | | const C: f64 = 1. / 4.; |
209 | 0 | let eval_x = dx * dx * C; |
210 | | |
211 | 0 | let p_num = f_estrin_polyeval8( |
212 | 0 | eval_x, |
213 | 0 | f64::from_bits(0x3fefffffffffff7d), |
214 | 0 | f64::from_bits(0x3fcb373b00569ccf), |
215 | 0 | f64::from_bits(0x3f939069c3363b81), |
216 | 0 | f64::from_bits(0x3f4c2095c90c66b3), |
217 | 0 | f64::from_bits(0x3ef6713f648413db), |
218 | 0 | f64::from_bits(0x3e947efa2f9936b4), |
219 | 0 | f64::from_bits(0x3e2486a182f49420), |
220 | 0 | f64::from_bits(0x3da213034a33de33), |
221 | | ); |
222 | 0 | let p_den = f_estrin_polyeval7( |
223 | 0 | eval_x, |
224 | 0 | f64::from_bits(0x3ff0000000000000), |
225 | 0 | f64::from_bits(0xbfa32313fea59d9e), |
226 | 0 | f64::from_bits(0x3f460594c2ec6706), |
227 | 0 | f64::from_bits(0xbedf725fb714690f), |
228 | 0 | f64::from_bits(0x3e6d9cb39b19555c), |
229 | 0 | f64::from_bits(0xbdf1900e3abcb7a6), |
230 | 0 | f64::from_bits(0x3d64a21a2ea78ef6), |
231 | | ); |
232 | | |
233 | 0 | f_fmla(p_num / p_den, eval_x, 1.) as f32 |
234 | 0 | } |
235 | | |
236 | | // Valid only on interval [3.5;6] |
237 | | // Generated in Wolfram Mathematica: |
238 | | // <<FunctionApproximations` |
239 | | // ClearAll["Global`*"] |
240 | | // f[x_]:=(BesselI[0,x]-1)/(x/2)^2 |
241 | | // g[z_]:=f[2 Sqrt[z]] |
242 | | // {err, approx}=MiniMaxApproximation[g[z],{z,{3.5,6},5,5},WorkingPrecision->60] |
243 | | // poly=Numerator[approx][[1]]; |
244 | | // coeffs=CoefficientList[poly,z]; |
245 | | // TableForm[Table[Row[{"'",NumberForm[coeffs[[i+1]],{50,50}, ExponentFunction->(Null&)],"',"}],{i,0,Length[coeffs]-1}]] |
246 | | // poly=Denominator[approx][[1]]; |
247 | | // coeffs=CoefficientList[poly,z]; |
248 | | // TableForm[Table[Row[{"'",NumberForm[coeffs[[i+1]],{50,50}, ExponentFunction->(Null&)],"',"}],{i,0,Length[coeffs]-1}]] |
249 | | #[inline] |
250 | 0 | fn i0f_3p5_to_6(x: f32) -> f32 { |
251 | 0 | let dx = x as f64; |
252 | | const C: f64 = 1. / 4.; |
253 | 0 | let eval_x = dx * dx * C; |
254 | | |
255 | 0 | let p_num = f_polyeval6( |
256 | 0 | eval_x, |
257 | 0 | f64::from_bits(0x3feffffffffd9550), |
258 | 0 | f64::from_bits(0x3fc97e18ee033fb4), |
259 | 0 | f64::from_bits(0x3f90b3199079bce1), |
260 | 0 | f64::from_bits(0x3f442c300a425372), |
261 | 0 | f64::from_bits(0x3ee7831030ae18ca), |
262 | 0 | f64::from_bits(0x3e76387d67354932), |
263 | | ); |
264 | 0 | let p_den = f_polyeval6( |
265 | 0 | eval_x, |
266 | 0 | f64::from_bits(0x3ff0000000000000), |
267 | 0 | f64::from_bits(0xbfaa079c484e406a), |
268 | 0 | f64::from_bits(0x3f5452098f1556fb), |
269 | 0 | f64::from_bits(0xbef33efb4a8128ac), |
270 | 0 | f64::from_bits(0x3e865996e19448ca), |
271 | 0 | f64::from_bits(0xbe09acbb64533c3e), |
272 | | ); |
273 | | |
274 | 0 | f_fmla(p_num / p_den, eval_x, 1.) as f32 |
275 | 0 | } |
276 | | |
277 | | /** |
278 | | Asymptotic expansion for I0. |
279 | | |
280 | | Computes: |
281 | | sqrt(x) * exp(-x) * I0(x) = Pn(1/x)/Qn(1/x) |
282 | | hence: |
283 | | I0(x) = Pn(1/x)/Qm(1/x)*exp(x)/sqrt(x) |
284 | | |
285 | | Generated by Mathematica: |
286 | | ```text |
287 | | <<FunctionApproximations` |
288 | | ClearAll["Global`*"] |
289 | | f[x_]:=Sqrt[x] Exp[-x] BesselI[0,x] |
290 | | g[z_]:=f[1/z] |
291 | | {err, approx}=MiniMaxApproximation[g[z],{z,{1/92.3,1/7.5},8,8},WorkingPrecision->70] |
292 | | num=Numerator[approx][[1]]; |
293 | | den=Denominator[approx][[1]]; |
294 | | poly=num; |
295 | | coeffs=CoefficientList[poly,z]; |
296 | | TableForm[Table[Row[{"'",NumberForm[coeffs[[i+1]],{50,50}, ExponentFunction->(Null&)],"',"}],{i,0,Length[coeffs]-1}]] |
297 | | ``` |
298 | | **/ |
299 | | #[inline] |
300 | 0 | fn i0f_asympt(x: f32) -> f32 { |
301 | 0 | let dx = x as f64; |
302 | 0 | let recip = 1. / dx; |
303 | 0 | let p_num = f_estrin_polyeval9( |
304 | 0 | recip, |
305 | 0 | f64::from_bits(0x3fd9884533d44829), |
306 | 0 | f64::from_bits(0xc02c940f40595581), |
307 | 0 | f64::from_bits(0x406d41c495c2f762), |
308 | 0 | f64::from_bits(0xc0a10ab76dda4520), |
309 | 0 | f64::from_bits(0x40c825b1c2a48d07), |
310 | 0 | f64::from_bits(0xc0e481d606d0b748), |
311 | 0 | f64::from_bits(0x40f34759deefbd40), |
312 | 0 | f64::from_bits(0xc0ef4b7fb49fa116), |
313 | 0 | f64::from_bits(0x40c409a6f882ba00), |
314 | | ); |
315 | 0 | let p_den = f_estrin_polyeval9( |
316 | 0 | recip, |
317 | 0 | f64::from_bits(0x3ff0000000000000), |
318 | 0 | f64::from_bits(0xc041f8a9131ad229), |
319 | 0 | f64::from_bits(0x408278e56af035bb), |
320 | 0 | f64::from_bits(0xc0b5a34a108f3e35), |
321 | 0 | f64::from_bits(0x40dee6f278ee24f5), |
322 | 0 | f64::from_bits(0xc0fa95093b0c4f9f), |
323 | 0 | f64::from_bits(0x4109982b87f75651), |
324 | 0 | f64::from_bits(0xc10618cc3c91e2db), |
325 | 0 | f64::from_bits(0x40e30895aec6fc4f), |
326 | | ); |
327 | 0 | let z = p_num / p_den; |
328 | | |
329 | 0 | let e = core_expf(x); |
330 | 0 | let r_sqrt = j1f_rsqrt(dx); |
331 | 0 | (z * r_sqrt * e) as f32 |
332 | 0 | } |
333 | | |
334 | | #[cfg(test)] |
335 | | mod tests { |
336 | | use super::*; |
337 | | |
338 | | #[test] |
339 | | fn test_i0f() { |
340 | | assert!(f_i0f(f32::NAN).is_nan()); |
341 | | assert_eq!(f_i0f(f32::NEG_INFINITY), f32::INFINITY); |
342 | | assert_eq!(f_i0f(f32::INFINITY), f32::INFINITY); |
343 | | assert_eq!(f_i0f(1.), 1.2660658); |
344 | | assert_eq!(f_i0f(5.), 27.239872); |
345 | | assert_eq!(f_i0f(16.), 893446.25); |
346 | | assert_eq!(f_i0f(32.), 5590908000000.0); |
347 | | assert_eq!(f_i0f(92.0), f32::INFINITY); |
348 | | assert_eq!(f_i0f(0.), 1.0); |
349 | | assert_eq!(f_i0f(28.), 109534600000.0); |
350 | | assert_eq!(f_i0f(-28.), 109534600000.0); |
351 | | assert_eq!(f_i0f(-16.), 893446.25); |
352 | | assert_eq!(f_i0f(-32.), 5590908000000.0); |
353 | | } |
354 | | } |