Coverage Report

Created: 2025-11-24 07:30

next uncovered line (L), next uncovered region (R), next uncovered branch (B)
/rust/registry/src/index.crates.io-1949cf8c6b5b557f/pxfm-0.1.25/src/tangent/cotpif.rs
Line
Count
Source
1
/*
2
 * // Copyright (c) Radzivon Bartoshyk 8/2025. All rights reserved.
3
 * //
4
 * // Redistribution and use in source and binary forms, with or without modification,
5
 * // are permitted provided that the following conditions are met:
6
 * //
7
 * // 1.  Redistributions of source code must retain the above copyright notice, this
8
 * // list of conditions and the following disclaimer.
9
 * //
10
 * // 2.  Redistributions in binary form must reproduce the above copyright notice,
11
 * // this list of conditions and the following disclaimer in the documentation
12
 * // and/or other materials provided with the distribution.
13
 * //
14
 * // 3.  Neither the name of the copyright holder nor the names of its
15
 * // contributors may be used to endorse or promote products derived from
16
 * // this software without specific prior written permission.
17
 * //
18
 * // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
19
 * // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
20
 * // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
21
 * // DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
22
 * // FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
23
 * // DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
24
 * // SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
25
 * // CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
26
 * // OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
27
 * // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
28
 */
29
30
use crate::common::f_fmla;
31
use crate::sin_cosf::ArgumentReducerPi;
32
use crate::tangent::evalf::tanpif_eval;
33
34
/// Computes 1/tan(PI*x)
35
///
36
/// Max found ULP 0.5
37
#[inline]
38
0
pub fn f_cotpif(x: f32) -> f32 {
39
0
    let ix = x.to_bits();
40
0
    let e = ix & (0xff << 23);
41
0
    if e > (150 << 23) {
42
        // |x| > 2^23
43
0
        if e == (0xff << 23) {
44
            // x = nan or inf
45
0
            if (ix.wrapping_shl(9)) == 0 {
46
                // x = inf
47
0
                return f32::NAN;
48
0
            }
49
0
            return x + x; // x = nan
50
0
        }
51
0
        return f32::INFINITY;
52
0
    }
53
54
0
    let argument_reduction = ArgumentReducerPi { x: x as f64 };
55
56
0
    let (y, k) = argument_reduction.reduce();
57
58
0
    if y == 0.0 {
59
0
        let km = (k.abs() & 31) as i32; // k mod 32
60
61
0
        match km {
62
0
            0 => return f32::copysign(f32::INFINITY, x), // cotpi(n) = ∞
63
0
            16 => return 0.0f32.copysign(x),             // cotpi(n+0.5) = 0
64
0
            8 => return f32::copysign(1.0, x),           // cotpi(n+0.25) = 1
65
0
            24 => return -f32::copysign(1.0, x),         // cotpi(n+0.75) = -1
66
0
            _ => {}
67
        }
68
0
    }
69
70
0
    let ax = ix & 0x7fff_ffff;
71
0
    if ax < 0x3bc49ba6u32 {
72
        // taylor series for cot(PI*x) where |x| < 0.006
73
0
        let dx = x as f64;
74
0
        let dx_sqr = dx * dx;
75
        // cot(PI*x) ~ 1/(PI*x) - PI*x/3 - PI^3*x^3/45 + O(x^5)
76
        const ONE_OVER_PI: f64 = f64::from_bits(0x3fd45f306dc9c883);
77
0
        let r = f_fmla(
78
0
            dx_sqr,
79
0
            f64::from_bits(0xbfe60c8539c1dc14),
80
0
            f64::from_bits(0xbff0c152382d7366),
81
        );
82
0
        let rcp = 1. / dx;
83
0
        return f_fmla(rcp, ONE_OVER_PI, r * dx) as f32;
84
0
    }
85
86
    // tanpif_eval returns:
87
    // - rs.tan_y = tan(pi/32 * y)          -> tangent of the remainder
88
    // - rs.tan_k = tan(pi/32 * k)          -> tan of the main angle multiple
89
0
    let rs = tanpif_eval(y, k);
90
91
    // Then computing tan through identities
92
    // num = tan(k*pi/32) + tan(y*pi/32)
93
0
    let num = rs.tan_y + rs.tan_k;
94
    // den = 1 - tan(k*pi/32) * tan(y*pi/32)
95
0
    let den = f_fmla(rs.tan_y, -rs.tan_k, 1.);
96
    // cotangent is tangent in inverse order
97
0
    (den / num) as f32
98
0
}
99
100
#[inline]
101
0
pub(crate) fn cotpif_core(x: f64) -> f64 {
102
0
    let argument_reduction = ArgumentReducerPi { x };
103
104
0
    let (y, k) = argument_reduction.reduce();
105
106
    // tanpif_eval returns:
107
    // - rs.tan_y = tan(pi/32 * y)          -> tangent of the remainder
108
    // - rs.tan_k = tan(pi/32 * k)          -> tan of the main angle multiple
109
0
    let rs = tanpif_eval(y, k);
110
111
    // Then computing tan through identities
112
    // num = tan(k*pi/32) + tan(y*pi/32)
113
0
    let num = rs.tan_y + rs.tan_k;
114
    // den = 1 - tan(k*pi/32) * tan(y*pi/32)
115
0
    let den = f_fmla(rs.tan_y, -rs.tan_k, 1.);
116
    // cotangent is tangent in inverse order
117
0
    den / num
118
0
}
119
120
#[cfg(test)]
121
mod tests {
122
    use super::*;
123
124
    #[test]
125
    fn test_cotpif() {
126
        assert_eq!(f_cotpif(0.00046277765), 687.82416);
127
        assert_eq!(f_cotpif(2.3588752e-6), 134941.39);
128
        assert_eq!(f_cotpif(10775313000000000000000000000000.), f32::INFINITY);
129
        assert_eq!(f_cotpif(5.5625), -0.19891237);
130
        assert_eq!(f_cotpif(-29.75), 1.0);
131
        assert_eq!(f_cotpif(-21.5625), 0.19891237);
132
        assert_eq!(f_cotpif(-15.611655), 0.3659073);
133
        assert_eq!(f_cotpif(115.30706), 0.693186);
134
        assert_eq!(f_cotpif(0.), f32::INFINITY);
135
        assert!(f_cotpif(f32::INFINITY).is_nan());
136
        assert!(f_cotpif(f32::NAN).is_nan());
137
    }
138
}