/rust/registry/src/index.crates.io-1949cf8c6b5b557f/num-rational-0.4.2/src/lib.rs
Line | Count | Source |
1 | | // Copyright 2013-2014 The Rust Project Developers. See the COPYRIGHT |
2 | | // file at the top-level directory of this distribution and at |
3 | | // http://rust-lang.org/COPYRIGHT. |
4 | | // |
5 | | // Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or |
6 | | // http://www.apache.org/licenses/LICENSE-2.0> or the MIT license |
7 | | // <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your |
8 | | // option. This file may not be copied, modified, or distributed |
9 | | // except according to those terms. |
10 | | |
11 | | //! Rational numbers |
12 | | //! |
13 | | //! ## Compatibility |
14 | | //! |
15 | | //! The `num-rational` crate is tested for rustc 1.60 and greater. |
16 | | |
17 | | #![doc(html_root_url = "https://docs.rs/num-rational/0.4")] |
18 | | #![no_std] |
19 | | // Ratio ops often use other "suspicious" ops |
20 | | #![allow(clippy::suspicious_arithmetic_impl)] |
21 | | #![allow(clippy::suspicious_op_assign_impl)] |
22 | | |
23 | | #[cfg(feature = "std")] |
24 | | #[macro_use] |
25 | | extern crate std; |
26 | | |
27 | | use core::cmp; |
28 | | use core::fmt; |
29 | | use core::fmt::{Binary, Display, Formatter, LowerExp, LowerHex, Octal, UpperExp, UpperHex}; |
30 | | use core::hash::{Hash, Hasher}; |
31 | | use core::ops::{Add, Div, Mul, Neg, Rem, ShlAssign, Sub}; |
32 | | use core::str::FromStr; |
33 | | #[cfg(feature = "std")] |
34 | | use std::error::Error; |
35 | | |
36 | | #[cfg(feature = "num-bigint")] |
37 | | use num_bigint::{BigInt, BigUint, Sign, ToBigInt}; |
38 | | |
39 | | use num_integer::Integer; |
40 | | use num_traits::float::FloatCore; |
41 | | use num_traits::{ |
42 | | Bounded, CheckedAdd, CheckedDiv, CheckedMul, CheckedSub, ConstOne, ConstZero, FromPrimitive, |
43 | | Inv, Num, NumCast, One, Pow, Signed, ToPrimitive, Unsigned, Zero, |
44 | | }; |
45 | | |
46 | | mod pow; |
47 | | |
48 | | /// Represents the ratio between two numbers. |
49 | | #[derive(Copy, Clone, Debug)] |
50 | | #[allow(missing_docs)] |
51 | | pub struct Ratio<T> { |
52 | | /// Numerator. |
53 | | numer: T, |
54 | | /// Denominator. |
55 | | denom: T, |
56 | | } |
57 | | |
58 | | /// Alias for a `Ratio` of machine-sized integers. |
59 | | #[deprecated( |
60 | | since = "0.4.0", |
61 | | note = "it's better to use a specific size, like `Rational32` or `Rational64`" |
62 | | )] |
63 | | pub type Rational = Ratio<isize>; |
64 | | /// Alias for a `Ratio` of 32-bit-sized integers. |
65 | | pub type Rational32 = Ratio<i32>; |
66 | | /// Alias for a `Ratio` of 64-bit-sized integers. |
67 | | pub type Rational64 = Ratio<i64>; |
68 | | |
69 | | #[cfg(feature = "num-bigint")] |
70 | | /// Alias for arbitrary precision rationals. |
71 | | pub type BigRational = Ratio<BigInt>; |
72 | | |
73 | | /// These method are `const`. |
74 | | impl<T> Ratio<T> { |
75 | | /// Creates a `Ratio` without checking for `denom == 0` or reducing. |
76 | | /// |
77 | | /// **There are several methods that will panic if used on a `Ratio` with |
78 | | /// `denom == 0`.** |
79 | | #[inline] |
80 | 0 | pub const fn new_raw(numer: T, denom: T) -> Ratio<T> { |
81 | 0 | Ratio { numer, denom } |
82 | 0 | } Unexecuted instantiation: <num_rational::Ratio<num_bigint::bigint::BigInt>>::new_raw Unexecuted instantiation: <num_rational::Ratio<i8>>::new_raw Unexecuted instantiation: <num_rational::Ratio<u8>>::new_raw Unexecuted instantiation: <num_rational::Ratio<isize>>::new_raw Unexecuted instantiation: <num_rational::Ratio<usize>>::new_raw Unexecuted instantiation: <num_rational::Ratio<i32>>::new_raw Unexecuted instantiation: <num_rational::Ratio<u32>>::new_raw Unexecuted instantiation: <num_rational::Ratio<i128>>::new_raw Unexecuted instantiation: <num_rational::Ratio<u128>>::new_raw Unexecuted instantiation: <num_rational::Ratio<i16>>::new_raw Unexecuted instantiation: <num_rational::Ratio<u16>>::new_raw Unexecuted instantiation: <num_rational::Ratio<i64>>::new_raw Unexecuted instantiation: <num_rational::Ratio<u64>>::new_raw |
83 | | |
84 | | /// Deconstructs a `Ratio` into its numerator and denominator. |
85 | | #[inline] |
86 | 0 | pub fn into_raw(self) -> (T, T) { |
87 | 0 | (self.numer, self.denom) |
88 | 0 | } |
89 | | |
90 | | /// Gets an immutable reference to the numerator. |
91 | | #[inline] |
92 | 0 | pub const fn numer(&self) -> &T { |
93 | 0 | &self.numer |
94 | 0 | } Unexecuted instantiation: <num_rational::Ratio<i32>>::numer Unexecuted instantiation: <num_rational::Ratio<i64>>::numer Unexecuted instantiation: <num_rational::Ratio<_>>::numer |
95 | | |
96 | | /// Gets an immutable reference to the denominator. |
97 | | #[inline] |
98 | 0 | pub const fn denom(&self) -> &T { |
99 | 0 | &self.denom |
100 | 0 | } Unexecuted instantiation: <num_rational::Ratio<i32>>::denom Unexecuted instantiation: <num_rational::Ratio<i64>>::denom Unexecuted instantiation: <num_rational::Ratio<_>>::denom |
101 | | } |
102 | | |
103 | | impl<T: Clone + Integer> Ratio<T> { |
104 | | /// Creates a new `Ratio`. |
105 | | /// |
106 | | /// **Panics if `denom` is zero.** |
107 | | #[inline] |
108 | 0 | pub fn new(numer: T, denom: T) -> Ratio<T> { |
109 | 0 | let mut ret = Ratio::new_raw(numer, denom); |
110 | 0 | ret.reduce(); |
111 | 0 | ret |
112 | 0 | } Unexecuted instantiation: <num_rational::Ratio<num_bigint::bigint::BigInt>>::new Unexecuted instantiation: <num_rational::Ratio<i8>>::new Unexecuted instantiation: <num_rational::Ratio<u8>>::new Unexecuted instantiation: <num_rational::Ratio<isize>>::new Unexecuted instantiation: <num_rational::Ratio<usize>>::new Unexecuted instantiation: <num_rational::Ratio<i32>>::new Unexecuted instantiation: <num_rational::Ratio<u32>>::new Unexecuted instantiation: <num_rational::Ratio<i128>>::new Unexecuted instantiation: <num_rational::Ratio<u128>>::new Unexecuted instantiation: <num_rational::Ratio<i16>>::new Unexecuted instantiation: <num_rational::Ratio<u16>>::new Unexecuted instantiation: <num_rational::Ratio<i64>>::new Unexecuted instantiation: <num_rational::Ratio<u64>>::new |
113 | | |
114 | | /// Creates a `Ratio` representing the integer `t`. |
115 | | #[inline] |
116 | 0 | pub fn from_integer(t: T) -> Ratio<T> { |
117 | 0 | Ratio::new_raw(t, One::one()) |
118 | 0 | } Unexecuted instantiation: <num_rational::Ratio<num_bigint::bigint::BigInt>>::from_integer Unexecuted instantiation: <num_rational::Ratio<i8>>::from_integer Unexecuted instantiation: <num_rational::Ratio<u8>>::from_integer Unexecuted instantiation: <num_rational::Ratio<isize>>::from_integer Unexecuted instantiation: <num_rational::Ratio<usize>>::from_integer Unexecuted instantiation: <num_rational::Ratio<i32>>::from_integer Unexecuted instantiation: <num_rational::Ratio<u32>>::from_integer Unexecuted instantiation: <num_rational::Ratio<i128>>::from_integer Unexecuted instantiation: <num_rational::Ratio<u128>>::from_integer Unexecuted instantiation: <num_rational::Ratio<i16>>::from_integer Unexecuted instantiation: <num_rational::Ratio<u16>>::from_integer Unexecuted instantiation: <num_rational::Ratio<i64>>::from_integer Unexecuted instantiation: <num_rational::Ratio<u64>>::from_integer |
119 | | |
120 | | /// Converts to an integer, rounding towards zero. |
121 | | #[inline] |
122 | 0 | pub fn to_integer(&self) -> T { |
123 | 0 | self.trunc().numer |
124 | 0 | } |
125 | | |
126 | | /// Returns true if the rational number is an integer (denominator is 1). |
127 | | #[inline] |
128 | 0 | pub fn is_integer(&self) -> bool { |
129 | 0 | self.denom.is_one() |
130 | 0 | } |
131 | | |
132 | | /// Puts self into lowest terms, with `denom` > 0. |
133 | | /// |
134 | | /// **Panics if `denom` is zero.** |
135 | 0 | fn reduce(&mut self) { |
136 | 0 | if self.denom.is_zero() { |
137 | 0 | panic!("denominator == 0"); |
138 | 0 | } |
139 | 0 | if self.numer.is_zero() { |
140 | 0 | self.denom.set_one(); |
141 | 0 | return; |
142 | 0 | } |
143 | 0 | if self.numer == self.denom { |
144 | 0 | self.set_one(); |
145 | 0 | return; |
146 | 0 | } |
147 | 0 | let g: T = self.numer.gcd(&self.denom); |
148 | | |
149 | | // FIXME(#5992): assignment operator overloads |
150 | | // T: Clone + Integer != T: Clone + NumAssign |
151 | | |
152 | | #[inline] |
153 | 0 | fn replace_with<T: Zero>(x: &mut T, f: impl FnOnce(T) -> T) { |
154 | 0 | let y = core::mem::replace(x, T::zero()); |
155 | 0 | *x = f(y); |
156 | 0 | } Unexecuted instantiation: <num_rational::Ratio<_>>::reduce::replace_with::<num_bigint::bigint::BigInt, <num_rational::Ratio<num_bigint::bigint::BigInt>>::reduce::{closure#0}>Unexecuted instantiation: <num_rational::Ratio<_>>::reduce::replace_with::<num_bigint::bigint::BigInt, <num_rational::Ratio<num_bigint::bigint::BigInt>>::reduce::{closure#2}>Unexecuted instantiation: <num_rational::Ratio<_>>::reduce::replace_with::<num_bigint::bigint::BigInt, <num_rational::Ratio<num_bigint::bigint::BigInt>>::reduce::{closure#3}>Unexecuted instantiation: <num_rational::Ratio<_>>::reduce::replace_with::<num_bigint::bigint::BigInt, <num_rational::Ratio<num_bigint::bigint::BigInt>>::reduce::{closure#1}>Unexecuted instantiation: <num_rational::Ratio<_>>::reduce::replace_with::<i8, <num_rational::Ratio<i8>>::reduce::{closure#0}>Unexecuted instantiation: <num_rational::Ratio<_>>::reduce::replace_with::<i8, <num_rational::Ratio<i8>>::reduce::{closure#2}>Unexecuted instantiation: <num_rational::Ratio<_>>::reduce::replace_with::<i8, <num_rational::Ratio<i8>>::reduce::{closure#3}>Unexecuted instantiation: <num_rational::Ratio<_>>::reduce::replace_with::<i8, <num_rational::Ratio<i8>>::reduce::{closure#1}>Unexecuted instantiation: <num_rational::Ratio<_>>::reduce::replace_with::<u8, <num_rational::Ratio<u8>>::reduce::{closure#0}>Unexecuted instantiation: <num_rational::Ratio<_>>::reduce::replace_with::<u8, <num_rational::Ratio<u8>>::reduce::{closure#2}>Unexecuted instantiation: <num_rational::Ratio<_>>::reduce::replace_with::<u8, <num_rational::Ratio<u8>>::reduce::{closure#3}>Unexecuted instantiation: <num_rational::Ratio<_>>::reduce::replace_with::<u8, <num_rational::Ratio<u8>>::reduce::{closure#1}>Unexecuted instantiation: <num_rational::Ratio<_>>::reduce::replace_with::<isize, <num_rational::Ratio<isize>>::reduce::{closure#0}>Unexecuted instantiation: <num_rational::Ratio<_>>::reduce::replace_with::<isize, <num_rational::Ratio<isize>>::reduce::{closure#2}>Unexecuted instantiation: <num_rational::Ratio<_>>::reduce::replace_with::<isize, <num_rational::Ratio<isize>>::reduce::{closure#3}>Unexecuted instantiation: <num_rational::Ratio<_>>::reduce::replace_with::<isize, <num_rational::Ratio<isize>>::reduce::{closure#1}>Unexecuted instantiation: <num_rational::Ratio<_>>::reduce::replace_with::<usize, <num_rational::Ratio<usize>>::reduce::{closure#0}>Unexecuted instantiation: <num_rational::Ratio<_>>::reduce::replace_with::<usize, <num_rational::Ratio<usize>>::reduce::{closure#2}>Unexecuted instantiation: <num_rational::Ratio<_>>::reduce::replace_with::<usize, <num_rational::Ratio<usize>>::reduce::{closure#3}>Unexecuted instantiation: <num_rational::Ratio<_>>::reduce::replace_with::<usize, <num_rational::Ratio<usize>>::reduce::{closure#1}>Unexecuted instantiation: <num_rational::Ratio<_>>::reduce::replace_with::<i32, <num_rational::Ratio<i32>>::reduce::{closure#0}>Unexecuted instantiation: <num_rational::Ratio<_>>::reduce::replace_with::<i32, <num_rational::Ratio<i32>>::reduce::{closure#2}>Unexecuted instantiation: <num_rational::Ratio<_>>::reduce::replace_with::<i32, <num_rational::Ratio<i32>>::reduce::{closure#3}>Unexecuted instantiation: <num_rational::Ratio<_>>::reduce::replace_with::<i32, <num_rational::Ratio<i32>>::reduce::{closure#1}>Unexecuted instantiation: <num_rational::Ratio<_>>::reduce::replace_with::<u32, <num_rational::Ratio<u32>>::reduce::{closure#0}>Unexecuted instantiation: <num_rational::Ratio<_>>::reduce::replace_with::<u32, <num_rational::Ratio<u32>>::reduce::{closure#2}>Unexecuted instantiation: <num_rational::Ratio<_>>::reduce::replace_with::<u32, <num_rational::Ratio<u32>>::reduce::{closure#3}>Unexecuted instantiation: <num_rational::Ratio<_>>::reduce::replace_with::<u32, <num_rational::Ratio<u32>>::reduce::{closure#1}>Unexecuted instantiation: <num_rational::Ratio<_>>::reduce::replace_with::<i128, <num_rational::Ratio<i128>>::reduce::{closure#0}>Unexecuted instantiation: <num_rational::Ratio<_>>::reduce::replace_with::<i128, <num_rational::Ratio<i128>>::reduce::{closure#2}>Unexecuted instantiation: <num_rational::Ratio<_>>::reduce::replace_with::<i128, <num_rational::Ratio<i128>>::reduce::{closure#3}>Unexecuted instantiation: <num_rational::Ratio<_>>::reduce::replace_with::<i128, <num_rational::Ratio<i128>>::reduce::{closure#1}>Unexecuted instantiation: <num_rational::Ratio<_>>::reduce::replace_with::<u128, <num_rational::Ratio<u128>>::reduce::{closure#0}>Unexecuted instantiation: <num_rational::Ratio<_>>::reduce::replace_with::<u128, <num_rational::Ratio<u128>>::reduce::{closure#2}>Unexecuted instantiation: <num_rational::Ratio<_>>::reduce::replace_with::<u128, <num_rational::Ratio<u128>>::reduce::{closure#3}>Unexecuted instantiation: <num_rational::Ratio<_>>::reduce::replace_with::<u128, <num_rational::Ratio<u128>>::reduce::{closure#1}>Unexecuted instantiation: <num_rational::Ratio<_>>::reduce::replace_with::<i16, <num_rational::Ratio<i16>>::reduce::{closure#0}>Unexecuted instantiation: <num_rational::Ratio<_>>::reduce::replace_with::<i16, <num_rational::Ratio<i16>>::reduce::{closure#2}>Unexecuted instantiation: <num_rational::Ratio<_>>::reduce::replace_with::<i16, <num_rational::Ratio<i16>>::reduce::{closure#3}>Unexecuted instantiation: <num_rational::Ratio<_>>::reduce::replace_with::<i16, <num_rational::Ratio<i16>>::reduce::{closure#1}>Unexecuted instantiation: <num_rational::Ratio<_>>::reduce::replace_with::<u16, <num_rational::Ratio<u16>>::reduce::{closure#0}>Unexecuted instantiation: <num_rational::Ratio<_>>::reduce::replace_with::<u16, <num_rational::Ratio<u16>>::reduce::{closure#2}>Unexecuted instantiation: <num_rational::Ratio<_>>::reduce::replace_with::<u16, <num_rational::Ratio<u16>>::reduce::{closure#3}>Unexecuted instantiation: <num_rational::Ratio<_>>::reduce::replace_with::<u16, <num_rational::Ratio<u16>>::reduce::{closure#1}>Unexecuted instantiation: <num_rational::Ratio<_>>::reduce::replace_with::<i64, <num_rational::Ratio<i64>>::reduce::{closure#0}>Unexecuted instantiation: <num_rational::Ratio<_>>::reduce::replace_with::<i64, <num_rational::Ratio<i64>>::reduce::{closure#2}>Unexecuted instantiation: <num_rational::Ratio<_>>::reduce::replace_with::<i64, <num_rational::Ratio<i64>>::reduce::{closure#3}>Unexecuted instantiation: <num_rational::Ratio<_>>::reduce::replace_with::<i64, <num_rational::Ratio<i64>>::reduce::{closure#1}>Unexecuted instantiation: <num_rational::Ratio<_>>::reduce::replace_with::<u64, <num_rational::Ratio<u64>>::reduce::{closure#0}>Unexecuted instantiation: <num_rational::Ratio<_>>::reduce::replace_with::<u64, <num_rational::Ratio<u64>>::reduce::{closure#2}>Unexecuted instantiation: <num_rational::Ratio<_>>::reduce::replace_with::<u64, <num_rational::Ratio<u64>>::reduce::{closure#3}>Unexecuted instantiation: <num_rational::Ratio<_>>::reduce::replace_with::<u64, <num_rational::Ratio<u64>>::reduce::{closure#1}> |
157 | | |
158 | | // self.numer /= g; |
159 | 0 | replace_with(&mut self.numer, |x| x / g.clone()); Unexecuted instantiation: <num_rational::Ratio<num_bigint::bigint::BigInt>>::reduce::{closure#0}Unexecuted instantiation: <num_rational::Ratio<i8>>::reduce::{closure#0}Unexecuted instantiation: <num_rational::Ratio<u8>>::reduce::{closure#0}Unexecuted instantiation: <num_rational::Ratio<isize>>::reduce::{closure#0}Unexecuted instantiation: <num_rational::Ratio<usize>>::reduce::{closure#0}Unexecuted instantiation: <num_rational::Ratio<i32>>::reduce::{closure#0}Unexecuted instantiation: <num_rational::Ratio<u32>>::reduce::{closure#0}Unexecuted instantiation: <num_rational::Ratio<i128>>::reduce::{closure#0}Unexecuted instantiation: <num_rational::Ratio<u128>>::reduce::{closure#0}Unexecuted instantiation: <num_rational::Ratio<i16>>::reduce::{closure#0}Unexecuted instantiation: <num_rational::Ratio<u16>>::reduce::{closure#0}Unexecuted instantiation: <num_rational::Ratio<i64>>::reduce::{closure#0}Unexecuted instantiation: <num_rational::Ratio<u64>>::reduce::{closure#0} |
160 | | |
161 | | // self.denom /= g; |
162 | 0 | replace_with(&mut self.denom, |x| x / g); Unexecuted instantiation: <num_rational::Ratio<num_bigint::bigint::BigInt>>::reduce::{closure#1}Unexecuted instantiation: <num_rational::Ratio<i8>>::reduce::{closure#1}Unexecuted instantiation: <num_rational::Ratio<u8>>::reduce::{closure#1}Unexecuted instantiation: <num_rational::Ratio<isize>>::reduce::{closure#1}Unexecuted instantiation: <num_rational::Ratio<usize>>::reduce::{closure#1}Unexecuted instantiation: <num_rational::Ratio<i32>>::reduce::{closure#1}Unexecuted instantiation: <num_rational::Ratio<u32>>::reduce::{closure#1}Unexecuted instantiation: <num_rational::Ratio<i128>>::reduce::{closure#1}Unexecuted instantiation: <num_rational::Ratio<u128>>::reduce::{closure#1}Unexecuted instantiation: <num_rational::Ratio<i16>>::reduce::{closure#1}Unexecuted instantiation: <num_rational::Ratio<u16>>::reduce::{closure#1}Unexecuted instantiation: <num_rational::Ratio<i64>>::reduce::{closure#1}Unexecuted instantiation: <num_rational::Ratio<u64>>::reduce::{closure#1} |
163 | | |
164 | | // keep denom positive! |
165 | 0 | if self.denom < T::zero() { |
166 | 0 | replace_with(&mut self.numer, |x| T::zero() - x); Unexecuted instantiation: <num_rational::Ratio<num_bigint::bigint::BigInt>>::reduce::{closure#2}Unexecuted instantiation: <num_rational::Ratio<i8>>::reduce::{closure#2}Unexecuted instantiation: <num_rational::Ratio<u8>>::reduce::{closure#2}Unexecuted instantiation: <num_rational::Ratio<isize>>::reduce::{closure#2}Unexecuted instantiation: <num_rational::Ratio<usize>>::reduce::{closure#2}Unexecuted instantiation: <num_rational::Ratio<i32>>::reduce::{closure#2}Unexecuted instantiation: <num_rational::Ratio<u32>>::reduce::{closure#2}Unexecuted instantiation: <num_rational::Ratio<i128>>::reduce::{closure#2}Unexecuted instantiation: <num_rational::Ratio<u128>>::reduce::{closure#2}Unexecuted instantiation: <num_rational::Ratio<i16>>::reduce::{closure#2}Unexecuted instantiation: <num_rational::Ratio<u16>>::reduce::{closure#2}Unexecuted instantiation: <num_rational::Ratio<i64>>::reduce::{closure#2}Unexecuted instantiation: <num_rational::Ratio<u64>>::reduce::{closure#2} |
167 | 0 | replace_with(&mut self.denom, |x| T::zero() - x); Unexecuted instantiation: <num_rational::Ratio<num_bigint::bigint::BigInt>>::reduce::{closure#3}Unexecuted instantiation: <num_rational::Ratio<i8>>::reduce::{closure#3}Unexecuted instantiation: <num_rational::Ratio<u8>>::reduce::{closure#3}Unexecuted instantiation: <num_rational::Ratio<isize>>::reduce::{closure#3}Unexecuted instantiation: <num_rational::Ratio<usize>>::reduce::{closure#3}Unexecuted instantiation: <num_rational::Ratio<i32>>::reduce::{closure#3}Unexecuted instantiation: <num_rational::Ratio<u32>>::reduce::{closure#3}Unexecuted instantiation: <num_rational::Ratio<i128>>::reduce::{closure#3}Unexecuted instantiation: <num_rational::Ratio<u128>>::reduce::{closure#3}Unexecuted instantiation: <num_rational::Ratio<i16>>::reduce::{closure#3}Unexecuted instantiation: <num_rational::Ratio<u16>>::reduce::{closure#3}Unexecuted instantiation: <num_rational::Ratio<i64>>::reduce::{closure#3}Unexecuted instantiation: <num_rational::Ratio<u64>>::reduce::{closure#3} |
168 | 0 | } |
169 | 0 | } Unexecuted instantiation: <num_rational::Ratio<num_bigint::bigint::BigInt>>::reduce Unexecuted instantiation: <num_rational::Ratio<i8>>::reduce Unexecuted instantiation: <num_rational::Ratio<u8>>::reduce Unexecuted instantiation: <num_rational::Ratio<isize>>::reduce Unexecuted instantiation: <num_rational::Ratio<usize>>::reduce Unexecuted instantiation: <num_rational::Ratio<i32>>::reduce Unexecuted instantiation: <num_rational::Ratio<u32>>::reduce Unexecuted instantiation: <num_rational::Ratio<i128>>::reduce Unexecuted instantiation: <num_rational::Ratio<u128>>::reduce Unexecuted instantiation: <num_rational::Ratio<i16>>::reduce Unexecuted instantiation: <num_rational::Ratio<u16>>::reduce Unexecuted instantiation: <num_rational::Ratio<i64>>::reduce Unexecuted instantiation: <num_rational::Ratio<u64>>::reduce |
170 | | |
171 | | /// Returns a reduced copy of self. |
172 | | /// |
173 | | /// In general, it is not necessary to use this method, as the only |
174 | | /// method of procuring a non-reduced fraction is through `new_raw`. |
175 | | /// |
176 | | /// **Panics if `denom` is zero.** |
177 | 0 | pub fn reduced(&self) -> Ratio<T> { |
178 | 0 | let mut ret = self.clone(); |
179 | 0 | ret.reduce(); |
180 | 0 | ret |
181 | 0 | } |
182 | | |
183 | | /// Returns the reciprocal. |
184 | | /// |
185 | | /// **Panics if the `Ratio` is zero.** |
186 | | #[inline] |
187 | 0 | pub fn recip(&self) -> Ratio<T> { |
188 | 0 | self.clone().into_recip() |
189 | 0 | } |
190 | | |
191 | | #[inline] |
192 | 0 | fn into_recip(self) -> Ratio<T> { |
193 | 0 | match self.numer.cmp(&T::zero()) { |
194 | 0 | cmp::Ordering::Equal => panic!("division by zero"), |
195 | 0 | cmp::Ordering::Greater => Ratio::new_raw(self.denom, self.numer), |
196 | 0 | cmp::Ordering::Less => Ratio::new_raw(T::zero() - self.denom, T::zero() - self.numer), |
197 | | } |
198 | 0 | } |
199 | | |
200 | | /// Rounds towards minus infinity. |
201 | | #[inline] |
202 | 0 | pub fn floor(&self) -> Ratio<T> { |
203 | 0 | if *self < Zero::zero() { |
204 | 0 | let one: T = One::one(); |
205 | 0 | Ratio::from_integer( |
206 | 0 | (self.numer.clone() - self.denom.clone() + one) / self.denom.clone(), |
207 | | ) |
208 | | } else { |
209 | 0 | Ratio::from_integer(self.numer.clone() / self.denom.clone()) |
210 | | } |
211 | 0 | } |
212 | | |
213 | | /// Rounds towards plus infinity. |
214 | | #[inline] |
215 | 0 | pub fn ceil(&self) -> Ratio<T> { |
216 | 0 | if *self < Zero::zero() { |
217 | 0 | Ratio::from_integer(self.numer.clone() / self.denom.clone()) |
218 | | } else { |
219 | 0 | let one: T = One::one(); |
220 | 0 | Ratio::from_integer( |
221 | 0 | (self.numer.clone() + self.denom.clone() - one) / self.denom.clone(), |
222 | | ) |
223 | | } |
224 | 0 | } |
225 | | |
226 | | /// Rounds to the nearest integer. Rounds half-way cases away from zero. |
227 | | #[inline] |
228 | 0 | pub fn round(&self) -> Ratio<T> { |
229 | 0 | let zero: Ratio<T> = Zero::zero(); |
230 | 0 | let one: T = One::one(); |
231 | 0 | let two: T = one.clone() + one.clone(); |
232 | | |
233 | | // Find unsigned fractional part of rational number |
234 | 0 | let mut fractional = self.fract(); |
235 | 0 | if fractional < zero { |
236 | 0 | fractional = zero - fractional |
237 | 0 | }; |
238 | | |
239 | | // The algorithm compares the unsigned fractional part with 1/2, that |
240 | | // is, a/b >= 1/2, or a >= b/2. For odd denominators, we use |
241 | | // a >= (b/2)+1. This avoids overflow issues. |
242 | 0 | let half_or_larger = if fractional.denom.is_even() { |
243 | 0 | fractional.numer >= fractional.denom / two |
244 | | } else { |
245 | 0 | fractional.numer >= (fractional.denom / two) + one |
246 | | }; |
247 | | |
248 | 0 | if half_or_larger { |
249 | 0 | let one: Ratio<T> = One::one(); |
250 | 0 | if *self >= Zero::zero() { |
251 | 0 | self.trunc() + one |
252 | | } else { |
253 | 0 | self.trunc() - one |
254 | | } |
255 | | } else { |
256 | 0 | self.trunc() |
257 | | } |
258 | 0 | } |
259 | | |
260 | | /// Rounds towards zero. |
261 | | #[inline] |
262 | 0 | pub fn trunc(&self) -> Ratio<T> { |
263 | 0 | Ratio::from_integer(self.numer.clone() / self.denom.clone()) |
264 | 0 | } |
265 | | |
266 | | /// Returns the fractional part of a number, with division rounded towards zero. |
267 | | /// |
268 | | /// Satisfies `self == self.trunc() + self.fract()`. |
269 | | #[inline] |
270 | 0 | pub fn fract(&self) -> Ratio<T> { |
271 | 0 | Ratio::new_raw(self.numer.clone() % self.denom.clone(), self.denom.clone()) |
272 | 0 | } |
273 | | |
274 | | /// Raises the `Ratio` to the power of an exponent. |
275 | | #[inline] |
276 | 0 | pub fn pow(&self, expon: i32) -> Ratio<T> |
277 | 0 | where |
278 | 0 | for<'a> &'a T: Pow<u32, Output = T>, |
279 | | { |
280 | 0 | Pow::pow(self, expon) |
281 | 0 | } |
282 | | } |
283 | | |
284 | | #[cfg(feature = "num-bigint")] |
285 | | impl Ratio<BigInt> { |
286 | | /// Converts a float into a rational number. |
287 | 0 | pub fn from_float<T: FloatCore>(f: T) -> Option<BigRational> { |
288 | 0 | if !f.is_finite() { |
289 | 0 | return None; |
290 | 0 | } |
291 | 0 | let (mantissa, exponent, sign) = f.integer_decode(); |
292 | 0 | let bigint_sign = if sign == 1 { Sign::Plus } else { Sign::Minus }; |
293 | 0 | if exponent < 0 { |
294 | 0 | let one: BigInt = One::one(); |
295 | 0 | let denom: BigInt = one << ((-exponent) as usize); |
296 | 0 | let numer: BigUint = FromPrimitive::from_u64(mantissa).unwrap(); |
297 | 0 | Some(Ratio::new(BigInt::from_biguint(bigint_sign, numer), denom)) |
298 | | } else { |
299 | 0 | let mut numer: BigUint = FromPrimitive::from_u64(mantissa).unwrap(); |
300 | 0 | numer <<= exponent as usize; |
301 | 0 | Some(Ratio::from_integer(BigInt::from_biguint( |
302 | 0 | bigint_sign, |
303 | 0 | numer, |
304 | 0 | ))) |
305 | | } |
306 | 0 | } Unexecuted instantiation: <num_rational::Ratio<num_bigint::bigint::BigInt>>::from_float::<f64> Unexecuted instantiation: <num_rational::Ratio<num_bigint::bigint::BigInt>>::from_float::<f32> |
307 | | } |
308 | | |
309 | | impl<T: Clone + Integer> Default for Ratio<T> { |
310 | | /// Returns zero |
311 | 0 | fn default() -> Self { |
312 | 0 | Ratio::zero() |
313 | 0 | } |
314 | | } |
315 | | |
316 | | // From integer |
317 | | impl<T> From<T> for Ratio<T> |
318 | | where |
319 | | T: Clone + Integer, |
320 | | { |
321 | 0 | fn from(x: T) -> Ratio<T> { |
322 | 0 | Ratio::from_integer(x) |
323 | 0 | } |
324 | | } |
325 | | |
326 | | // From pair (through the `new` constructor) |
327 | | impl<T> From<(T, T)> for Ratio<T> |
328 | | where |
329 | | T: Clone + Integer, |
330 | | { |
331 | 0 | fn from(pair: (T, T)) -> Ratio<T> { |
332 | 0 | Ratio::new(pair.0, pair.1) |
333 | 0 | } |
334 | | } |
335 | | |
336 | | // Comparisons |
337 | | |
338 | | // Mathematically, comparing a/b and c/d is the same as comparing a*d and b*c, but it's very easy |
339 | | // for those multiplications to overflow fixed-size integers, so we need to take care. |
340 | | |
341 | | impl<T: Clone + Integer> Ord for Ratio<T> { |
342 | | #[inline] |
343 | 0 | fn cmp(&self, other: &Self) -> cmp::Ordering { |
344 | | // With equal denominators, the numerators can be directly compared |
345 | 0 | if self.denom == other.denom { |
346 | 0 | let ord = self.numer.cmp(&other.numer); |
347 | 0 | return if self.denom < T::zero() { |
348 | 0 | ord.reverse() |
349 | | } else { |
350 | 0 | ord |
351 | | }; |
352 | 0 | } |
353 | | |
354 | | // With equal numerators, the denominators can be inversely compared |
355 | 0 | if self.numer == other.numer { |
356 | 0 | if self.numer.is_zero() { |
357 | 0 | return cmp::Ordering::Equal; |
358 | 0 | } |
359 | 0 | let ord = self.denom.cmp(&other.denom); |
360 | 0 | return if self.numer < T::zero() { |
361 | 0 | ord |
362 | | } else { |
363 | 0 | ord.reverse() |
364 | | }; |
365 | 0 | } |
366 | | |
367 | | // Unfortunately, we don't have CheckedMul to try. That could sometimes avoid all the |
368 | | // division below, or even always avoid it for BigInt and BigUint. |
369 | | // FIXME- future breaking change to add Checked* to Integer? |
370 | | |
371 | | // Compare as floored integers and remainders |
372 | 0 | let (self_int, self_rem) = self.numer.div_mod_floor(&self.denom); |
373 | 0 | let (other_int, other_rem) = other.numer.div_mod_floor(&other.denom); |
374 | 0 | match self_int.cmp(&other_int) { |
375 | 0 | cmp::Ordering::Greater => cmp::Ordering::Greater, |
376 | 0 | cmp::Ordering::Less => cmp::Ordering::Less, |
377 | | cmp::Ordering::Equal => { |
378 | 0 | match (self_rem.is_zero(), other_rem.is_zero()) { |
379 | 0 | (true, true) => cmp::Ordering::Equal, |
380 | 0 | (true, false) => cmp::Ordering::Less, |
381 | 0 | (false, true) => cmp::Ordering::Greater, |
382 | | (false, false) => { |
383 | | // Compare the reciprocals of the remaining fractions in reverse |
384 | 0 | let self_recip = Ratio::new_raw(self.denom.clone(), self_rem); |
385 | 0 | let other_recip = Ratio::new_raw(other.denom.clone(), other_rem); |
386 | 0 | self_recip.cmp(&other_recip).reverse() |
387 | | } |
388 | | } |
389 | | } |
390 | | } |
391 | 0 | } |
392 | | } |
393 | | |
394 | | impl<T: Clone + Integer> PartialOrd for Ratio<T> { |
395 | | #[inline] |
396 | 0 | fn partial_cmp(&self, other: &Self) -> Option<cmp::Ordering> { |
397 | 0 | Some(self.cmp(other)) |
398 | 0 | } |
399 | | } |
400 | | |
401 | | impl<T: Clone + Integer> PartialEq for Ratio<T> { |
402 | | #[inline] |
403 | 0 | fn eq(&self, other: &Self) -> bool { |
404 | 0 | self.cmp(other) == cmp::Ordering::Equal |
405 | 0 | } |
406 | | } |
407 | | |
408 | | impl<T: Clone + Integer> Eq for Ratio<T> {} |
409 | | |
410 | | // NB: We can't just `#[derive(Hash)]`, because it needs to agree |
411 | | // with `Eq` even for non-reduced ratios. |
412 | | impl<T: Clone + Integer + Hash> Hash for Ratio<T> { |
413 | 0 | fn hash<H: Hasher>(&self, state: &mut H) { |
414 | 0 | recurse(&self.numer, &self.denom, state); |
415 | | |
416 | 0 | fn recurse<T: Integer + Hash, H: Hasher>(numer: &T, denom: &T, state: &mut H) { |
417 | 0 | if !denom.is_zero() { |
418 | 0 | let (int, rem) = numer.div_mod_floor(denom); |
419 | 0 | int.hash(state); |
420 | 0 | recurse(denom, &rem, state); |
421 | 0 | } else { |
422 | 0 | denom.hash(state); |
423 | 0 | } |
424 | 0 | } |
425 | 0 | } |
426 | | } |
427 | | |
428 | | mod iter_sum_product { |
429 | | use crate::Ratio; |
430 | | use core::iter::{Product, Sum}; |
431 | | use num_integer::Integer; |
432 | | use num_traits::{One, Zero}; |
433 | | |
434 | | impl<T: Integer + Clone> Sum for Ratio<T> { |
435 | 0 | fn sum<I>(iter: I) -> Self |
436 | 0 | where |
437 | 0 | I: Iterator<Item = Ratio<T>>, |
438 | | { |
439 | 0 | iter.fold(Self::zero(), |sum, num| sum + num) |
440 | 0 | } |
441 | | } |
442 | | |
443 | | impl<'a, T: Integer + Clone> Sum<&'a Ratio<T>> for Ratio<T> { |
444 | 0 | fn sum<I>(iter: I) -> Self |
445 | 0 | where |
446 | 0 | I: Iterator<Item = &'a Ratio<T>>, |
447 | | { |
448 | 0 | iter.fold(Self::zero(), |sum, num| sum + num) |
449 | 0 | } |
450 | | } |
451 | | |
452 | | impl<T: Integer + Clone> Product for Ratio<T> { |
453 | 0 | fn product<I>(iter: I) -> Self |
454 | 0 | where |
455 | 0 | I: Iterator<Item = Ratio<T>>, |
456 | | { |
457 | 0 | iter.fold(Self::one(), |prod, num| prod * num) |
458 | 0 | } |
459 | | } |
460 | | |
461 | | impl<'a, T: Integer + Clone> Product<&'a Ratio<T>> for Ratio<T> { |
462 | 0 | fn product<I>(iter: I) -> Self |
463 | 0 | where |
464 | 0 | I: Iterator<Item = &'a Ratio<T>>, |
465 | | { |
466 | 0 | iter.fold(Self::one(), |prod, num| prod * num) |
467 | 0 | } |
468 | | } |
469 | | } |
470 | | |
471 | | mod opassign { |
472 | | use core::ops::{AddAssign, DivAssign, MulAssign, RemAssign, SubAssign}; |
473 | | |
474 | | use crate::Ratio; |
475 | | use num_integer::Integer; |
476 | | use num_traits::NumAssign; |
477 | | |
478 | | impl<T: Clone + Integer + NumAssign> AddAssign for Ratio<T> { |
479 | 0 | fn add_assign(&mut self, other: Ratio<T>) { |
480 | 0 | if self.denom == other.denom { |
481 | 0 | self.numer += other.numer |
482 | 0 | } else { |
483 | 0 | let lcm = self.denom.lcm(&other.denom); |
484 | 0 | let lhs_numer = self.numer.clone() * (lcm.clone() / self.denom.clone()); |
485 | 0 | let rhs_numer = other.numer * (lcm.clone() / other.denom); |
486 | 0 | self.numer = lhs_numer + rhs_numer; |
487 | 0 | self.denom = lcm; |
488 | 0 | } |
489 | 0 | self.reduce(); |
490 | 0 | } |
491 | | } |
492 | | |
493 | | // (a/b) / (c/d) = (a/gcd_ac)*(d/gcd_bd) / ((c/gcd_ac)*(b/gcd_bd)) |
494 | | impl<T: Clone + Integer + NumAssign> DivAssign for Ratio<T> { |
495 | 0 | fn div_assign(&mut self, other: Ratio<T>) { |
496 | 0 | let gcd_ac = self.numer.gcd(&other.numer); |
497 | 0 | let gcd_bd = self.denom.gcd(&other.denom); |
498 | 0 | self.numer /= gcd_ac.clone(); |
499 | 0 | self.numer *= other.denom / gcd_bd.clone(); |
500 | 0 | self.denom /= gcd_bd; |
501 | 0 | self.denom *= other.numer / gcd_ac; |
502 | 0 | self.reduce(); // TODO: remove this line. see #8. |
503 | 0 | } |
504 | | } |
505 | | |
506 | | // a/b * c/d = (a/gcd_ad)*(c/gcd_bc) / ((d/gcd_ad)*(b/gcd_bc)) |
507 | | impl<T: Clone + Integer + NumAssign> MulAssign for Ratio<T> { |
508 | 0 | fn mul_assign(&mut self, other: Ratio<T>) { |
509 | 0 | let gcd_ad = self.numer.gcd(&other.denom); |
510 | 0 | let gcd_bc = self.denom.gcd(&other.numer); |
511 | 0 | self.numer /= gcd_ad.clone(); |
512 | 0 | self.numer *= other.numer / gcd_bc.clone(); |
513 | 0 | self.denom /= gcd_bc; |
514 | 0 | self.denom *= other.denom / gcd_ad; |
515 | 0 | self.reduce(); // TODO: remove this line. see #8. |
516 | 0 | } |
517 | | } |
518 | | |
519 | | impl<T: Clone + Integer + NumAssign> RemAssign for Ratio<T> { |
520 | 0 | fn rem_assign(&mut self, other: Ratio<T>) { |
521 | 0 | if self.denom == other.denom { |
522 | 0 | self.numer %= other.numer |
523 | 0 | } else { |
524 | 0 | let lcm = self.denom.lcm(&other.denom); |
525 | 0 | let lhs_numer = self.numer.clone() * (lcm.clone() / self.denom.clone()); |
526 | 0 | let rhs_numer = other.numer * (lcm.clone() / other.denom); |
527 | 0 | self.numer = lhs_numer % rhs_numer; |
528 | 0 | self.denom = lcm; |
529 | 0 | } |
530 | 0 | self.reduce(); |
531 | 0 | } |
532 | | } |
533 | | |
534 | | impl<T: Clone + Integer + NumAssign> SubAssign for Ratio<T> { |
535 | 0 | fn sub_assign(&mut self, other: Ratio<T>) { |
536 | 0 | if self.denom == other.denom { |
537 | 0 | self.numer -= other.numer |
538 | 0 | } else { |
539 | 0 | let lcm = self.denom.lcm(&other.denom); |
540 | 0 | let lhs_numer = self.numer.clone() * (lcm.clone() / self.denom.clone()); |
541 | 0 | let rhs_numer = other.numer * (lcm.clone() / other.denom); |
542 | 0 | self.numer = lhs_numer - rhs_numer; |
543 | 0 | self.denom = lcm; |
544 | 0 | } |
545 | 0 | self.reduce(); |
546 | 0 | } |
547 | | } |
548 | | |
549 | | // a/b + c/1 = (a*1 + b*c) / (b*1) = (a + b*c) / b |
550 | | impl<T: Clone + Integer + NumAssign> AddAssign<T> for Ratio<T> { |
551 | 0 | fn add_assign(&mut self, other: T) { |
552 | 0 | self.numer += self.denom.clone() * other; |
553 | 0 | self.reduce(); |
554 | 0 | } |
555 | | } |
556 | | |
557 | | impl<T: Clone + Integer + NumAssign> DivAssign<T> for Ratio<T> { |
558 | 0 | fn div_assign(&mut self, other: T) { |
559 | 0 | let gcd = self.numer.gcd(&other); |
560 | 0 | self.numer /= gcd.clone(); |
561 | 0 | self.denom *= other / gcd; |
562 | 0 | self.reduce(); // TODO: remove this line. see #8. |
563 | 0 | } |
564 | | } |
565 | | |
566 | | impl<T: Clone + Integer + NumAssign> MulAssign<T> for Ratio<T> { |
567 | 0 | fn mul_assign(&mut self, other: T) { |
568 | 0 | let gcd = self.denom.gcd(&other); |
569 | 0 | self.denom /= gcd.clone(); |
570 | 0 | self.numer *= other / gcd; |
571 | 0 | self.reduce(); // TODO: remove this line. see #8. |
572 | 0 | } |
573 | | } |
574 | | |
575 | | // a/b % c/1 = (a*1 % b*c) / (b*1) = (a % b*c) / b |
576 | | impl<T: Clone + Integer + NumAssign> RemAssign<T> for Ratio<T> { |
577 | 0 | fn rem_assign(&mut self, other: T) { |
578 | 0 | self.numer %= self.denom.clone() * other; |
579 | 0 | self.reduce(); |
580 | 0 | } |
581 | | } |
582 | | |
583 | | // a/b - c/1 = (a*1 - b*c) / (b*1) = (a - b*c) / b |
584 | | impl<T: Clone + Integer + NumAssign> SubAssign<T> for Ratio<T> { |
585 | 0 | fn sub_assign(&mut self, other: T) { |
586 | 0 | self.numer -= self.denom.clone() * other; |
587 | 0 | self.reduce(); |
588 | 0 | } |
589 | | } |
590 | | |
591 | | macro_rules! forward_op_assign { |
592 | | (impl $imp:ident, $method:ident) => { |
593 | | impl<'a, T: Clone + Integer + NumAssign> $imp<&'a Ratio<T>> for Ratio<T> { |
594 | | #[inline] |
595 | 0 | fn $method(&mut self, other: &Ratio<T>) { |
596 | 0 | self.$method(other.clone()) |
597 | 0 | } Unexecuted instantiation: <num_rational::Ratio<_> as core::ops::arith::AddAssign<&num_rational::Ratio<_>>>::add_assign Unexecuted instantiation: <num_rational::Ratio<_> as core::ops::arith::DivAssign<&num_rational::Ratio<_>>>::div_assign Unexecuted instantiation: <num_rational::Ratio<_> as core::ops::arith::MulAssign<&num_rational::Ratio<_>>>::mul_assign Unexecuted instantiation: <num_rational::Ratio<_> as core::ops::arith::RemAssign<&num_rational::Ratio<_>>>::rem_assign Unexecuted instantiation: <num_rational::Ratio<_> as core::ops::arith::SubAssign<&num_rational::Ratio<_>>>::sub_assign |
598 | | } |
599 | | impl<'a, T: Clone + Integer + NumAssign> $imp<&'a T> for Ratio<T> { |
600 | | #[inline] |
601 | 0 | fn $method(&mut self, other: &T) { |
602 | 0 | self.$method(other.clone()) |
603 | 0 | } Unexecuted instantiation: <num_rational::Ratio<_> as core::ops::arith::AddAssign<&_>>::add_assign Unexecuted instantiation: <num_rational::Ratio<_> as core::ops::arith::DivAssign<&_>>::div_assign Unexecuted instantiation: <num_rational::Ratio<_> as core::ops::arith::MulAssign<&_>>::mul_assign Unexecuted instantiation: <num_rational::Ratio<_> as core::ops::arith::RemAssign<&_>>::rem_assign Unexecuted instantiation: <num_rational::Ratio<_> as core::ops::arith::SubAssign<&_>>::sub_assign |
604 | | } |
605 | | }; |
606 | | } |
607 | | |
608 | | forward_op_assign!(impl AddAssign, add_assign); |
609 | | forward_op_assign!(impl DivAssign, div_assign); |
610 | | forward_op_assign!(impl MulAssign, mul_assign); |
611 | | forward_op_assign!(impl RemAssign, rem_assign); |
612 | | forward_op_assign!(impl SubAssign, sub_assign); |
613 | | } |
614 | | |
615 | | macro_rules! forward_ref_ref_binop { |
616 | | (impl $imp:ident, $method:ident) => { |
617 | | impl<'a, 'b, T: Clone + Integer> $imp<&'b Ratio<T>> for &'a Ratio<T> { |
618 | | type Output = Ratio<T>; |
619 | | |
620 | | #[inline] |
621 | 0 | fn $method(self, other: &'b Ratio<T>) -> Ratio<T> { |
622 | 0 | self.clone().$method(other.clone()) |
623 | 0 | } Unexecuted instantiation: <&num_rational::Ratio<_> as core::ops::arith::Sub>::sub Unexecuted instantiation: <&num_rational::Ratio<_> as core::ops::arith::Rem>::rem Unexecuted instantiation: <&num_rational::Ratio<_> as core::ops::arith::Mul>::mul Unexecuted instantiation: <&num_rational::Ratio<_> as core::ops::arith::Div>::div Unexecuted instantiation: <&num_rational::Ratio<_> as core::ops::arith::Add>::add |
624 | | } |
625 | | impl<'a, 'b, T: Clone + Integer> $imp<&'b T> for &'a Ratio<T> { |
626 | | type Output = Ratio<T>; |
627 | | |
628 | | #[inline] |
629 | 0 | fn $method(self, other: &'b T) -> Ratio<T> { |
630 | 0 | self.clone().$method(other.clone()) |
631 | 0 | } Unexecuted instantiation: <&num_rational::Ratio<_> as core::ops::arith::Sub<&_>>::sub Unexecuted instantiation: <&num_rational::Ratio<_> as core::ops::arith::Rem<&_>>::rem Unexecuted instantiation: <&num_rational::Ratio<_> as core::ops::arith::Mul<&_>>::mul Unexecuted instantiation: <&num_rational::Ratio<_> as core::ops::arith::Div<&_>>::div Unexecuted instantiation: <&num_rational::Ratio<_> as core::ops::arith::Add<&_>>::add |
632 | | } |
633 | | }; |
634 | | } |
635 | | |
636 | | macro_rules! forward_ref_val_binop { |
637 | | (impl $imp:ident, $method:ident) => { |
638 | | impl<'a, T> $imp<Ratio<T>> for &'a Ratio<T> |
639 | | where |
640 | | T: Clone + Integer, |
641 | | { |
642 | | type Output = Ratio<T>; |
643 | | |
644 | | #[inline] |
645 | 0 | fn $method(self, other: Ratio<T>) -> Ratio<T> { |
646 | 0 | self.clone().$method(other) |
647 | 0 | } Unexecuted instantiation: <&num_rational::Ratio<_> as core::ops::arith::Sub<num_rational::Ratio<_>>>::sub Unexecuted instantiation: <&num_rational::Ratio<_> as core::ops::arith::Rem<num_rational::Ratio<_>>>::rem Unexecuted instantiation: <&num_rational::Ratio<_> as core::ops::arith::Mul<num_rational::Ratio<_>>>::mul Unexecuted instantiation: <&num_rational::Ratio<_> as core::ops::arith::Div<num_rational::Ratio<_>>>::div Unexecuted instantiation: <&num_rational::Ratio<_> as core::ops::arith::Add<num_rational::Ratio<_>>>::add |
648 | | } |
649 | | impl<'a, T> $imp<T> for &'a Ratio<T> |
650 | | where |
651 | | T: Clone + Integer, |
652 | | { |
653 | | type Output = Ratio<T>; |
654 | | |
655 | | #[inline] |
656 | 0 | fn $method(self, other: T) -> Ratio<T> { |
657 | 0 | self.clone().$method(other) |
658 | 0 | } Unexecuted instantiation: <&num_rational::Ratio<_> as core::ops::arith::Sub<_>>::sub Unexecuted instantiation: <&num_rational::Ratio<_> as core::ops::arith::Rem<_>>::rem Unexecuted instantiation: <&num_rational::Ratio<_> as core::ops::arith::Mul<_>>::mul Unexecuted instantiation: <&num_rational::Ratio<_> as core::ops::arith::Div<_>>::div Unexecuted instantiation: <&num_rational::Ratio<_> as core::ops::arith::Add<_>>::add |
659 | | } |
660 | | }; |
661 | | } |
662 | | |
663 | | macro_rules! forward_val_ref_binop { |
664 | | (impl $imp:ident, $method:ident) => { |
665 | | impl<'a, T> $imp<&'a Ratio<T>> for Ratio<T> |
666 | | where |
667 | | T: Clone + Integer, |
668 | | { |
669 | | type Output = Ratio<T>; |
670 | | |
671 | | #[inline] |
672 | 0 | fn $method(self, other: &Ratio<T>) -> Ratio<T> { |
673 | 0 | self.$method(other.clone()) |
674 | 0 | } Unexecuted instantiation: <num_rational::Ratio<_> as core::ops::arith::Sub<&num_rational::Ratio<_>>>::sub Unexecuted instantiation: <num_rational::Ratio<_> as core::ops::arith::Rem<&num_rational::Ratio<_>>>::rem Unexecuted instantiation: <num_rational::Ratio<_> as core::ops::arith::Mul<&num_rational::Ratio<_>>>::mul Unexecuted instantiation: <num_rational::Ratio<_> as core::ops::arith::Div<&num_rational::Ratio<_>>>::div Unexecuted instantiation: <num_rational::Ratio<_> as core::ops::arith::Add<&num_rational::Ratio<_>>>::add |
675 | | } |
676 | | impl<'a, T> $imp<&'a T> for Ratio<T> |
677 | | where |
678 | | T: Clone + Integer, |
679 | | { |
680 | | type Output = Ratio<T>; |
681 | | |
682 | | #[inline] |
683 | 0 | fn $method(self, other: &T) -> Ratio<T> { |
684 | 0 | self.$method(other.clone()) |
685 | 0 | } Unexecuted instantiation: <num_rational::Ratio<_> as core::ops::arith::Sub<&_>>::sub Unexecuted instantiation: <num_rational::Ratio<_> as core::ops::arith::Rem<&_>>::rem Unexecuted instantiation: <num_rational::Ratio<_> as core::ops::arith::Mul<&_>>::mul Unexecuted instantiation: <num_rational::Ratio<_> as core::ops::arith::Div<&_>>::div Unexecuted instantiation: <num_rational::Ratio<_> as core::ops::arith::Add<&_>>::add |
686 | | } |
687 | | }; |
688 | | } |
689 | | |
690 | | macro_rules! forward_all_binop { |
691 | | (impl $imp:ident, $method:ident) => { |
692 | | forward_ref_ref_binop!(impl $imp, $method); |
693 | | forward_ref_val_binop!(impl $imp, $method); |
694 | | forward_val_ref_binop!(impl $imp, $method); |
695 | | }; |
696 | | } |
697 | | |
698 | | // Arithmetic |
699 | | forward_all_binop!(impl Mul, mul); |
700 | | // a/b * c/d = (a/gcd_ad)*(c/gcd_bc) / ((d/gcd_ad)*(b/gcd_bc)) |
701 | | impl<T> Mul<Ratio<T>> for Ratio<T> |
702 | | where |
703 | | T: Clone + Integer, |
704 | | { |
705 | | type Output = Ratio<T>; |
706 | | #[inline] |
707 | 0 | fn mul(self, rhs: Ratio<T>) -> Ratio<T> { |
708 | 0 | let gcd_ad = self.numer.gcd(&rhs.denom); |
709 | 0 | let gcd_bc = self.denom.gcd(&rhs.numer); |
710 | 0 | Ratio::new( |
711 | 0 | self.numer / gcd_ad.clone() * (rhs.numer / gcd_bc.clone()), |
712 | 0 | self.denom / gcd_bc * (rhs.denom / gcd_ad), |
713 | | ) |
714 | 0 | } |
715 | | } |
716 | | // a/b * c/1 = (a*c) / (b*1) = (a*c) / b |
717 | | impl<T> Mul<T> for Ratio<T> |
718 | | where |
719 | | T: Clone + Integer, |
720 | | { |
721 | | type Output = Ratio<T>; |
722 | | #[inline] |
723 | 0 | fn mul(self, rhs: T) -> Ratio<T> { |
724 | 0 | let gcd = self.denom.gcd(&rhs); |
725 | 0 | Ratio::new(self.numer * (rhs / gcd.clone()), self.denom / gcd) |
726 | 0 | } |
727 | | } |
728 | | |
729 | | forward_all_binop!(impl Div, div); |
730 | | // (a/b) / (c/d) = (a/gcd_ac)*(d/gcd_bd) / ((c/gcd_ac)*(b/gcd_bd)) |
731 | | impl<T> Div<Ratio<T>> for Ratio<T> |
732 | | where |
733 | | T: Clone + Integer, |
734 | | { |
735 | | type Output = Ratio<T>; |
736 | | |
737 | | #[inline] |
738 | 0 | fn div(self, rhs: Ratio<T>) -> Ratio<T> { |
739 | 0 | let gcd_ac = self.numer.gcd(&rhs.numer); |
740 | 0 | let gcd_bd = self.denom.gcd(&rhs.denom); |
741 | 0 | Ratio::new( |
742 | 0 | self.numer / gcd_ac.clone() * (rhs.denom / gcd_bd.clone()), |
743 | 0 | self.denom / gcd_bd * (rhs.numer / gcd_ac), |
744 | | ) |
745 | 0 | } |
746 | | } |
747 | | // (a/b) / (c/1) = (a*1) / (b*c) = a / (b*c) |
748 | | impl<T> Div<T> for Ratio<T> |
749 | | where |
750 | | T: Clone + Integer, |
751 | | { |
752 | | type Output = Ratio<T>; |
753 | | |
754 | | #[inline] |
755 | 0 | fn div(self, rhs: T) -> Ratio<T> { |
756 | 0 | let gcd = self.numer.gcd(&rhs); |
757 | 0 | Ratio::new(self.numer / gcd.clone(), self.denom * (rhs / gcd)) |
758 | 0 | } |
759 | | } |
760 | | |
761 | | macro_rules! arith_impl { |
762 | | (impl $imp:ident, $method:ident) => { |
763 | | forward_all_binop!(impl $imp, $method); |
764 | | // Abstracts a/b `op` c/d = (a*lcm/b `op` c*lcm/d)/lcm where lcm = lcm(b,d) |
765 | | impl<T: Clone + Integer> $imp<Ratio<T>> for Ratio<T> { |
766 | | type Output = Ratio<T>; |
767 | | #[inline] |
768 | 0 | fn $method(self, rhs: Ratio<T>) -> Ratio<T> { |
769 | 0 | if self.denom == rhs.denom { |
770 | 0 | return Ratio::new(self.numer.$method(rhs.numer), rhs.denom); |
771 | 0 | } |
772 | 0 | let lcm = self.denom.lcm(&rhs.denom); |
773 | 0 | let lhs_numer = self.numer * (lcm.clone() / self.denom); |
774 | 0 | let rhs_numer = rhs.numer * (lcm.clone() / rhs.denom); |
775 | 0 | Ratio::new(lhs_numer.$method(rhs_numer), lcm) |
776 | 0 | } Unexecuted instantiation: <num_rational::Ratio<_> as core::ops::arith::Rem>::rem Unexecuted instantiation: <num_rational::Ratio<_> as core::ops::arith::Add>::add Unexecuted instantiation: <num_rational::Ratio<_> as core::ops::arith::Sub>::sub |
777 | | } |
778 | | // Abstracts the a/b `op` c/1 = (a*1 `op` b*c) / (b*1) = (a `op` b*c) / b pattern |
779 | | impl<T: Clone + Integer> $imp<T> for Ratio<T> { |
780 | | type Output = Ratio<T>; |
781 | | #[inline] |
782 | 0 | fn $method(self, rhs: T) -> Ratio<T> { |
783 | 0 | Ratio::new(self.numer.$method(self.denom.clone() * rhs), self.denom) |
784 | 0 | } Unexecuted instantiation: <num_rational::Ratio<_> as core::ops::arith::Sub<_>>::sub Unexecuted instantiation: <num_rational::Ratio<_> as core::ops::arith::Rem<_>>::rem Unexecuted instantiation: <num_rational::Ratio<_> as core::ops::arith::Add<_>>::add |
785 | | } |
786 | | }; |
787 | | } |
788 | | |
789 | | arith_impl!(impl Add, add); |
790 | | arith_impl!(impl Sub, sub); |
791 | | arith_impl!(impl Rem, rem); |
792 | | |
793 | | // a/b * c/d = (a*c)/(b*d) |
794 | | impl<T> CheckedMul for Ratio<T> |
795 | | where |
796 | | T: Clone + Integer + CheckedMul, |
797 | | { |
798 | | #[inline] |
799 | 0 | fn checked_mul(&self, rhs: &Ratio<T>) -> Option<Ratio<T>> { |
800 | 0 | let gcd_ad = self.numer.gcd(&rhs.denom); |
801 | 0 | let gcd_bc = self.denom.gcd(&rhs.numer); |
802 | 0 | Some(Ratio::new( |
803 | 0 | (self.numer.clone() / gcd_ad.clone()) |
804 | 0 | .checked_mul(&(rhs.numer.clone() / gcd_bc.clone()))?, |
805 | 0 | (self.denom.clone() / gcd_bc).checked_mul(&(rhs.denom.clone() / gcd_ad))?, |
806 | | )) |
807 | 0 | } |
808 | | } |
809 | | |
810 | | // (a/b) / (c/d) = (a*d)/(b*c) |
811 | | impl<T> CheckedDiv for Ratio<T> |
812 | | where |
813 | | T: Clone + Integer + CheckedMul, |
814 | | { |
815 | | #[inline] |
816 | 0 | fn checked_div(&self, rhs: &Ratio<T>) -> Option<Ratio<T>> { |
817 | 0 | if rhs.is_zero() { |
818 | 0 | return None; |
819 | 0 | } |
820 | 0 | let (numer, denom) = if self.denom == rhs.denom { |
821 | 0 | (self.numer.clone(), rhs.numer.clone()) |
822 | 0 | } else if self.numer == rhs.numer { |
823 | 0 | (rhs.denom.clone(), self.denom.clone()) |
824 | | } else { |
825 | 0 | let gcd_ac = self.numer.gcd(&rhs.numer); |
826 | 0 | let gcd_bd = self.denom.gcd(&rhs.denom); |
827 | | ( |
828 | 0 | (self.numer.clone() / gcd_ac.clone()) |
829 | 0 | .checked_mul(&(rhs.denom.clone() / gcd_bd.clone()))?, |
830 | 0 | (self.denom.clone() / gcd_bd).checked_mul(&(rhs.numer.clone() / gcd_ac))?, |
831 | | ) |
832 | | }; |
833 | | // Manual `reduce()`, avoiding sharp edges |
834 | 0 | if denom.is_zero() { |
835 | 0 | None |
836 | 0 | } else if numer.is_zero() { |
837 | 0 | Some(Self::zero()) |
838 | 0 | } else if numer == denom { |
839 | 0 | Some(Self::one()) |
840 | | } else { |
841 | 0 | let g = numer.gcd(&denom); |
842 | 0 | let numer = numer / g.clone(); |
843 | 0 | let denom = denom / g; |
844 | 0 | let raw = if denom < T::zero() { |
845 | | // We need to keep denom positive, but 2's-complement MIN may |
846 | | // overflow negation -- instead we can check multiplying -1. |
847 | 0 | let n1 = T::zero() - T::one(); |
848 | 0 | Ratio::new_raw(numer.checked_mul(&n1)?, denom.checked_mul(&n1)?) |
849 | | } else { |
850 | 0 | Ratio::new_raw(numer, denom) |
851 | | }; |
852 | 0 | Some(raw) |
853 | | } |
854 | 0 | } |
855 | | } |
856 | | |
857 | | // As arith_impl! but for Checked{Add,Sub} traits |
858 | | macro_rules! checked_arith_impl { |
859 | | (impl $imp:ident, $method:ident) => { |
860 | | impl<T: Clone + Integer + CheckedMul + $imp> $imp for Ratio<T> { |
861 | | #[inline] |
862 | 0 | fn $method(&self, rhs: &Ratio<T>) -> Option<Ratio<T>> { |
863 | 0 | let gcd = self.denom.clone().gcd(&rhs.denom); |
864 | 0 | let lcm = (self.denom.clone() / gcd.clone()).checked_mul(&rhs.denom)?; |
865 | 0 | let lhs_numer = (lcm.clone() / self.denom.clone()).checked_mul(&self.numer)?; |
866 | 0 | let rhs_numer = (lcm.clone() / rhs.denom.clone()).checked_mul(&rhs.numer)?; |
867 | 0 | Some(Ratio::new(lhs_numer.$method(&rhs_numer)?, lcm)) |
868 | 0 | } Unexecuted instantiation: <num_rational::Ratio<_> as num_traits::ops::checked::CheckedAdd>::checked_add Unexecuted instantiation: <num_rational::Ratio<_> as num_traits::ops::checked::CheckedSub>::checked_sub |
869 | | } |
870 | | }; |
871 | | } |
872 | | |
873 | | // a/b + c/d = (lcm/b*a + lcm/d*c)/lcm, where lcm = lcm(b,d) |
874 | | checked_arith_impl!(impl CheckedAdd, checked_add); |
875 | | |
876 | | // a/b - c/d = (lcm/b*a - lcm/d*c)/lcm, where lcm = lcm(b,d) |
877 | | checked_arith_impl!(impl CheckedSub, checked_sub); |
878 | | |
879 | | impl<T> Neg for Ratio<T> |
880 | | where |
881 | | T: Clone + Integer + Neg<Output = T>, |
882 | | { |
883 | | type Output = Ratio<T>; |
884 | | |
885 | | #[inline] |
886 | 0 | fn neg(self) -> Ratio<T> { |
887 | 0 | Ratio::new_raw(-self.numer, self.denom) |
888 | 0 | } Unexecuted instantiation: <num_rational::Ratio<i8> as core::ops::arith::Neg>::neg Unexecuted instantiation: <num_rational::Ratio<isize> as core::ops::arith::Neg>::neg Unexecuted instantiation: <num_rational::Ratio<i32> as core::ops::arith::Neg>::neg Unexecuted instantiation: <num_rational::Ratio<i128> as core::ops::arith::Neg>::neg Unexecuted instantiation: <num_rational::Ratio<i16> as core::ops::arith::Neg>::neg Unexecuted instantiation: <num_rational::Ratio<i64> as core::ops::arith::Neg>::neg |
889 | | } |
890 | | |
891 | | impl<'a, T> Neg for &'a Ratio<T> |
892 | | where |
893 | | T: Clone + Integer + Neg<Output = T>, |
894 | | { |
895 | | type Output = Ratio<T>; |
896 | | |
897 | | #[inline] |
898 | 0 | fn neg(self) -> Ratio<T> { |
899 | 0 | -self.clone() |
900 | 0 | } |
901 | | } |
902 | | |
903 | | impl<T> Inv for Ratio<T> |
904 | | where |
905 | | T: Clone + Integer, |
906 | | { |
907 | | type Output = Ratio<T>; |
908 | | |
909 | | #[inline] |
910 | 0 | fn inv(self) -> Ratio<T> { |
911 | 0 | self.recip() |
912 | 0 | } |
913 | | } |
914 | | |
915 | | impl<'a, T> Inv for &'a Ratio<T> |
916 | | where |
917 | | T: Clone + Integer, |
918 | | { |
919 | | type Output = Ratio<T>; |
920 | | |
921 | | #[inline] |
922 | 0 | fn inv(self) -> Ratio<T> { |
923 | 0 | self.recip() |
924 | 0 | } |
925 | | } |
926 | | |
927 | | // Constants |
928 | | impl<T: ConstZero + ConstOne> Ratio<T> { |
929 | | /// A constant `Ratio` 0/1. |
930 | | pub const ZERO: Self = Self::new_raw(T::ZERO, T::ONE); |
931 | | } |
932 | | |
933 | | impl<T: Clone + Integer + ConstZero + ConstOne> ConstZero for Ratio<T> { |
934 | | const ZERO: Self = Self::ZERO; |
935 | | } |
936 | | |
937 | | impl<T: Clone + Integer> Zero for Ratio<T> { |
938 | | #[inline] |
939 | 0 | fn zero() -> Ratio<T> { |
940 | 0 | Ratio::new_raw(Zero::zero(), One::one()) |
941 | 0 | } |
942 | | |
943 | | #[inline] |
944 | 0 | fn is_zero(&self) -> bool { |
945 | 0 | self.numer.is_zero() |
946 | 0 | } |
947 | | |
948 | | #[inline] |
949 | 0 | fn set_zero(&mut self) { |
950 | 0 | self.numer.set_zero(); |
951 | 0 | self.denom.set_one(); |
952 | 0 | } |
953 | | } |
954 | | |
955 | | impl<T: ConstOne> Ratio<T> { |
956 | | /// A constant `Ratio` 1/1. |
957 | | pub const ONE: Self = Self::new_raw(T::ONE, T::ONE); |
958 | | } |
959 | | |
960 | | impl<T: Clone + Integer + ConstOne> ConstOne for Ratio<T> { |
961 | | const ONE: Self = Self::ONE; |
962 | | } |
963 | | |
964 | | impl<T: Clone + Integer> One for Ratio<T> { |
965 | | #[inline] |
966 | 0 | fn one() -> Ratio<T> { |
967 | 0 | Ratio::new_raw(One::one(), One::one()) |
968 | 0 | } |
969 | | |
970 | | #[inline] |
971 | 0 | fn is_one(&self) -> bool { |
972 | 0 | self.numer == self.denom |
973 | 0 | } |
974 | | |
975 | | #[inline] |
976 | 0 | fn set_one(&mut self) { |
977 | 0 | self.numer.set_one(); |
978 | 0 | self.denom.set_one(); |
979 | 0 | } Unexecuted instantiation: <num_rational::Ratio<num_bigint::bigint::BigInt> as num_traits::identities::One>::set_one Unexecuted instantiation: <num_rational::Ratio<i8> as num_traits::identities::One>::set_one Unexecuted instantiation: <num_rational::Ratio<u8> as num_traits::identities::One>::set_one Unexecuted instantiation: <num_rational::Ratio<isize> as num_traits::identities::One>::set_one Unexecuted instantiation: <num_rational::Ratio<usize> as num_traits::identities::One>::set_one Unexecuted instantiation: <num_rational::Ratio<i32> as num_traits::identities::One>::set_one Unexecuted instantiation: <num_rational::Ratio<u32> as num_traits::identities::One>::set_one Unexecuted instantiation: <num_rational::Ratio<i128> as num_traits::identities::One>::set_one Unexecuted instantiation: <num_rational::Ratio<u128> as num_traits::identities::One>::set_one Unexecuted instantiation: <num_rational::Ratio<i16> as num_traits::identities::One>::set_one Unexecuted instantiation: <num_rational::Ratio<u16> as num_traits::identities::One>::set_one Unexecuted instantiation: <num_rational::Ratio<i64> as num_traits::identities::One>::set_one Unexecuted instantiation: <num_rational::Ratio<u64> as num_traits::identities::One>::set_one |
980 | | } |
981 | | |
982 | | impl<T: Clone + Integer> Num for Ratio<T> { |
983 | | type FromStrRadixErr = ParseRatioError; |
984 | | |
985 | | /// Parses `numer/denom` where the numbers are in base `radix`. |
986 | 0 | fn from_str_radix(s: &str, radix: u32) -> Result<Ratio<T>, ParseRatioError> { |
987 | 0 | if s.splitn(2, '/').count() == 2 { |
988 | 0 | let mut parts = s.splitn(2, '/').map(|ss| { |
989 | 0 | T::from_str_radix(ss, radix).map_err(|_| ParseRatioError { |
990 | 0 | kind: RatioErrorKind::ParseError, |
991 | 0 | }) |
992 | 0 | }); |
993 | 0 | let numer: T = parts.next().unwrap()?; |
994 | 0 | let denom: T = parts.next().unwrap()?; |
995 | 0 | if denom.is_zero() { |
996 | 0 | Err(ParseRatioError { |
997 | 0 | kind: RatioErrorKind::ZeroDenominator, |
998 | 0 | }) |
999 | | } else { |
1000 | 0 | Ok(Ratio::new(numer, denom)) |
1001 | | } |
1002 | | } else { |
1003 | 0 | Err(ParseRatioError { |
1004 | 0 | kind: RatioErrorKind::ParseError, |
1005 | 0 | }) |
1006 | | } |
1007 | 0 | } |
1008 | | } |
1009 | | |
1010 | | impl<T: Clone + Integer + Signed> Signed for Ratio<T> { |
1011 | | #[inline] |
1012 | 0 | fn abs(&self) -> Ratio<T> { |
1013 | 0 | if self.is_negative() { |
1014 | 0 | -self.clone() |
1015 | | } else { |
1016 | 0 | self.clone() |
1017 | | } |
1018 | 0 | } |
1019 | | |
1020 | | #[inline] |
1021 | 0 | fn abs_sub(&self, other: &Ratio<T>) -> Ratio<T> { |
1022 | 0 | if *self <= *other { |
1023 | 0 | Zero::zero() |
1024 | | } else { |
1025 | 0 | self - other |
1026 | | } |
1027 | 0 | } |
1028 | | |
1029 | | #[inline] |
1030 | 0 | fn signum(&self) -> Ratio<T> { |
1031 | 0 | if self.is_positive() { |
1032 | 0 | Self::one() |
1033 | 0 | } else if self.is_zero() { |
1034 | 0 | Self::zero() |
1035 | | } else { |
1036 | 0 | -Self::one() |
1037 | | } |
1038 | 0 | } |
1039 | | |
1040 | | #[inline] |
1041 | 0 | fn is_positive(&self) -> bool { |
1042 | 0 | (self.numer.is_positive() && self.denom.is_positive()) |
1043 | 0 | || (self.numer.is_negative() && self.denom.is_negative()) |
1044 | 0 | } |
1045 | | |
1046 | | #[inline] |
1047 | 0 | fn is_negative(&self) -> bool { |
1048 | 0 | (self.numer.is_negative() && self.denom.is_positive()) |
1049 | 0 | || (self.numer.is_positive() && self.denom.is_negative()) |
1050 | 0 | } |
1051 | | } |
1052 | | |
1053 | | // String conversions |
1054 | | macro_rules! impl_formatting { |
1055 | | ($fmt_trait:ident, $prefix:expr, $fmt_str:expr, $fmt_alt:expr) => { |
1056 | | impl<T: $fmt_trait + Clone + Integer> $fmt_trait for Ratio<T> { |
1057 | | #[cfg(feature = "std")] |
1058 | 0 | fn fmt(&self, f: &mut Formatter<'_>) -> fmt::Result { |
1059 | 0 | let pre_pad = if self.denom.is_one() { |
1060 | 0 | format!($fmt_str, self.numer) |
1061 | | } else { |
1062 | 0 | if f.alternate() { |
1063 | 0 | format!(concat!($fmt_str, "/", $fmt_alt), self.numer, self.denom) |
1064 | | } else { |
1065 | 0 | format!(concat!($fmt_str, "/", $fmt_str), self.numer, self.denom) |
1066 | | } |
1067 | | }; |
1068 | 0 | if let Some(pre_pad) = pre_pad.strip_prefix("-") { |
1069 | 0 | f.pad_integral(false, $prefix, pre_pad) |
1070 | | } else { |
1071 | 0 | f.pad_integral(true, $prefix, &pre_pad) |
1072 | | } |
1073 | 0 | } Unexecuted instantiation: <num_rational::Ratio<_> as core::fmt::Display>::fmt Unexecuted instantiation: <num_rational::Ratio<_> as core::fmt::Octal>::fmt Unexecuted instantiation: <num_rational::Ratio<_> as core::fmt::Binary>::fmt Unexecuted instantiation: <num_rational::Ratio<_> as core::fmt::LowerHex>::fmt Unexecuted instantiation: <num_rational::Ratio<_> as core::fmt::UpperHex>::fmt Unexecuted instantiation: <num_rational::Ratio<_> as core::fmt::LowerExp>::fmt Unexecuted instantiation: <num_rational::Ratio<_> as core::fmt::UpperExp>::fmt |
1074 | | #[cfg(not(feature = "std"))] |
1075 | | fn fmt(&self, f: &mut Formatter<'_>) -> fmt::Result { |
1076 | | let plus = if f.sign_plus() && self.numer >= T::zero() { |
1077 | | "+" |
1078 | | } else { |
1079 | | "" |
1080 | | }; |
1081 | | if self.denom.is_one() { |
1082 | | if f.alternate() { |
1083 | | write!(f, concat!("{}", $fmt_alt), plus, self.numer) |
1084 | | } else { |
1085 | | write!(f, concat!("{}", $fmt_str), plus, self.numer) |
1086 | | } |
1087 | | } else { |
1088 | | if f.alternate() { |
1089 | | write!( |
1090 | | f, |
1091 | | concat!("{}", $fmt_alt, "/", $fmt_alt), |
1092 | | plus, self.numer, self.denom |
1093 | | ) |
1094 | | } else { |
1095 | | write!( |
1096 | | f, |
1097 | | concat!("{}", $fmt_str, "/", $fmt_str), |
1098 | | plus, self.numer, self.denom |
1099 | | ) |
1100 | | } |
1101 | | } |
1102 | | } |
1103 | | } |
1104 | | }; |
1105 | | } |
1106 | | |
1107 | | impl_formatting!(Display, "", "{}", "{:#}"); |
1108 | | impl_formatting!(Octal, "0o", "{:o}", "{:#o}"); |
1109 | | impl_formatting!(Binary, "0b", "{:b}", "{:#b}"); |
1110 | | impl_formatting!(LowerHex, "0x", "{:x}", "{:#x}"); |
1111 | | impl_formatting!(UpperHex, "0x", "{:X}", "{:#X}"); |
1112 | | impl_formatting!(LowerExp, "", "{:e}", "{:#e}"); |
1113 | | impl_formatting!(UpperExp, "", "{:E}", "{:#E}"); |
1114 | | |
1115 | | impl<T: FromStr + Clone + Integer> FromStr for Ratio<T> { |
1116 | | type Err = ParseRatioError; |
1117 | | |
1118 | | /// Parses `numer/denom` or just `numer`. |
1119 | 0 | fn from_str(s: &str) -> Result<Ratio<T>, ParseRatioError> { |
1120 | 0 | let mut split = s.splitn(2, '/'); |
1121 | | |
1122 | 0 | let n = split.next().ok_or(ParseRatioError { |
1123 | 0 | kind: RatioErrorKind::ParseError, |
1124 | 0 | })?; |
1125 | 0 | let num = FromStr::from_str(n).map_err(|_| ParseRatioError { |
1126 | 0 | kind: RatioErrorKind::ParseError, |
1127 | 0 | })?; |
1128 | | |
1129 | 0 | let d = split.next().unwrap_or("1"); |
1130 | 0 | let den = FromStr::from_str(d).map_err(|_| ParseRatioError { |
1131 | 0 | kind: RatioErrorKind::ParseError, |
1132 | 0 | })?; |
1133 | | |
1134 | 0 | if Zero::is_zero(&den) { |
1135 | 0 | Err(ParseRatioError { |
1136 | 0 | kind: RatioErrorKind::ZeroDenominator, |
1137 | 0 | }) |
1138 | | } else { |
1139 | 0 | Ok(Ratio::new(num, den)) |
1140 | | } |
1141 | 0 | } |
1142 | | } |
1143 | | |
1144 | | impl<T> From<Ratio<T>> for (T, T) { |
1145 | 0 | fn from(val: Ratio<T>) -> Self { |
1146 | 0 | (val.numer, val.denom) |
1147 | 0 | } |
1148 | | } |
1149 | | |
1150 | | #[cfg(feature = "serde")] |
1151 | | impl<T> serde::Serialize for Ratio<T> |
1152 | | where |
1153 | | T: serde::Serialize + Clone + Integer + PartialOrd, |
1154 | | { |
1155 | | fn serialize<S>(&self, serializer: S) -> Result<S::Ok, S::Error> |
1156 | | where |
1157 | | S: serde::Serializer, |
1158 | | { |
1159 | | (self.numer(), self.denom()).serialize(serializer) |
1160 | | } |
1161 | | } |
1162 | | |
1163 | | #[cfg(feature = "serde")] |
1164 | | impl<'de, T> serde::Deserialize<'de> for Ratio<T> |
1165 | | where |
1166 | | T: serde::Deserialize<'de> + Clone + Integer + PartialOrd, |
1167 | | { |
1168 | | fn deserialize<D>(deserializer: D) -> Result<Self, D::Error> |
1169 | | where |
1170 | | D: serde::Deserializer<'de>, |
1171 | | { |
1172 | | use serde::de::Error; |
1173 | | use serde::de::Unexpected; |
1174 | | let (numer, denom): (T, T) = serde::Deserialize::deserialize(deserializer)?; |
1175 | | if denom.is_zero() { |
1176 | | Err(Error::invalid_value( |
1177 | | Unexpected::Signed(0), |
1178 | | &"a ratio with non-zero denominator", |
1179 | | )) |
1180 | | } else { |
1181 | | Ok(Ratio::new_raw(numer, denom)) |
1182 | | } |
1183 | | } |
1184 | | } |
1185 | | |
1186 | | // FIXME: Bubble up specific errors |
1187 | | #[derive(Copy, Clone, Debug, PartialEq)] |
1188 | | pub struct ParseRatioError { |
1189 | | kind: RatioErrorKind, |
1190 | | } |
1191 | | |
1192 | | #[derive(Copy, Clone, Debug, PartialEq)] |
1193 | | enum RatioErrorKind { |
1194 | | ParseError, |
1195 | | ZeroDenominator, |
1196 | | } |
1197 | | |
1198 | | impl fmt::Display for ParseRatioError { |
1199 | 0 | fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { |
1200 | 0 | self.kind.description().fmt(f) |
1201 | 0 | } |
1202 | | } |
1203 | | |
1204 | | #[cfg(feature = "std")] |
1205 | | impl Error for ParseRatioError { |
1206 | | #[allow(deprecated)] |
1207 | 0 | fn description(&self) -> &str { |
1208 | 0 | self.kind.description() |
1209 | 0 | } |
1210 | | } |
1211 | | |
1212 | | impl RatioErrorKind { |
1213 | 0 | fn description(&self) -> &'static str { |
1214 | 0 | match *self { |
1215 | 0 | RatioErrorKind::ParseError => "failed to parse integer", |
1216 | 0 | RatioErrorKind::ZeroDenominator => "zero value denominator", |
1217 | | } |
1218 | 0 | } |
1219 | | } |
1220 | | |
1221 | | #[cfg(feature = "num-bigint")] |
1222 | | impl FromPrimitive for Ratio<BigInt> { |
1223 | 0 | fn from_i64(n: i64) -> Option<Self> { |
1224 | 0 | Some(Ratio::from_integer(n.into())) |
1225 | 0 | } |
1226 | | |
1227 | 0 | fn from_i128(n: i128) -> Option<Self> { |
1228 | 0 | Some(Ratio::from_integer(n.into())) |
1229 | 0 | } |
1230 | | |
1231 | 0 | fn from_u64(n: u64) -> Option<Self> { |
1232 | 0 | Some(Ratio::from_integer(n.into())) |
1233 | 0 | } |
1234 | | |
1235 | 0 | fn from_u128(n: u128) -> Option<Self> { |
1236 | 0 | Some(Ratio::from_integer(n.into())) |
1237 | 0 | } |
1238 | | |
1239 | 0 | fn from_f32(n: f32) -> Option<Self> { |
1240 | 0 | Ratio::from_float(n) |
1241 | 0 | } |
1242 | | |
1243 | 0 | fn from_f64(n: f64) -> Option<Self> { |
1244 | 0 | Ratio::from_float(n) |
1245 | 0 | } |
1246 | | } |
1247 | | |
1248 | | macro_rules! from_primitive_integer { |
1249 | | ($typ:ty, $approx:ident) => { |
1250 | | impl FromPrimitive for Ratio<$typ> { |
1251 | 0 | fn from_i64(n: i64) -> Option<Self> { |
1252 | 0 | <$typ as FromPrimitive>::from_i64(n).map(Ratio::from_integer) |
1253 | 0 | } Unexecuted instantiation: <num_rational::Ratio<i32> as num_traits::cast::FromPrimitive>::from_i64 Unexecuted instantiation: <num_rational::Ratio<i64> as num_traits::cast::FromPrimitive>::from_i64 Unexecuted instantiation: <num_rational::Ratio<i128> as num_traits::cast::FromPrimitive>::from_i64 Unexecuted instantiation: <num_rational::Ratio<isize> as num_traits::cast::FromPrimitive>::from_i64 Unexecuted instantiation: <num_rational::Ratio<u8> as num_traits::cast::FromPrimitive>::from_i64 Unexecuted instantiation: <num_rational::Ratio<u16> as num_traits::cast::FromPrimitive>::from_i64 Unexecuted instantiation: <num_rational::Ratio<u32> as num_traits::cast::FromPrimitive>::from_i64 Unexecuted instantiation: <num_rational::Ratio<u64> as num_traits::cast::FromPrimitive>::from_i64 Unexecuted instantiation: <num_rational::Ratio<u128> as num_traits::cast::FromPrimitive>::from_i64 Unexecuted instantiation: <num_rational::Ratio<usize> as num_traits::cast::FromPrimitive>::from_i64 Unexecuted instantiation: <num_rational::Ratio<i8> as num_traits::cast::FromPrimitive>::from_i64 Unexecuted instantiation: <num_rational::Ratio<i16> as num_traits::cast::FromPrimitive>::from_i64 |
1254 | | |
1255 | 0 | fn from_i128(n: i128) -> Option<Self> { |
1256 | 0 | <$typ as FromPrimitive>::from_i128(n).map(Ratio::from_integer) |
1257 | 0 | } Unexecuted instantiation: <num_rational::Ratio<i32> as num_traits::cast::FromPrimitive>::from_i128 Unexecuted instantiation: <num_rational::Ratio<i64> as num_traits::cast::FromPrimitive>::from_i128 Unexecuted instantiation: <num_rational::Ratio<i128> as num_traits::cast::FromPrimitive>::from_i128 Unexecuted instantiation: <num_rational::Ratio<isize> as num_traits::cast::FromPrimitive>::from_i128 Unexecuted instantiation: <num_rational::Ratio<u8> as num_traits::cast::FromPrimitive>::from_i128 Unexecuted instantiation: <num_rational::Ratio<u16> as num_traits::cast::FromPrimitive>::from_i128 Unexecuted instantiation: <num_rational::Ratio<u32> as num_traits::cast::FromPrimitive>::from_i128 Unexecuted instantiation: <num_rational::Ratio<u64> as num_traits::cast::FromPrimitive>::from_i128 Unexecuted instantiation: <num_rational::Ratio<u128> as num_traits::cast::FromPrimitive>::from_i128 Unexecuted instantiation: <num_rational::Ratio<usize> as num_traits::cast::FromPrimitive>::from_i128 Unexecuted instantiation: <num_rational::Ratio<i8> as num_traits::cast::FromPrimitive>::from_i128 Unexecuted instantiation: <num_rational::Ratio<i16> as num_traits::cast::FromPrimitive>::from_i128 |
1258 | | |
1259 | 0 | fn from_u64(n: u64) -> Option<Self> { |
1260 | 0 | <$typ as FromPrimitive>::from_u64(n).map(Ratio::from_integer) |
1261 | 0 | } Unexecuted instantiation: <num_rational::Ratio<i32> as num_traits::cast::FromPrimitive>::from_u64 Unexecuted instantiation: <num_rational::Ratio<i64> as num_traits::cast::FromPrimitive>::from_u64 Unexecuted instantiation: <num_rational::Ratio<i128> as num_traits::cast::FromPrimitive>::from_u64 Unexecuted instantiation: <num_rational::Ratio<isize> as num_traits::cast::FromPrimitive>::from_u64 Unexecuted instantiation: <num_rational::Ratio<u8> as num_traits::cast::FromPrimitive>::from_u64 Unexecuted instantiation: <num_rational::Ratio<u16> as num_traits::cast::FromPrimitive>::from_u64 Unexecuted instantiation: <num_rational::Ratio<u32> as num_traits::cast::FromPrimitive>::from_u64 Unexecuted instantiation: <num_rational::Ratio<u64> as num_traits::cast::FromPrimitive>::from_u64 Unexecuted instantiation: <num_rational::Ratio<u128> as num_traits::cast::FromPrimitive>::from_u64 Unexecuted instantiation: <num_rational::Ratio<usize> as num_traits::cast::FromPrimitive>::from_u64 Unexecuted instantiation: <num_rational::Ratio<i8> as num_traits::cast::FromPrimitive>::from_u64 Unexecuted instantiation: <num_rational::Ratio<i16> as num_traits::cast::FromPrimitive>::from_u64 |
1262 | | |
1263 | 0 | fn from_u128(n: u128) -> Option<Self> { |
1264 | 0 | <$typ as FromPrimitive>::from_u128(n).map(Ratio::from_integer) |
1265 | 0 | } Unexecuted instantiation: <num_rational::Ratio<i32> as num_traits::cast::FromPrimitive>::from_u128 Unexecuted instantiation: <num_rational::Ratio<i64> as num_traits::cast::FromPrimitive>::from_u128 Unexecuted instantiation: <num_rational::Ratio<i128> as num_traits::cast::FromPrimitive>::from_u128 Unexecuted instantiation: <num_rational::Ratio<isize> as num_traits::cast::FromPrimitive>::from_u128 Unexecuted instantiation: <num_rational::Ratio<u8> as num_traits::cast::FromPrimitive>::from_u128 Unexecuted instantiation: <num_rational::Ratio<u16> as num_traits::cast::FromPrimitive>::from_u128 Unexecuted instantiation: <num_rational::Ratio<u32> as num_traits::cast::FromPrimitive>::from_u128 Unexecuted instantiation: <num_rational::Ratio<u64> as num_traits::cast::FromPrimitive>::from_u128 Unexecuted instantiation: <num_rational::Ratio<u128> as num_traits::cast::FromPrimitive>::from_u128 Unexecuted instantiation: <num_rational::Ratio<usize> as num_traits::cast::FromPrimitive>::from_u128 Unexecuted instantiation: <num_rational::Ratio<i8> as num_traits::cast::FromPrimitive>::from_u128 Unexecuted instantiation: <num_rational::Ratio<i16> as num_traits::cast::FromPrimitive>::from_u128 |
1266 | | |
1267 | 0 | fn from_f32(n: f32) -> Option<Self> { |
1268 | 0 | $approx(n, 10e-20, 30) |
1269 | 0 | } Unexecuted instantiation: <num_rational::Ratio<i32> as num_traits::cast::FromPrimitive>::from_f32 Unexecuted instantiation: <num_rational::Ratio<i64> as num_traits::cast::FromPrimitive>::from_f32 Unexecuted instantiation: <num_rational::Ratio<i128> as num_traits::cast::FromPrimitive>::from_f32 Unexecuted instantiation: <num_rational::Ratio<isize> as num_traits::cast::FromPrimitive>::from_f32 Unexecuted instantiation: <num_rational::Ratio<u8> as num_traits::cast::FromPrimitive>::from_f32 Unexecuted instantiation: <num_rational::Ratio<u16> as num_traits::cast::FromPrimitive>::from_f32 Unexecuted instantiation: <num_rational::Ratio<u32> as num_traits::cast::FromPrimitive>::from_f32 Unexecuted instantiation: <num_rational::Ratio<u64> as num_traits::cast::FromPrimitive>::from_f32 Unexecuted instantiation: <num_rational::Ratio<u128> as num_traits::cast::FromPrimitive>::from_f32 Unexecuted instantiation: <num_rational::Ratio<usize> as num_traits::cast::FromPrimitive>::from_f32 Unexecuted instantiation: <num_rational::Ratio<i8> as num_traits::cast::FromPrimitive>::from_f32 Unexecuted instantiation: <num_rational::Ratio<i16> as num_traits::cast::FromPrimitive>::from_f32 |
1270 | | |
1271 | 0 | fn from_f64(n: f64) -> Option<Self> { |
1272 | 0 | $approx(n, 10e-20, 30) |
1273 | 0 | } Unexecuted instantiation: <num_rational::Ratio<i32> as num_traits::cast::FromPrimitive>::from_f64 Unexecuted instantiation: <num_rational::Ratio<i64> as num_traits::cast::FromPrimitive>::from_f64 Unexecuted instantiation: <num_rational::Ratio<i128> as num_traits::cast::FromPrimitive>::from_f64 Unexecuted instantiation: <num_rational::Ratio<isize> as num_traits::cast::FromPrimitive>::from_f64 Unexecuted instantiation: <num_rational::Ratio<u8> as num_traits::cast::FromPrimitive>::from_f64 Unexecuted instantiation: <num_rational::Ratio<u16> as num_traits::cast::FromPrimitive>::from_f64 Unexecuted instantiation: <num_rational::Ratio<u32> as num_traits::cast::FromPrimitive>::from_f64 Unexecuted instantiation: <num_rational::Ratio<u64> as num_traits::cast::FromPrimitive>::from_f64 Unexecuted instantiation: <num_rational::Ratio<u128> as num_traits::cast::FromPrimitive>::from_f64 Unexecuted instantiation: <num_rational::Ratio<usize> as num_traits::cast::FromPrimitive>::from_f64 Unexecuted instantiation: <num_rational::Ratio<i8> as num_traits::cast::FromPrimitive>::from_f64 Unexecuted instantiation: <num_rational::Ratio<i16> as num_traits::cast::FromPrimitive>::from_f64 |
1274 | | } |
1275 | | }; |
1276 | | } |
1277 | | |
1278 | | from_primitive_integer!(i8, approximate_float); |
1279 | | from_primitive_integer!(i16, approximate_float); |
1280 | | from_primitive_integer!(i32, approximate_float); |
1281 | | from_primitive_integer!(i64, approximate_float); |
1282 | | from_primitive_integer!(i128, approximate_float); |
1283 | | from_primitive_integer!(isize, approximate_float); |
1284 | | |
1285 | | from_primitive_integer!(u8, approximate_float_unsigned); |
1286 | | from_primitive_integer!(u16, approximate_float_unsigned); |
1287 | | from_primitive_integer!(u32, approximate_float_unsigned); |
1288 | | from_primitive_integer!(u64, approximate_float_unsigned); |
1289 | | from_primitive_integer!(u128, approximate_float_unsigned); |
1290 | | from_primitive_integer!(usize, approximate_float_unsigned); |
1291 | | |
1292 | | impl<T: Integer + Signed + Bounded + NumCast + Clone> Ratio<T> { |
1293 | 0 | pub fn approximate_float<F: FloatCore + NumCast>(f: F) -> Option<Ratio<T>> { |
1294 | | // 1/10e-20 < 1/2**32 which seems like a good default, and 30 seems |
1295 | | // to work well. Might want to choose something based on the types in the future, e.g. |
1296 | | // T::max().recip() and T::bits() or something similar. |
1297 | 0 | let epsilon = <F as NumCast>::from(10e-20).expect("Can't convert 10e-20"); |
1298 | 0 | approximate_float(f, epsilon, 30) |
1299 | 0 | } |
1300 | | } |
1301 | | |
1302 | | impl<T: Integer + Unsigned + Bounded + NumCast + Clone> Ratio<T> { |
1303 | 0 | pub fn approximate_float_unsigned<F: FloatCore + NumCast>(f: F) -> Option<Ratio<T>> { |
1304 | | // 1/10e-20 < 1/2**32 which seems like a good default, and 30 seems |
1305 | | // to work well. Might want to choose something based on the types in the future, e.g. |
1306 | | // T::max().recip() and T::bits() or something similar. |
1307 | 0 | let epsilon = <F as NumCast>::from(10e-20).expect("Can't convert 10e-20"); |
1308 | 0 | approximate_float_unsigned(f, epsilon, 30) |
1309 | 0 | } |
1310 | | } |
1311 | | |
1312 | 0 | fn approximate_float<T, F>(val: F, max_error: F, max_iterations: usize) -> Option<Ratio<T>> |
1313 | 0 | where |
1314 | 0 | T: Integer + Signed + Bounded + NumCast + Clone, |
1315 | 0 | F: FloatCore + NumCast, |
1316 | | { |
1317 | 0 | let negative = val.is_sign_negative(); |
1318 | 0 | let abs_val = val.abs(); |
1319 | | |
1320 | 0 | let r = approximate_float_unsigned(abs_val, max_error, max_iterations)?; |
1321 | | |
1322 | | // Make negative again if needed |
1323 | 0 | Some(if negative { r.neg() } else { r }) |
1324 | 0 | } Unexecuted instantiation: num_rational::approximate_float::<i8, f64> Unexecuted instantiation: num_rational::approximate_float::<i8, f32> Unexecuted instantiation: num_rational::approximate_float::<isize, f64> Unexecuted instantiation: num_rational::approximate_float::<isize, f32> Unexecuted instantiation: num_rational::approximate_float::<i32, f64> Unexecuted instantiation: num_rational::approximate_float::<i32, f32> Unexecuted instantiation: num_rational::approximate_float::<i128, f64> Unexecuted instantiation: num_rational::approximate_float::<i128, f32> Unexecuted instantiation: num_rational::approximate_float::<i16, f64> Unexecuted instantiation: num_rational::approximate_float::<i16, f32> Unexecuted instantiation: num_rational::approximate_float::<i64, f64> Unexecuted instantiation: num_rational::approximate_float::<i64, f32> |
1325 | | |
1326 | | // No Unsigned constraint because this also works on positive integers and is called |
1327 | | // like that, see above |
1328 | 0 | fn approximate_float_unsigned<T, F>(val: F, max_error: F, max_iterations: usize) -> Option<Ratio<T>> |
1329 | 0 | where |
1330 | 0 | T: Integer + Bounded + NumCast + Clone, |
1331 | 0 | F: FloatCore + NumCast, |
1332 | | { |
1333 | | // Continued fractions algorithm |
1334 | | // https://web.archive.org/web/20200629111319/http://mathforum.org:80/dr.math/faq/faq.fractions.html#decfrac |
1335 | | |
1336 | 0 | if val < F::zero() || val.is_nan() { |
1337 | 0 | return None; |
1338 | 0 | } |
1339 | | |
1340 | 0 | let mut q = val; |
1341 | 0 | let mut n0 = T::zero(); |
1342 | 0 | let mut d0 = T::one(); |
1343 | 0 | let mut n1 = T::one(); |
1344 | 0 | let mut d1 = T::zero(); |
1345 | | |
1346 | 0 | let t_max = T::max_value(); |
1347 | 0 | let t_max_f = <F as NumCast>::from(t_max.clone())?; |
1348 | | |
1349 | | // 1/epsilon > T::MAX |
1350 | 0 | let epsilon = t_max_f.recip(); |
1351 | | |
1352 | | // Overflow |
1353 | 0 | if q > t_max_f { |
1354 | 0 | return None; |
1355 | 0 | } |
1356 | | |
1357 | 0 | for _ in 0..max_iterations { |
1358 | 0 | let a = match <T as NumCast>::from(q) { |
1359 | 0 | None => break, |
1360 | 0 | Some(a) => a, |
1361 | | }; |
1362 | | |
1363 | 0 | let a_f = match <F as NumCast>::from(a.clone()) { |
1364 | 0 | None => break, |
1365 | 0 | Some(a_f) => a_f, |
1366 | | }; |
1367 | 0 | let f = q - a_f; |
1368 | | |
1369 | | // Prevent overflow |
1370 | 0 | if !a.is_zero() |
1371 | 0 | && (n1 > t_max.clone() / a.clone() |
1372 | 0 | || d1 > t_max.clone() / a.clone() |
1373 | 0 | || a.clone() * n1.clone() > t_max.clone() - n0.clone() |
1374 | 0 | || a.clone() * d1.clone() > t_max.clone() - d0.clone()) |
1375 | | { |
1376 | 0 | break; |
1377 | 0 | } |
1378 | | |
1379 | 0 | let n = a.clone() * n1.clone() + n0.clone(); |
1380 | 0 | let d = a.clone() * d1.clone() + d0.clone(); |
1381 | | |
1382 | 0 | n0 = n1; |
1383 | 0 | d0 = d1; |
1384 | 0 | n1 = n.clone(); |
1385 | 0 | d1 = d.clone(); |
1386 | | |
1387 | | // Simplify fraction. Doing so here instead of at the end |
1388 | | // allows us to get closer to the target value without overflows |
1389 | 0 | let g = Integer::gcd(&n1, &d1); |
1390 | 0 | if !g.is_zero() { |
1391 | 0 | n1 = n1 / g.clone(); |
1392 | 0 | d1 = d1 / g.clone(); |
1393 | 0 | } |
1394 | | |
1395 | | // Close enough? |
1396 | 0 | let (n_f, d_f) = match (<F as NumCast>::from(n), <F as NumCast>::from(d)) { |
1397 | 0 | (Some(n_f), Some(d_f)) => (n_f, d_f), |
1398 | 0 | _ => break, |
1399 | | }; |
1400 | 0 | if (n_f / d_f - val).abs() < max_error { |
1401 | 0 | break; |
1402 | 0 | } |
1403 | | |
1404 | | // Prevent division by ~0 |
1405 | 0 | if f < epsilon { |
1406 | 0 | break; |
1407 | 0 | } |
1408 | 0 | q = f.recip(); |
1409 | | } |
1410 | | |
1411 | | // Overflow |
1412 | 0 | if d1.is_zero() { |
1413 | 0 | return None; |
1414 | 0 | } |
1415 | | |
1416 | 0 | Some(Ratio::new(n1, d1)) |
1417 | 0 | } Unexecuted instantiation: num_rational::approximate_float_unsigned::<i8, f64> Unexecuted instantiation: num_rational::approximate_float_unsigned::<i8, f32> Unexecuted instantiation: num_rational::approximate_float_unsigned::<u8, f64> Unexecuted instantiation: num_rational::approximate_float_unsigned::<u8, f32> Unexecuted instantiation: num_rational::approximate_float_unsigned::<isize, f64> Unexecuted instantiation: num_rational::approximate_float_unsigned::<isize, f32> Unexecuted instantiation: num_rational::approximate_float_unsigned::<usize, f64> Unexecuted instantiation: num_rational::approximate_float_unsigned::<usize, f32> Unexecuted instantiation: num_rational::approximate_float_unsigned::<i32, f64> Unexecuted instantiation: num_rational::approximate_float_unsigned::<i32, f32> Unexecuted instantiation: num_rational::approximate_float_unsigned::<u32, f64> Unexecuted instantiation: num_rational::approximate_float_unsigned::<u32, f32> Unexecuted instantiation: num_rational::approximate_float_unsigned::<i128, f64> Unexecuted instantiation: num_rational::approximate_float_unsigned::<i128, f32> Unexecuted instantiation: num_rational::approximate_float_unsigned::<u128, f64> Unexecuted instantiation: num_rational::approximate_float_unsigned::<u128, f32> Unexecuted instantiation: num_rational::approximate_float_unsigned::<i16, f64> Unexecuted instantiation: num_rational::approximate_float_unsigned::<i16, f32> Unexecuted instantiation: num_rational::approximate_float_unsigned::<u16, f64> Unexecuted instantiation: num_rational::approximate_float_unsigned::<u16, f32> Unexecuted instantiation: num_rational::approximate_float_unsigned::<i64, f64> Unexecuted instantiation: num_rational::approximate_float_unsigned::<i64, f32> Unexecuted instantiation: num_rational::approximate_float_unsigned::<u64, f64> Unexecuted instantiation: num_rational::approximate_float_unsigned::<u64, f32> |
1418 | | |
1419 | | #[cfg(not(feature = "num-bigint"))] |
1420 | | macro_rules! to_primitive_small { |
1421 | | ($($type_name:ty)*) => ($( |
1422 | | impl ToPrimitive for Ratio<$type_name> { |
1423 | | fn to_i64(&self) -> Option<i64> { |
1424 | | self.to_integer().to_i64() |
1425 | | } |
1426 | | |
1427 | | fn to_i128(&self) -> Option<i128> { |
1428 | | self.to_integer().to_i128() |
1429 | | } |
1430 | | |
1431 | | fn to_u64(&self) -> Option<u64> { |
1432 | | self.to_integer().to_u64() |
1433 | | } |
1434 | | |
1435 | | fn to_u128(&self) -> Option<u128> { |
1436 | | self.to_integer().to_u128() |
1437 | | } |
1438 | | |
1439 | | fn to_f64(&self) -> Option<f64> { |
1440 | | let float = self.numer.to_f64().unwrap() / self.denom.to_f64().unwrap(); |
1441 | | if float.is_nan() { |
1442 | | None |
1443 | | } else { |
1444 | | Some(float) |
1445 | | } |
1446 | | } |
1447 | | } |
1448 | | )*) |
1449 | | } |
1450 | | |
1451 | | #[cfg(not(feature = "num-bigint"))] |
1452 | | to_primitive_small!(u8 i8 u16 i16 u32 i32); |
1453 | | |
1454 | | #[cfg(all(target_pointer_width = "32", not(feature = "num-bigint")))] |
1455 | | to_primitive_small!(usize isize); |
1456 | | |
1457 | | #[cfg(not(feature = "num-bigint"))] |
1458 | | macro_rules! to_primitive_64 { |
1459 | | ($($type_name:ty)*) => ($( |
1460 | | impl ToPrimitive for Ratio<$type_name> { |
1461 | | fn to_i64(&self) -> Option<i64> { |
1462 | | self.to_integer().to_i64() |
1463 | | } |
1464 | | |
1465 | | fn to_i128(&self) -> Option<i128> { |
1466 | | self.to_integer().to_i128() |
1467 | | } |
1468 | | |
1469 | | fn to_u64(&self) -> Option<u64> { |
1470 | | self.to_integer().to_u64() |
1471 | | } |
1472 | | |
1473 | | fn to_u128(&self) -> Option<u128> { |
1474 | | self.to_integer().to_u128() |
1475 | | } |
1476 | | |
1477 | | fn to_f64(&self) -> Option<f64> { |
1478 | | let float = ratio_to_f64( |
1479 | | self.numer as i128, |
1480 | | self.denom as i128 |
1481 | | ); |
1482 | | if float.is_nan() { |
1483 | | None |
1484 | | } else { |
1485 | | Some(float) |
1486 | | } |
1487 | | } |
1488 | | } |
1489 | | )*) |
1490 | | } |
1491 | | |
1492 | | #[cfg(not(feature = "num-bigint"))] |
1493 | | to_primitive_64!(u64 i64); |
1494 | | |
1495 | | #[cfg(all(target_pointer_width = "64", not(feature = "num-bigint")))] |
1496 | | to_primitive_64!(usize isize); |
1497 | | |
1498 | | #[cfg(feature = "num-bigint")] |
1499 | | impl<T: Clone + Integer + ToPrimitive + ToBigInt> ToPrimitive for Ratio<T> { |
1500 | 0 | fn to_i64(&self) -> Option<i64> { |
1501 | 0 | self.to_integer().to_i64() |
1502 | 0 | } |
1503 | | |
1504 | 0 | fn to_i128(&self) -> Option<i128> { |
1505 | 0 | self.to_integer().to_i128() |
1506 | 0 | } |
1507 | | |
1508 | 0 | fn to_u64(&self) -> Option<u64> { |
1509 | 0 | self.to_integer().to_u64() |
1510 | 0 | } |
1511 | | |
1512 | 0 | fn to_u128(&self) -> Option<u128> { |
1513 | 0 | self.to_integer().to_u128() |
1514 | 0 | } |
1515 | | |
1516 | 0 | fn to_f64(&self) -> Option<f64> { |
1517 | 0 | let float = match (self.numer.to_i64(), self.denom.to_i64()) { |
1518 | 0 | (Some(numer), Some(denom)) => ratio_to_f64( |
1519 | 0 | <i128 as From<_>>::from(numer), |
1520 | 0 | <i128 as From<_>>::from(denom), |
1521 | | ), |
1522 | | _ => { |
1523 | 0 | let numer: BigInt = self.numer.to_bigint()?; |
1524 | 0 | let denom: BigInt = self.denom.to_bigint()?; |
1525 | 0 | ratio_to_f64(numer, denom) |
1526 | | } |
1527 | | }; |
1528 | 0 | if float.is_nan() { |
1529 | 0 | None |
1530 | | } else { |
1531 | 0 | Some(float) |
1532 | | } |
1533 | 0 | } |
1534 | | } |
1535 | | |
1536 | | trait Bits { |
1537 | | fn bits(&self) -> u64; |
1538 | | } |
1539 | | |
1540 | | #[cfg(feature = "num-bigint")] |
1541 | | impl Bits for BigInt { |
1542 | 0 | fn bits(&self) -> u64 { |
1543 | 0 | self.bits() |
1544 | 0 | } |
1545 | | } |
1546 | | |
1547 | | impl Bits for i128 { |
1548 | 0 | fn bits(&self) -> u64 { |
1549 | 0 | (128 - self.wrapping_abs().leading_zeros()).into() |
1550 | 0 | } |
1551 | | } |
1552 | | |
1553 | | /// Converts a ratio of `T` to an f64. |
1554 | | /// |
1555 | | /// In addition to stated trait bounds, `T` must be able to hold numbers 56 bits larger than |
1556 | | /// the largest of `numer` and `denom`. This is automatically true if `T` is `BigInt`. |
1557 | 0 | fn ratio_to_f64<T: Bits + Clone + Integer + Signed + ShlAssign<usize> + ToPrimitive>( |
1558 | 0 | numer: T, |
1559 | 0 | denom: T, |
1560 | 0 | ) -> f64 { |
1561 | | use core::f64::{INFINITY, MANTISSA_DIGITS, MAX_EXP, MIN_EXP, RADIX}; |
1562 | | |
1563 | 0 | assert_eq!( |
1564 | | RADIX, 2, |
1565 | 0 | "only floating point implementations with radix 2 are supported" |
1566 | | ); |
1567 | | |
1568 | | // Inclusive upper and lower bounds to the range of exactly-representable ints in an f64. |
1569 | | const MAX_EXACT_INT: i64 = 1i64 << MANTISSA_DIGITS; |
1570 | | const MIN_EXACT_INT: i64 = -MAX_EXACT_INT; |
1571 | | |
1572 | 0 | let flo_sign = numer.signum().to_f64().unwrap() / denom.signum().to_f64().unwrap(); |
1573 | 0 | if !flo_sign.is_normal() { |
1574 | 0 | return flo_sign; |
1575 | 0 | } |
1576 | | |
1577 | | // Fast track: both sides can losslessly be converted to f64s. In this case, letting the |
1578 | | // FPU do the job is faster and easier. In any other case, converting to f64s may lead |
1579 | | // to an inexact result: https://stackoverflow.com/questions/56641441/. |
1580 | 0 | if let (Some(n), Some(d)) = (numer.to_i64(), denom.to_i64()) { |
1581 | 0 | let exact = MIN_EXACT_INT..=MAX_EXACT_INT; |
1582 | 0 | if exact.contains(&n) && exact.contains(&d) { |
1583 | 0 | return n.to_f64().unwrap() / d.to_f64().unwrap(); |
1584 | 0 | } |
1585 | 0 | } |
1586 | | |
1587 | | // Otherwise, the goal is to obtain a quotient with at least 55 bits. 53 of these bits will |
1588 | | // be used as the mantissa of the resulting float, and the remaining two are for rounding. |
1589 | | // There's an error of up to 1 on the number of resulting bits, so we may get either 55 or |
1590 | | // 56 bits. |
1591 | 0 | let mut numer = numer.abs(); |
1592 | 0 | let mut denom = denom.abs(); |
1593 | 0 | let (is_diff_positive, absolute_diff) = match numer.bits().checked_sub(denom.bits()) { |
1594 | 0 | Some(diff) => (true, diff), |
1595 | 0 | None => (false, denom.bits() - numer.bits()), |
1596 | | }; |
1597 | | |
1598 | | // Filter out overflows and underflows. After this step, the signed difference fits in an |
1599 | | // isize. |
1600 | 0 | if is_diff_positive && absolute_diff > MAX_EXP as u64 { |
1601 | 0 | return INFINITY * flo_sign; |
1602 | 0 | } |
1603 | 0 | if !is_diff_positive && absolute_diff > -MIN_EXP as u64 + MANTISSA_DIGITS as u64 + 1 { |
1604 | 0 | return 0.0 * flo_sign; |
1605 | 0 | } |
1606 | 0 | let diff = if is_diff_positive { |
1607 | 0 | absolute_diff.to_isize().unwrap() |
1608 | | } else { |
1609 | 0 | -absolute_diff.to_isize().unwrap() |
1610 | | }; |
1611 | | |
1612 | | // Shift is chosen so that the quotient will have 55 or 56 bits. The exception is if the |
1613 | | // quotient is going to be subnormal, in which case it may have fewer bits. |
1614 | 0 | let shift: isize = diff.max(MIN_EXP as isize) - MANTISSA_DIGITS as isize - 2; |
1615 | 0 | if shift >= 0 { |
1616 | 0 | denom <<= shift as usize |
1617 | | } else { |
1618 | 0 | numer <<= -shift as usize |
1619 | | }; |
1620 | | |
1621 | 0 | let (quotient, remainder) = numer.div_rem(&denom); |
1622 | | |
1623 | | // This is guaranteed to fit since we've set up quotient to be at most 56 bits. |
1624 | 0 | let mut quotient = quotient.to_u64().unwrap(); |
1625 | 0 | let n_rounding_bits = { |
1626 | 0 | let quotient_bits = 64 - quotient.leading_zeros() as isize; |
1627 | 0 | let subnormal_bits = MIN_EXP as isize - shift; |
1628 | 0 | quotient_bits.max(subnormal_bits) - MANTISSA_DIGITS as isize |
1629 | 0 | } as usize; |
1630 | 0 | debug_assert!(n_rounding_bits == 2 || n_rounding_bits == 3); |
1631 | 0 | let rounding_bit_mask = (1u64 << n_rounding_bits) - 1; |
1632 | | |
1633 | | // Round to 53 bits with round-to-even. For rounding, we need to take into account both |
1634 | | // our rounding bits and the division's remainder. |
1635 | 0 | let ls_bit = quotient & (1u64 << n_rounding_bits) != 0; |
1636 | 0 | let ms_rounding_bit = quotient & (1u64 << (n_rounding_bits - 1)) != 0; |
1637 | 0 | let ls_rounding_bits = quotient & (rounding_bit_mask >> 1) != 0; |
1638 | 0 | if ms_rounding_bit && (ls_bit || ls_rounding_bits || !remainder.is_zero()) { |
1639 | 0 | quotient += 1u64 << n_rounding_bits; |
1640 | 0 | } |
1641 | 0 | quotient &= !rounding_bit_mask; |
1642 | | |
1643 | | // The quotient is guaranteed to be exactly representable as it's now 53 bits + 2 or 3 |
1644 | | // trailing zeros, so there is no risk of a rounding error here. |
1645 | 0 | let q_float = quotient as f64 * flo_sign; |
1646 | 0 | ldexp(q_float, shift as i32) |
1647 | 0 | } |
1648 | | |
1649 | | /// Multiply `x` by 2 to the power of `exp`. Returns an accurate result even if `2^exp` is not |
1650 | | /// representable. |
1651 | 0 | fn ldexp(x: f64, exp: i32) -> f64 { |
1652 | | use core::f64::{INFINITY, MANTISSA_DIGITS, MAX_EXP, RADIX}; |
1653 | | |
1654 | 0 | assert_eq!( |
1655 | | RADIX, 2, |
1656 | 0 | "only floating point implementations with radix 2 are supported" |
1657 | | ); |
1658 | | |
1659 | | const EXPONENT_MASK: u64 = 0x7ff << 52; |
1660 | | const MAX_UNSIGNED_EXPONENT: i32 = 0x7fe; |
1661 | | const MIN_SUBNORMAL_POWER: i32 = MANTISSA_DIGITS as i32; |
1662 | | |
1663 | 0 | if x.is_zero() || x.is_infinite() || x.is_nan() { |
1664 | 0 | return x; |
1665 | 0 | } |
1666 | | |
1667 | | // Filter out obvious over / underflows to make sure the resulting exponent fits in an isize. |
1668 | 0 | if exp > 3 * MAX_EXP { |
1669 | 0 | return INFINITY * x.signum(); |
1670 | 0 | } else if exp < -3 * MAX_EXP { |
1671 | 0 | return 0.0 * x.signum(); |
1672 | 0 | } |
1673 | | |
1674 | | // curr_exp is the x's *biased* exponent, and is in the [-54, MAX_UNSIGNED_EXPONENT] range. |
1675 | 0 | let (bits, curr_exp) = if !x.is_normal() { |
1676 | | // If x is subnormal, we make it normal by multiplying by 2^53. This causes no loss of |
1677 | | // precision or rounding. |
1678 | 0 | let normal_x = x * 2f64.powi(MIN_SUBNORMAL_POWER); |
1679 | 0 | let bits = normal_x.to_bits(); |
1680 | | // This cast is safe because the exponent is at most 0x7fe, which fits in an i32. |
1681 | 0 | ( |
1682 | 0 | bits, |
1683 | 0 | ((bits & EXPONENT_MASK) >> 52) as i32 - MIN_SUBNORMAL_POWER, |
1684 | 0 | ) |
1685 | | } else { |
1686 | 0 | let bits = x.to_bits(); |
1687 | 0 | let curr_exp = (bits & EXPONENT_MASK) >> 52; |
1688 | | // This cast is safe because the exponent is at most 0x7fe, which fits in an i32. |
1689 | 0 | (bits, curr_exp as i32) |
1690 | | }; |
1691 | | |
1692 | | // The addition can't overflow because exponent is between 0 and 0x7fe, and exp is between |
1693 | | // -2*MAX_EXP and 2*MAX_EXP. |
1694 | 0 | let new_exp = curr_exp + exp; |
1695 | | |
1696 | 0 | if new_exp > MAX_UNSIGNED_EXPONENT { |
1697 | 0 | INFINITY * x.signum() |
1698 | 0 | } else if new_exp > 0 { |
1699 | | // Normal case: exponent is not too large nor subnormal. |
1700 | 0 | let new_bits = (bits & !EXPONENT_MASK) | ((new_exp as u64) << 52); |
1701 | 0 | f64::from_bits(new_bits) |
1702 | 0 | } else if new_exp >= -(MANTISSA_DIGITS as i32) { |
1703 | | // Result is subnormal but may not be zero. |
1704 | | // In this case, we increase the exponent by 54 to make it normal, then multiply the end |
1705 | | // result by 2^-53. This results in a single multiplication with no prior rounding error, |
1706 | | // so there is no risk of double rounding. |
1707 | 0 | let new_exp = new_exp + MIN_SUBNORMAL_POWER; |
1708 | 0 | debug_assert!(new_exp >= 0); |
1709 | 0 | let new_bits = (bits & !EXPONENT_MASK) | ((new_exp as u64) << 52); |
1710 | 0 | f64::from_bits(new_bits) * 2f64.powi(-MIN_SUBNORMAL_POWER) |
1711 | | } else { |
1712 | | // Result is zero. |
1713 | 0 | return 0.0 * x.signum(); |
1714 | | } |
1715 | 0 | } |
1716 | | |
1717 | | #[cfg(test)] |
1718 | | #[cfg(feature = "std")] |
1719 | | fn hash<T: Hash>(x: &T) -> u64 { |
1720 | | use std::collections::hash_map::RandomState; |
1721 | | use std::hash::BuildHasher; |
1722 | | let mut hasher = <RandomState as BuildHasher>::Hasher::new(); |
1723 | | x.hash(&mut hasher); |
1724 | | hasher.finish() |
1725 | | } |
1726 | | |
1727 | | #[cfg(test)] |
1728 | | mod test { |
1729 | | use super::ldexp; |
1730 | | #[cfg(feature = "num-bigint")] |
1731 | | use super::{BigInt, BigRational}; |
1732 | | use super::{Ratio, Rational64}; |
1733 | | |
1734 | | use core::f64; |
1735 | | use core::i32; |
1736 | | use core::i64; |
1737 | | use core::str::FromStr; |
1738 | | use num_integer::Integer; |
1739 | | use num_traits::ToPrimitive; |
1740 | | use num_traits::{FromPrimitive, One, Pow, Signed, Zero}; |
1741 | | |
1742 | | pub const _0: Rational64 = Ratio { numer: 0, denom: 1 }; |
1743 | | pub const _1: Rational64 = Ratio { numer: 1, denom: 1 }; |
1744 | | pub const _2: Rational64 = Ratio { numer: 2, denom: 1 }; |
1745 | | pub const _NEG2: Rational64 = Ratio { |
1746 | | numer: -2, |
1747 | | denom: 1, |
1748 | | }; |
1749 | | pub const _8: Rational64 = Ratio { numer: 8, denom: 1 }; |
1750 | | pub const _15: Rational64 = Ratio { |
1751 | | numer: 15, |
1752 | | denom: 1, |
1753 | | }; |
1754 | | pub const _16: Rational64 = Ratio { |
1755 | | numer: 16, |
1756 | | denom: 1, |
1757 | | }; |
1758 | | |
1759 | | pub const _1_2: Rational64 = Ratio { numer: 1, denom: 2 }; |
1760 | | pub const _1_8: Rational64 = Ratio { numer: 1, denom: 8 }; |
1761 | | pub const _1_15: Rational64 = Ratio { |
1762 | | numer: 1, |
1763 | | denom: 15, |
1764 | | }; |
1765 | | pub const _1_16: Rational64 = Ratio { |
1766 | | numer: 1, |
1767 | | denom: 16, |
1768 | | }; |
1769 | | pub const _3_2: Rational64 = Ratio { numer: 3, denom: 2 }; |
1770 | | pub const _5_2: Rational64 = Ratio { numer: 5, denom: 2 }; |
1771 | | pub const _NEG1_2: Rational64 = Ratio { |
1772 | | numer: -1, |
1773 | | denom: 2, |
1774 | | }; |
1775 | | pub const _1_NEG2: Rational64 = Ratio { |
1776 | | numer: 1, |
1777 | | denom: -2, |
1778 | | }; |
1779 | | pub const _NEG1_NEG2: Rational64 = Ratio { |
1780 | | numer: -1, |
1781 | | denom: -2, |
1782 | | }; |
1783 | | pub const _1_3: Rational64 = Ratio { numer: 1, denom: 3 }; |
1784 | | pub const _NEG1_3: Rational64 = Ratio { |
1785 | | numer: -1, |
1786 | | denom: 3, |
1787 | | }; |
1788 | | pub const _2_3: Rational64 = Ratio { numer: 2, denom: 3 }; |
1789 | | pub const _NEG2_3: Rational64 = Ratio { |
1790 | | numer: -2, |
1791 | | denom: 3, |
1792 | | }; |
1793 | | pub const _MIN: Rational64 = Ratio { |
1794 | | numer: i64::MIN, |
1795 | | denom: 1, |
1796 | | }; |
1797 | | pub const _MIN_P1: Rational64 = Ratio { |
1798 | | numer: i64::MIN + 1, |
1799 | | denom: 1, |
1800 | | }; |
1801 | | pub const _MAX: Rational64 = Ratio { |
1802 | | numer: i64::MAX, |
1803 | | denom: 1, |
1804 | | }; |
1805 | | pub const _MAX_M1: Rational64 = Ratio { |
1806 | | numer: i64::MAX - 1, |
1807 | | denom: 1, |
1808 | | }; |
1809 | | pub const _BILLION: Rational64 = Ratio { |
1810 | | numer: 1_000_000_000, |
1811 | | denom: 1, |
1812 | | }; |
1813 | | |
1814 | | #[cfg(feature = "num-bigint")] |
1815 | | pub fn to_big(n: Rational64) -> BigRational { |
1816 | | Ratio::new( |
1817 | | FromPrimitive::from_i64(n.numer).unwrap(), |
1818 | | FromPrimitive::from_i64(n.denom).unwrap(), |
1819 | | ) |
1820 | | } |
1821 | | #[cfg(not(feature = "num-bigint"))] |
1822 | | pub fn to_big(n: Rational64) -> Rational64 { |
1823 | | Ratio::new( |
1824 | | FromPrimitive::from_i64(n.numer).unwrap(), |
1825 | | FromPrimitive::from_i64(n.denom).unwrap(), |
1826 | | ) |
1827 | | } |
1828 | | |
1829 | | #[test] |
1830 | | fn test_test_constants() { |
1831 | | // check our constants are what Ratio::new etc. would make. |
1832 | | assert_eq!(_0, Zero::zero()); |
1833 | | assert_eq!(_1, One::one()); |
1834 | | assert_eq!(_2, Ratio::from_integer(2)); |
1835 | | assert_eq!(_1_2, Ratio::new(1, 2)); |
1836 | | assert_eq!(_3_2, Ratio::new(3, 2)); |
1837 | | assert_eq!(_NEG1_2, Ratio::new(-1, 2)); |
1838 | | assert_eq!(_2, From::from(2)); |
1839 | | } |
1840 | | |
1841 | | #[test] |
1842 | | fn test_new_reduce() { |
1843 | | assert_eq!(Ratio::new(2, 2), One::one()); |
1844 | | assert_eq!(Ratio::new(0, i32::MIN), Zero::zero()); |
1845 | | assert_eq!(Ratio::new(i32::MIN, i32::MIN), One::one()); |
1846 | | } |
1847 | | #[test] |
1848 | | #[should_panic] |
1849 | | fn test_new_zero() { |
1850 | | let _a = Ratio::new(1, 0); |
1851 | | } |
1852 | | |
1853 | | #[test] |
1854 | | fn test_approximate_float() { |
1855 | | assert_eq!(Ratio::from_f32(0.5f32), Some(Ratio::new(1i64, 2))); |
1856 | | assert_eq!(Ratio::from_f64(0.5f64), Some(Ratio::new(1i32, 2))); |
1857 | | assert_eq!(Ratio::from_f32(5f32), Some(Ratio::new(5i64, 1))); |
1858 | | assert_eq!(Ratio::from_f64(5f64), Some(Ratio::new(5i32, 1))); |
1859 | | assert_eq!(Ratio::from_f32(29.97f32), Some(Ratio::new(2997i64, 100))); |
1860 | | assert_eq!(Ratio::from_f32(-29.97f32), Some(Ratio::new(-2997i64, 100))); |
1861 | | |
1862 | | assert_eq!(Ratio::<i8>::from_f32(63.5f32), Some(Ratio::new(127i8, 2))); |
1863 | | assert_eq!(Ratio::<i8>::from_f32(126.5f32), Some(Ratio::new(126i8, 1))); |
1864 | | assert_eq!(Ratio::<i8>::from_f32(127.0f32), Some(Ratio::new(127i8, 1))); |
1865 | | assert_eq!(Ratio::<i8>::from_f32(127.5f32), None); |
1866 | | assert_eq!(Ratio::<i8>::from_f32(-63.5f32), Some(Ratio::new(-127i8, 2))); |
1867 | | assert_eq!( |
1868 | | Ratio::<i8>::from_f32(-126.5f32), |
1869 | | Some(Ratio::new(-126i8, 1)) |
1870 | | ); |
1871 | | assert_eq!( |
1872 | | Ratio::<i8>::from_f32(-127.0f32), |
1873 | | Some(Ratio::new(-127i8, 1)) |
1874 | | ); |
1875 | | assert_eq!(Ratio::<i8>::from_f32(-127.5f32), None); |
1876 | | |
1877 | | assert_eq!(Ratio::<u8>::from_f32(-127f32), None); |
1878 | | assert_eq!(Ratio::<u8>::from_f32(127f32), Some(Ratio::new(127u8, 1))); |
1879 | | assert_eq!(Ratio::<u8>::from_f32(127.5f32), Some(Ratio::new(255u8, 2))); |
1880 | | assert_eq!(Ratio::<u8>::from_f32(256f32), None); |
1881 | | |
1882 | | assert_eq!(Ratio::<i64>::from_f64(-10e200), None); |
1883 | | assert_eq!(Ratio::<i64>::from_f64(10e200), None); |
1884 | | assert_eq!(Ratio::<i64>::from_f64(f64::INFINITY), None); |
1885 | | assert_eq!(Ratio::<i64>::from_f64(f64::NEG_INFINITY), None); |
1886 | | assert_eq!(Ratio::<i64>::from_f64(f64::NAN), None); |
1887 | | assert_eq!( |
1888 | | Ratio::<i64>::from_f64(f64::EPSILON), |
1889 | | Some(Ratio::new(1, 4503599627370496)) |
1890 | | ); |
1891 | | assert_eq!(Ratio::<i64>::from_f64(0.0), Some(Ratio::new(0, 1))); |
1892 | | assert_eq!(Ratio::<i64>::from_f64(-0.0), Some(Ratio::new(0, 1))); |
1893 | | } |
1894 | | |
1895 | | #[test] |
1896 | | #[allow(clippy::eq_op)] |
1897 | | fn test_cmp() { |
1898 | | assert!(_0 == _0 && _1 == _1); |
1899 | | assert!(_0 != _1 && _1 != _0); |
1900 | | assert!(_0 < _1 && !(_1 < _0)); |
1901 | | assert!(_1 > _0 && !(_0 > _1)); |
1902 | | |
1903 | | assert!(_0 <= _0 && _1 <= _1); |
1904 | | assert!(_0 <= _1 && !(_1 <= _0)); |
1905 | | |
1906 | | assert!(_0 >= _0 && _1 >= _1); |
1907 | | assert!(_1 >= _0 && !(_0 >= _1)); |
1908 | | |
1909 | | let _0_2: Rational64 = Ratio::new_raw(0, 2); |
1910 | | assert_eq!(_0, _0_2); |
1911 | | } |
1912 | | |
1913 | | #[test] |
1914 | | fn test_cmp_overflow() { |
1915 | | use core::cmp::Ordering; |
1916 | | |
1917 | | // issue #7 example: |
1918 | | let big = Ratio::new(128u8, 1); |
1919 | | let small = big.recip(); |
1920 | | assert!(big > small); |
1921 | | |
1922 | | // try a few that are closer together |
1923 | | // (some matching numer, some matching denom, some neither) |
1924 | | let ratios = [ |
1925 | | Ratio::new(125_i8, 127_i8), |
1926 | | Ratio::new(63_i8, 64_i8), |
1927 | | Ratio::new(124_i8, 125_i8), |
1928 | | Ratio::new(125_i8, 126_i8), |
1929 | | Ratio::new(126_i8, 127_i8), |
1930 | | Ratio::new(127_i8, 126_i8), |
1931 | | ]; |
1932 | | |
1933 | | fn check_cmp(a: Ratio<i8>, b: Ratio<i8>, ord: Ordering) { |
1934 | | #[cfg(feature = "std")] |
1935 | | println!("comparing {} and {}", a, b); |
1936 | | assert_eq!(a.cmp(&b), ord); |
1937 | | assert_eq!(b.cmp(&a), ord.reverse()); |
1938 | | } |
1939 | | |
1940 | | for (i, &a) in ratios.iter().enumerate() { |
1941 | | check_cmp(a, a, Ordering::Equal); |
1942 | | check_cmp(-a, a, Ordering::Less); |
1943 | | for &b in &ratios[i + 1..] { |
1944 | | check_cmp(a, b, Ordering::Less); |
1945 | | check_cmp(-a, -b, Ordering::Greater); |
1946 | | check_cmp(a.recip(), b.recip(), Ordering::Greater); |
1947 | | check_cmp(-a.recip(), -b.recip(), Ordering::Less); |
1948 | | } |
1949 | | } |
1950 | | } |
1951 | | |
1952 | | #[test] |
1953 | | fn test_to_integer() { |
1954 | | assert_eq!(_0.to_integer(), 0); |
1955 | | assert_eq!(_1.to_integer(), 1); |
1956 | | assert_eq!(_2.to_integer(), 2); |
1957 | | assert_eq!(_1_2.to_integer(), 0); |
1958 | | assert_eq!(_3_2.to_integer(), 1); |
1959 | | assert_eq!(_NEG1_2.to_integer(), 0); |
1960 | | } |
1961 | | |
1962 | | #[test] |
1963 | | fn test_numer() { |
1964 | | assert_eq!(_0.numer(), &0); |
1965 | | assert_eq!(_1.numer(), &1); |
1966 | | assert_eq!(_2.numer(), &2); |
1967 | | assert_eq!(_1_2.numer(), &1); |
1968 | | assert_eq!(_3_2.numer(), &3); |
1969 | | assert_eq!(_NEG1_2.numer(), &(-1)); |
1970 | | } |
1971 | | #[test] |
1972 | | fn test_denom() { |
1973 | | assert_eq!(_0.denom(), &1); |
1974 | | assert_eq!(_1.denom(), &1); |
1975 | | assert_eq!(_2.denom(), &1); |
1976 | | assert_eq!(_1_2.denom(), &2); |
1977 | | assert_eq!(_3_2.denom(), &2); |
1978 | | assert_eq!(_NEG1_2.denom(), &2); |
1979 | | } |
1980 | | |
1981 | | #[test] |
1982 | | fn test_is_integer() { |
1983 | | assert!(_0.is_integer()); |
1984 | | assert!(_1.is_integer()); |
1985 | | assert!(_2.is_integer()); |
1986 | | assert!(!_1_2.is_integer()); |
1987 | | assert!(!_3_2.is_integer()); |
1988 | | assert!(!_NEG1_2.is_integer()); |
1989 | | } |
1990 | | |
1991 | | #[cfg(not(feature = "std"))] |
1992 | | use core::fmt::{self, Write}; |
1993 | | #[cfg(not(feature = "std"))] |
1994 | | #[derive(Debug)] |
1995 | | struct NoStdTester { |
1996 | | cursor: usize, |
1997 | | buf: [u8; NoStdTester::BUF_SIZE], |
1998 | | } |
1999 | | |
2000 | | #[cfg(not(feature = "std"))] |
2001 | | impl NoStdTester { |
2002 | | fn new() -> NoStdTester { |
2003 | | NoStdTester { |
2004 | | buf: [0; Self::BUF_SIZE], |
2005 | | cursor: 0, |
2006 | | } |
2007 | | } |
2008 | | |
2009 | | fn clear(&mut self) { |
2010 | | self.buf = [0; Self::BUF_SIZE]; |
2011 | | self.cursor = 0; |
2012 | | } |
2013 | | |
2014 | | const WRITE_ERR: &'static str = "Formatted output too long"; |
2015 | | const BUF_SIZE: usize = 32; |
2016 | | } |
2017 | | |
2018 | | #[cfg(not(feature = "std"))] |
2019 | | impl Write for NoStdTester { |
2020 | | fn write_str(&mut self, s: &str) -> fmt::Result { |
2021 | | for byte in s.bytes() { |
2022 | | self.buf[self.cursor] = byte; |
2023 | | self.cursor += 1; |
2024 | | if self.cursor >= self.buf.len() { |
2025 | | return Err(fmt::Error {}); |
2026 | | } |
2027 | | } |
2028 | | Ok(()) |
2029 | | } |
2030 | | } |
2031 | | |
2032 | | #[cfg(not(feature = "std"))] |
2033 | | impl PartialEq<str> for NoStdTester { |
2034 | | fn eq(&self, other: &str) -> bool { |
2035 | | let other = other.as_bytes(); |
2036 | | for index in 0..self.cursor { |
2037 | | if self.buf.get(index) != other.get(index) { |
2038 | | return false; |
2039 | | } |
2040 | | } |
2041 | | true |
2042 | | } |
2043 | | } |
2044 | | |
2045 | | macro_rules! assert_fmt_eq { |
2046 | | ($fmt_args:expr, $string:expr) => { |
2047 | | #[cfg(not(feature = "std"))] |
2048 | | { |
2049 | | let mut tester = NoStdTester::new(); |
2050 | | write!(tester, "{}", $fmt_args).expect(NoStdTester::WRITE_ERR); |
2051 | | assert_eq!(tester, *$string); |
2052 | | tester.clear(); |
2053 | | } |
2054 | | #[cfg(feature = "std")] |
2055 | | { |
2056 | | assert_eq!(std::fmt::format($fmt_args), $string); |
2057 | | } |
2058 | | }; |
2059 | | } |
2060 | | |
2061 | | #[test] |
2062 | | fn test_show() { |
2063 | | // Test: |
2064 | | // :b :o :x, :X, :? |
2065 | | // alternate or not (#) |
2066 | | // positive and negative |
2067 | | // padding |
2068 | | // does not test precision (i.e. truncation) |
2069 | | assert_fmt_eq!(format_args!("{}", _2), "2"); |
2070 | | assert_fmt_eq!(format_args!("{:+}", _2), "+2"); |
2071 | | assert_fmt_eq!(format_args!("{:-}", _2), "2"); |
2072 | | assert_fmt_eq!(format_args!("{}", _1_2), "1/2"); |
2073 | | assert_fmt_eq!(format_args!("{}", -_1_2), "-1/2"); // test negatives |
2074 | | assert_fmt_eq!(format_args!("{}", _0), "0"); |
2075 | | assert_fmt_eq!(format_args!("{}", -_2), "-2"); |
2076 | | assert_fmt_eq!(format_args!("{:+}", -_2), "-2"); |
2077 | | assert_fmt_eq!(format_args!("{:b}", _2), "10"); |
2078 | | assert_fmt_eq!(format_args!("{:#b}", _2), "0b10"); |
2079 | | assert_fmt_eq!(format_args!("{:b}", _1_2), "1/10"); |
2080 | | assert_fmt_eq!(format_args!("{:+b}", _1_2), "+1/10"); |
2081 | | assert_fmt_eq!(format_args!("{:-b}", _1_2), "1/10"); |
2082 | | assert_fmt_eq!(format_args!("{:b}", _0), "0"); |
2083 | | assert_fmt_eq!(format_args!("{:#b}", _1_2), "0b1/0b10"); |
2084 | | // no std does not support padding |
2085 | | #[cfg(feature = "std")] |
2086 | | assert_eq!(&format!("{:010b}", _1_2), "0000001/10"); |
2087 | | #[cfg(feature = "std")] |
2088 | | assert_eq!(&format!("{:#010b}", _1_2), "0b001/0b10"); |
2089 | | let half_i8: Ratio<i8> = Ratio::new(1_i8, 2_i8); |
2090 | | assert_fmt_eq!(format_args!("{:b}", -half_i8), "11111111/10"); |
2091 | | assert_fmt_eq!(format_args!("{:#b}", -half_i8), "0b11111111/0b10"); |
2092 | | #[cfg(feature = "std")] |
2093 | | assert_eq!(&format!("{:05}", Ratio::new(-1_i8, 1_i8)), "-0001"); |
2094 | | |
2095 | | assert_fmt_eq!(format_args!("{:o}", _8), "10"); |
2096 | | assert_fmt_eq!(format_args!("{:o}", _1_8), "1/10"); |
2097 | | assert_fmt_eq!(format_args!("{:o}", _0), "0"); |
2098 | | assert_fmt_eq!(format_args!("{:#o}", _1_8), "0o1/0o10"); |
2099 | | #[cfg(feature = "std")] |
2100 | | assert_eq!(&format!("{:010o}", _1_8), "0000001/10"); |
2101 | | #[cfg(feature = "std")] |
2102 | | assert_eq!(&format!("{:#010o}", _1_8), "0o001/0o10"); |
2103 | | assert_fmt_eq!(format_args!("{:o}", -half_i8), "377/2"); |
2104 | | assert_fmt_eq!(format_args!("{:#o}", -half_i8), "0o377/0o2"); |
2105 | | |
2106 | | assert_fmt_eq!(format_args!("{:x}", _16), "10"); |
2107 | | assert_fmt_eq!(format_args!("{:x}", _15), "f"); |
2108 | | assert_fmt_eq!(format_args!("{:x}", _1_16), "1/10"); |
2109 | | assert_fmt_eq!(format_args!("{:x}", _1_15), "1/f"); |
2110 | | assert_fmt_eq!(format_args!("{:x}", _0), "0"); |
2111 | | assert_fmt_eq!(format_args!("{:#x}", _1_16), "0x1/0x10"); |
2112 | | #[cfg(feature = "std")] |
2113 | | assert_eq!(&format!("{:010x}", _1_16), "0000001/10"); |
2114 | | #[cfg(feature = "std")] |
2115 | | assert_eq!(&format!("{:#010x}", _1_16), "0x001/0x10"); |
2116 | | assert_fmt_eq!(format_args!("{:x}", -half_i8), "ff/2"); |
2117 | | assert_fmt_eq!(format_args!("{:#x}", -half_i8), "0xff/0x2"); |
2118 | | |
2119 | | assert_fmt_eq!(format_args!("{:X}", _16), "10"); |
2120 | | assert_fmt_eq!(format_args!("{:X}", _15), "F"); |
2121 | | assert_fmt_eq!(format_args!("{:X}", _1_16), "1/10"); |
2122 | | assert_fmt_eq!(format_args!("{:X}", _1_15), "1/F"); |
2123 | | assert_fmt_eq!(format_args!("{:X}", _0), "0"); |
2124 | | assert_fmt_eq!(format_args!("{:#X}", _1_16), "0x1/0x10"); |
2125 | | #[cfg(feature = "std")] |
2126 | | assert_eq!(format!("{:010X}", _1_16), "0000001/10"); |
2127 | | #[cfg(feature = "std")] |
2128 | | assert_eq!(format!("{:#010X}", _1_16), "0x001/0x10"); |
2129 | | assert_fmt_eq!(format_args!("{:X}", -half_i8), "FF/2"); |
2130 | | assert_fmt_eq!(format_args!("{:#X}", -half_i8), "0xFF/0x2"); |
2131 | | |
2132 | | assert_fmt_eq!(format_args!("{:e}", -_2), "-2e0"); |
2133 | | assert_fmt_eq!(format_args!("{:#e}", -_2), "-2e0"); |
2134 | | assert_fmt_eq!(format_args!("{:+e}", -_2), "-2e0"); |
2135 | | assert_fmt_eq!(format_args!("{:e}", _BILLION), "1e9"); |
2136 | | assert_fmt_eq!(format_args!("{:+e}", _BILLION), "+1e9"); |
2137 | | assert_fmt_eq!(format_args!("{:e}", _BILLION.recip()), "1e0/1e9"); |
2138 | | assert_fmt_eq!(format_args!("{:+e}", _BILLION.recip()), "+1e0/1e9"); |
2139 | | |
2140 | | assert_fmt_eq!(format_args!("{:E}", -_2), "-2E0"); |
2141 | | assert_fmt_eq!(format_args!("{:#E}", -_2), "-2E0"); |
2142 | | assert_fmt_eq!(format_args!("{:+E}", -_2), "-2E0"); |
2143 | | assert_fmt_eq!(format_args!("{:E}", _BILLION), "1E9"); |
2144 | | assert_fmt_eq!(format_args!("{:+E}", _BILLION), "+1E9"); |
2145 | | assert_fmt_eq!(format_args!("{:E}", _BILLION.recip()), "1E0/1E9"); |
2146 | | assert_fmt_eq!(format_args!("{:+E}", _BILLION.recip()), "+1E0/1E9"); |
2147 | | } |
2148 | | |
2149 | | mod arith { |
2150 | | use super::super::{Ratio, Rational64}; |
2151 | | use super::{to_big, _0, _1, _1_2, _2, _3_2, _5_2, _MAX, _MAX_M1, _MIN, _MIN_P1, _NEG1_2}; |
2152 | | use core::fmt::Debug; |
2153 | | use num_integer::Integer; |
2154 | | use num_traits::{Bounded, CheckedAdd, CheckedDiv, CheckedMul, CheckedSub, NumAssign}; |
2155 | | |
2156 | | #[test] |
2157 | | fn test_add() { |
2158 | | fn test(a: Rational64, b: Rational64, c: Rational64) { |
2159 | | assert_eq!(a + b, c); |
2160 | | assert_eq!( |
2161 | | { |
2162 | | let mut x = a; |
2163 | | x += b; |
2164 | | x |
2165 | | }, |
2166 | | c |
2167 | | ); |
2168 | | assert_eq!(to_big(a) + to_big(b), to_big(c)); |
2169 | | assert_eq!(a.checked_add(&b), Some(c)); |
2170 | | assert_eq!(to_big(a).checked_add(&to_big(b)), Some(to_big(c))); |
2171 | | } |
2172 | | fn test_assign(a: Rational64, b: i64, c: Rational64) { |
2173 | | assert_eq!(a + b, c); |
2174 | | assert_eq!( |
2175 | | { |
2176 | | let mut x = a; |
2177 | | x += b; |
2178 | | x |
2179 | | }, |
2180 | | c |
2181 | | ); |
2182 | | } |
2183 | | |
2184 | | test(_1, _1_2, _3_2); |
2185 | | test(_1, _1, _2); |
2186 | | test(_1_2, _3_2, _2); |
2187 | | test(_1_2, _NEG1_2, _0); |
2188 | | test_assign(_1_2, 1, _3_2); |
2189 | | } |
2190 | | |
2191 | | #[test] |
2192 | | fn test_add_overflow() { |
2193 | | // compares Ratio(1, T::max_value()) + Ratio(1, T::max_value()) |
2194 | | // to Ratio(1+1, T::max_value()) for each integer type. |
2195 | | // Previously, this calculation would overflow. |
2196 | | fn test_add_typed_overflow<T>() |
2197 | | where |
2198 | | T: Integer + Bounded + Clone + Debug + NumAssign, |
2199 | | { |
2200 | | let _1_max = Ratio::new(T::one(), T::max_value()); |
2201 | | let _2_max = Ratio::new(T::one() + T::one(), T::max_value()); |
2202 | | assert_eq!(_1_max.clone() + _1_max.clone(), _2_max); |
2203 | | assert_eq!( |
2204 | | { |
2205 | | let mut tmp = _1_max.clone(); |
2206 | | tmp += _1_max; |
2207 | | tmp |
2208 | | }, |
2209 | | _2_max |
2210 | | ); |
2211 | | } |
2212 | | test_add_typed_overflow::<u8>(); |
2213 | | test_add_typed_overflow::<u16>(); |
2214 | | test_add_typed_overflow::<u32>(); |
2215 | | test_add_typed_overflow::<u64>(); |
2216 | | test_add_typed_overflow::<usize>(); |
2217 | | test_add_typed_overflow::<u128>(); |
2218 | | |
2219 | | test_add_typed_overflow::<i8>(); |
2220 | | test_add_typed_overflow::<i16>(); |
2221 | | test_add_typed_overflow::<i32>(); |
2222 | | test_add_typed_overflow::<i64>(); |
2223 | | test_add_typed_overflow::<isize>(); |
2224 | | test_add_typed_overflow::<i128>(); |
2225 | | } |
2226 | | |
2227 | | #[test] |
2228 | | fn test_sub() { |
2229 | | fn test(a: Rational64, b: Rational64, c: Rational64) { |
2230 | | assert_eq!(a - b, c); |
2231 | | assert_eq!( |
2232 | | { |
2233 | | let mut x = a; |
2234 | | x -= b; |
2235 | | x |
2236 | | }, |
2237 | | c |
2238 | | ); |
2239 | | assert_eq!(to_big(a) - to_big(b), to_big(c)); |
2240 | | assert_eq!(a.checked_sub(&b), Some(c)); |
2241 | | assert_eq!(to_big(a).checked_sub(&to_big(b)), Some(to_big(c))); |
2242 | | } |
2243 | | fn test_assign(a: Rational64, b: i64, c: Rational64) { |
2244 | | assert_eq!(a - b, c); |
2245 | | assert_eq!( |
2246 | | { |
2247 | | let mut x = a; |
2248 | | x -= b; |
2249 | | x |
2250 | | }, |
2251 | | c |
2252 | | ); |
2253 | | } |
2254 | | |
2255 | | test(_1, _1_2, _1_2); |
2256 | | test(_3_2, _1_2, _1); |
2257 | | test(_1, _NEG1_2, _3_2); |
2258 | | test_assign(_1_2, 1, _NEG1_2); |
2259 | | } |
2260 | | |
2261 | | #[test] |
2262 | | fn test_sub_overflow() { |
2263 | | // compares Ratio(1, T::max_value()) - Ratio(1, T::max_value()) to T::zero() |
2264 | | // for each integer type. Previously, this calculation would overflow. |
2265 | | fn test_sub_typed_overflow<T>() |
2266 | | where |
2267 | | T: Integer + Bounded + Clone + Debug + NumAssign, |
2268 | | { |
2269 | | let _1_max: Ratio<T> = Ratio::new(T::one(), T::max_value()); |
2270 | | assert!(T::is_zero(&(_1_max.clone() - _1_max.clone()).numer)); |
2271 | | { |
2272 | | let mut tmp: Ratio<T> = _1_max.clone(); |
2273 | | tmp -= _1_max; |
2274 | | assert!(T::is_zero(&tmp.numer)); |
2275 | | } |
2276 | | } |
2277 | | test_sub_typed_overflow::<u8>(); |
2278 | | test_sub_typed_overflow::<u16>(); |
2279 | | test_sub_typed_overflow::<u32>(); |
2280 | | test_sub_typed_overflow::<u64>(); |
2281 | | test_sub_typed_overflow::<usize>(); |
2282 | | test_sub_typed_overflow::<u128>(); |
2283 | | |
2284 | | test_sub_typed_overflow::<i8>(); |
2285 | | test_sub_typed_overflow::<i16>(); |
2286 | | test_sub_typed_overflow::<i32>(); |
2287 | | test_sub_typed_overflow::<i64>(); |
2288 | | test_sub_typed_overflow::<isize>(); |
2289 | | test_sub_typed_overflow::<i128>(); |
2290 | | } |
2291 | | |
2292 | | #[test] |
2293 | | fn test_mul() { |
2294 | | fn test(a: Rational64, b: Rational64, c: Rational64) { |
2295 | | assert_eq!(a * b, c); |
2296 | | assert_eq!( |
2297 | | { |
2298 | | let mut x = a; |
2299 | | x *= b; |
2300 | | x |
2301 | | }, |
2302 | | c |
2303 | | ); |
2304 | | assert_eq!(to_big(a) * to_big(b), to_big(c)); |
2305 | | assert_eq!(a.checked_mul(&b), Some(c)); |
2306 | | assert_eq!(to_big(a).checked_mul(&to_big(b)), Some(to_big(c))); |
2307 | | } |
2308 | | fn test_assign(a: Rational64, b: i64, c: Rational64) { |
2309 | | assert_eq!(a * b, c); |
2310 | | assert_eq!( |
2311 | | { |
2312 | | let mut x = a; |
2313 | | x *= b; |
2314 | | x |
2315 | | }, |
2316 | | c |
2317 | | ); |
2318 | | } |
2319 | | |
2320 | | test(_1, _1_2, _1_2); |
2321 | | test(_1_2, _3_2, Ratio::new(3, 4)); |
2322 | | test(_1_2, _NEG1_2, Ratio::new(-1, 4)); |
2323 | | test_assign(_1_2, 2, _1); |
2324 | | } |
2325 | | |
2326 | | #[test] |
2327 | | fn test_mul_overflow() { |
2328 | | fn test_mul_typed_overflow<T>() |
2329 | | where |
2330 | | T: Integer + Bounded + Clone + Debug + NumAssign + CheckedMul, |
2331 | | { |
2332 | | let two = T::one() + T::one(); |
2333 | | let _3 = T::one() + T::one() + T::one(); |
2334 | | |
2335 | | // 1/big * 2/3 = 1/(max/4*3), where big is max/2 |
2336 | | // make big = max/2, but also divisible by 2 |
2337 | | let big = T::max_value() / two.clone() / two.clone() * two.clone(); |
2338 | | let _1_big: Ratio<T> = Ratio::new(T::one(), big.clone()); |
2339 | | let _2_3: Ratio<T> = Ratio::new(two.clone(), _3.clone()); |
2340 | | assert_eq!(None, big.clone().checked_mul(&_3.clone())); |
2341 | | let expected = Ratio::new(T::one(), big / two.clone() * _3.clone()); |
2342 | | assert_eq!(expected.clone(), _1_big.clone() * _2_3.clone()); |
2343 | | assert_eq!( |
2344 | | Some(expected.clone()), |
2345 | | _1_big.clone().checked_mul(&_2_3.clone()) |
2346 | | ); |
2347 | | assert_eq!(expected, { |
2348 | | let mut tmp = _1_big; |
2349 | | tmp *= _2_3; |
2350 | | tmp |
2351 | | }); |
2352 | | |
2353 | | // big/3 * 3 = big/1 |
2354 | | // make big = max/2, but make it indivisible by 3 |
2355 | | let big = T::max_value() / two / _3.clone() * _3.clone() + T::one(); |
2356 | | assert_eq!(None, big.clone().checked_mul(&_3.clone())); |
2357 | | let big_3 = Ratio::new(big.clone(), _3.clone()); |
2358 | | let expected = Ratio::new(big, T::one()); |
2359 | | assert_eq!(expected, big_3.clone() * _3.clone()); |
2360 | | assert_eq!(expected, { |
2361 | | let mut tmp = big_3; |
2362 | | tmp *= _3; |
2363 | | tmp |
2364 | | }); |
2365 | | } |
2366 | | test_mul_typed_overflow::<u16>(); |
2367 | | test_mul_typed_overflow::<u8>(); |
2368 | | test_mul_typed_overflow::<u32>(); |
2369 | | test_mul_typed_overflow::<u64>(); |
2370 | | test_mul_typed_overflow::<usize>(); |
2371 | | test_mul_typed_overflow::<u128>(); |
2372 | | |
2373 | | test_mul_typed_overflow::<i8>(); |
2374 | | test_mul_typed_overflow::<i16>(); |
2375 | | test_mul_typed_overflow::<i32>(); |
2376 | | test_mul_typed_overflow::<i64>(); |
2377 | | test_mul_typed_overflow::<isize>(); |
2378 | | test_mul_typed_overflow::<i128>(); |
2379 | | } |
2380 | | |
2381 | | #[test] |
2382 | | fn test_div() { |
2383 | | fn test(a: Rational64, b: Rational64, c: Rational64) { |
2384 | | assert_eq!(a / b, c); |
2385 | | assert_eq!( |
2386 | | { |
2387 | | let mut x = a; |
2388 | | x /= b; |
2389 | | x |
2390 | | }, |
2391 | | c |
2392 | | ); |
2393 | | assert_eq!(to_big(a) / to_big(b), to_big(c)); |
2394 | | assert_eq!(a.checked_div(&b), Some(c)); |
2395 | | assert_eq!(to_big(a).checked_div(&to_big(b)), Some(to_big(c))); |
2396 | | } |
2397 | | fn test_assign(a: Rational64, b: i64, c: Rational64) { |
2398 | | assert_eq!(a / b, c); |
2399 | | assert_eq!( |
2400 | | { |
2401 | | let mut x = a; |
2402 | | x /= b; |
2403 | | x |
2404 | | }, |
2405 | | c |
2406 | | ); |
2407 | | } |
2408 | | |
2409 | | test(_1, _1_2, _2); |
2410 | | test(_3_2, _1_2, _1 + _2); |
2411 | | test(_1, _NEG1_2, _NEG1_2 + _NEG1_2 + _NEG1_2 + _NEG1_2); |
2412 | | test_assign(_1, 2, _1_2); |
2413 | | } |
2414 | | |
2415 | | #[test] |
2416 | | fn test_div_overflow() { |
2417 | | fn test_div_typed_overflow<T>() |
2418 | | where |
2419 | | T: Integer + Bounded + Clone + Debug + NumAssign + CheckedMul, |
2420 | | { |
2421 | | let two = T::one() + T::one(); |
2422 | | let _3 = T::one() + T::one() + T::one(); |
2423 | | |
2424 | | // 1/big / 3/2 = 1/(max/4*3), where big is max/2 |
2425 | | // big ~ max/2, and big is divisible by 2 |
2426 | | let big = T::max_value() / two.clone() / two.clone() * two.clone(); |
2427 | | assert_eq!(None, big.clone().checked_mul(&_3.clone())); |
2428 | | let _1_big: Ratio<T> = Ratio::new(T::one(), big.clone()); |
2429 | | let _3_two: Ratio<T> = Ratio::new(_3.clone(), two.clone()); |
2430 | | let expected = Ratio::new(T::one(), big / two.clone() * _3.clone()); |
2431 | | assert_eq!(expected.clone(), _1_big.clone() / _3_two.clone()); |
2432 | | assert_eq!( |
2433 | | Some(expected.clone()), |
2434 | | _1_big.clone().checked_div(&_3_two.clone()) |
2435 | | ); |
2436 | | assert_eq!(expected, { |
2437 | | let mut tmp = _1_big; |
2438 | | tmp /= _3_two; |
2439 | | tmp |
2440 | | }); |
2441 | | |
2442 | | // 3/big / 3 = 1/big where big is max/2 |
2443 | | // big ~ max/2, and big is not divisible by 3 |
2444 | | let big = T::max_value() / two / _3.clone() * _3.clone() + T::one(); |
2445 | | assert_eq!(None, big.clone().checked_mul(&_3.clone())); |
2446 | | let _3_big = Ratio::new(_3.clone(), big.clone()); |
2447 | | let expected = Ratio::new(T::one(), big); |
2448 | | assert_eq!(expected, _3_big.clone() / _3.clone()); |
2449 | | assert_eq!(expected, { |
2450 | | let mut tmp = _3_big; |
2451 | | tmp /= _3; |
2452 | | tmp |
2453 | | }); |
2454 | | } |
2455 | | test_div_typed_overflow::<u8>(); |
2456 | | test_div_typed_overflow::<u16>(); |
2457 | | test_div_typed_overflow::<u32>(); |
2458 | | test_div_typed_overflow::<u64>(); |
2459 | | test_div_typed_overflow::<usize>(); |
2460 | | test_div_typed_overflow::<u128>(); |
2461 | | |
2462 | | test_div_typed_overflow::<i8>(); |
2463 | | test_div_typed_overflow::<i16>(); |
2464 | | test_div_typed_overflow::<i32>(); |
2465 | | test_div_typed_overflow::<i64>(); |
2466 | | test_div_typed_overflow::<isize>(); |
2467 | | test_div_typed_overflow::<i128>(); |
2468 | | } |
2469 | | |
2470 | | #[test] |
2471 | | fn test_rem() { |
2472 | | fn test(a: Rational64, b: Rational64, c: Rational64) { |
2473 | | assert_eq!(a % b, c); |
2474 | | assert_eq!( |
2475 | | { |
2476 | | let mut x = a; |
2477 | | x %= b; |
2478 | | x |
2479 | | }, |
2480 | | c |
2481 | | ); |
2482 | | assert_eq!(to_big(a) % to_big(b), to_big(c)) |
2483 | | } |
2484 | | fn test_assign(a: Rational64, b: i64, c: Rational64) { |
2485 | | assert_eq!(a % b, c); |
2486 | | assert_eq!( |
2487 | | { |
2488 | | let mut x = a; |
2489 | | x %= b; |
2490 | | x |
2491 | | }, |
2492 | | c |
2493 | | ); |
2494 | | } |
2495 | | |
2496 | | test(_3_2, _1, _1_2); |
2497 | | test(_3_2, _1_2, _0); |
2498 | | test(_5_2, _3_2, _1); |
2499 | | test(_2, _NEG1_2, _0); |
2500 | | test(_1_2, _2, _1_2); |
2501 | | test_assign(_3_2, 1, _1_2); |
2502 | | } |
2503 | | |
2504 | | #[test] |
2505 | | fn test_rem_overflow() { |
2506 | | // tests that Ratio(1,2) % Ratio(1, T::max_value()) equals 0 |
2507 | | // for each integer type. Previously, this calculation would overflow. |
2508 | | fn test_rem_typed_overflow<T>() |
2509 | | where |
2510 | | T: Integer + Bounded + Clone + Debug + NumAssign, |
2511 | | { |
2512 | | let two = T::one() + T::one(); |
2513 | | // value near to maximum, but divisible by two |
2514 | | let max_div2 = T::max_value() / two.clone() * two.clone(); |
2515 | | let _1_max: Ratio<T> = Ratio::new(T::one(), max_div2); |
2516 | | let _1_two: Ratio<T> = Ratio::new(T::one(), two); |
2517 | | assert!(T::is_zero(&(_1_two.clone() % _1_max.clone()).numer)); |
2518 | | { |
2519 | | let mut tmp: Ratio<T> = _1_two; |
2520 | | tmp %= _1_max; |
2521 | | assert!(T::is_zero(&tmp.numer)); |
2522 | | } |
2523 | | } |
2524 | | test_rem_typed_overflow::<u8>(); |
2525 | | test_rem_typed_overflow::<u16>(); |
2526 | | test_rem_typed_overflow::<u32>(); |
2527 | | test_rem_typed_overflow::<u64>(); |
2528 | | test_rem_typed_overflow::<usize>(); |
2529 | | test_rem_typed_overflow::<u128>(); |
2530 | | |
2531 | | test_rem_typed_overflow::<i8>(); |
2532 | | test_rem_typed_overflow::<i16>(); |
2533 | | test_rem_typed_overflow::<i32>(); |
2534 | | test_rem_typed_overflow::<i64>(); |
2535 | | test_rem_typed_overflow::<isize>(); |
2536 | | test_rem_typed_overflow::<i128>(); |
2537 | | } |
2538 | | |
2539 | | #[test] |
2540 | | fn test_neg() { |
2541 | | fn test(a: Rational64, b: Rational64) { |
2542 | | assert_eq!(-a, b); |
2543 | | assert_eq!(-to_big(a), to_big(b)) |
2544 | | } |
2545 | | |
2546 | | test(_0, _0); |
2547 | | test(_1_2, _NEG1_2); |
2548 | | test(-_1, _1); |
2549 | | } |
2550 | | #[test] |
2551 | | #[allow(clippy::eq_op)] |
2552 | | fn test_zero() { |
2553 | | assert_eq!(_0 + _0, _0); |
2554 | | assert_eq!(_0 * _0, _0); |
2555 | | assert_eq!(_0 * _1, _0); |
2556 | | assert_eq!(_0 / _NEG1_2, _0); |
2557 | | assert_eq!(_0 - _0, _0); |
2558 | | } |
2559 | | #[test] |
2560 | | #[should_panic] |
2561 | | fn test_div_0() { |
2562 | | let _a = _1 / _0; |
2563 | | } |
2564 | | |
2565 | | #[test] |
2566 | | fn test_checked_failures() { |
2567 | | let big = Ratio::new(128u8, 1); |
2568 | | let small = Ratio::new(1, 128u8); |
2569 | | assert_eq!(big.checked_add(&big), None); |
2570 | | assert_eq!(small.checked_sub(&big), None); |
2571 | | assert_eq!(big.checked_mul(&big), None); |
2572 | | assert_eq!(small.checked_div(&big), None); |
2573 | | assert_eq!(_1.checked_div(&_0), None); |
2574 | | } |
2575 | | |
2576 | | #[test] |
2577 | | fn test_checked_zeros() { |
2578 | | assert_eq!(_0.checked_add(&_0), Some(_0)); |
2579 | | assert_eq!(_0.checked_sub(&_0), Some(_0)); |
2580 | | assert_eq!(_0.checked_mul(&_0), Some(_0)); |
2581 | | assert_eq!(_0.checked_div(&_0), None); |
2582 | | } |
2583 | | |
2584 | | #[test] |
2585 | | fn test_checked_min() { |
2586 | | assert_eq!(_MIN.checked_add(&_MIN), None); |
2587 | | assert_eq!(_MIN.checked_sub(&_MIN), Some(_0)); |
2588 | | assert_eq!(_MIN.checked_mul(&_MIN), None); |
2589 | | assert_eq!(_MIN.checked_div(&_MIN), Some(_1)); |
2590 | | assert_eq!(_0.checked_add(&_MIN), Some(_MIN)); |
2591 | | assert_eq!(_0.checked_sub(&_MIN), None); |
2592 | | assert_eq!(_0.checked_mul(&_MIN), Some(_0)); |
2593 | | assert_eq!(_0.checked_div(&_MIN), Some(_0)); |
2594 | | assert_eq!(_1.checked_add(&_MIN), Some(_MIN_P1)); |
2595 | | assert_eq!(_1.checked_sub(&_MIN), None); |
2596 | | assert_eq!(_1.checked_mul(&_MIN), Some(_MIN)); |
2597 | | assert_eq!(_1.checked_div(&_MIN), None); |
2598 | | assert_eq!(_MIN.checked_add(&_0), Some(_MIN)); |
2599 | | assert_eq!(_MIN.checked_sub(&_0), Some(_MIN)); |
2600 | | assert_eq!(_MIN.checked_mul(&_0), Some(_0)); |
2601 | | assert_eq!(_MIN.checked_div(&_0), None); |
2602 | | assert_eq!(_MIN.checked_add(&_1), Some(_MIN_P1)); |
2603 | | assert_eq!(_MIN.checked_sub(&_1), None); |
2604 | | assert_eq!(_MIN.checked_mul(&_1), Some(_MIN)); |
2605 | | assert_eq!(_MIN.checked_div(&_1), Some(_MIN)); |
2606 | | } |
2607 | | |
2608 | | #[test] |
2609 | | fn test_checked_max() { |
2610 | | assert_eq!(_MAX.checked_add(&_MAX), None); |
2611 | | assert_eq!(_MAX.checked_sub(&_MAX), Some(_0)); |
2612 | | assert_eq!(_MAX.checked_mul(&_MAX), None); |
2613 | | assert_eq!(_MAX.checked_div(&_MAX), Some(_1)); |
2614 | | assert_eq!(_0.checked_add(&_MAX), Some(_MAX)); |
2615 | | assert_eq!(_0.checked_sub(&_MAX), Some(_MIN_P1)); |
2616 | | assert_eq!(_0.checked_mul(&_MAX), Some(_0)); |
2617 | | assert_eq!(_0.checked_div(&_MAX), Some(_0)); |
2618 | | assert_eq!(_1.checked_add(&_MAX), None); |
2619 | | assert_eq!(_1.checked_sub(&_MAX), Some(-_MAX_M1)); |
2620 | | assert_eq!(_1.checked_mul(&_MAX), Some(_MAX)); |
2621 | | assert_eq!(_1.checked_div(&_MAX), Some(_MAX.recip())); |
2622 | | assert_eq!(_MAX.checked_add(&_0), Some(_MAX)); |
2623 | | assert_eq!(_MAX.checked_sub(&_0), Some(_MAX)); |
2624 | | assert_eq!(_MAX.checked_mul(&_0), Some(_0)); |
2625 | | assert_eq!(_MAX.checked_div(&_0), None); |
2626 | | assert_eq!(_MAX.checked_add(&_1), None); |
2627 | | assert_eq!(_MAX.checked_sub(&_1), Some(_MAX_M1)); |
2628 | | assert_eq!(_MAX.checked_mul(&_1), Some(_MAX)); |
2629 | | assert_eq!(_MAX.checked_div(&_1), Some(_MAX)); |
2630 | | } |
2631 | | |
2632 | | #[test] |
2633 | | fn test_checked_min_max() { |
2634 | | assert_eq!(_MIN.checked_add(&_MAX), Some(-_1)); |
2635 | | assert_eq!(_MIN.checked_sub(&_MAX), None); |
2636 | | assert_eq!(_MIN.checked_mul(&_MAX), None); |
2637 | | assert_eq!( |
2638 | | _MIN.checked_div(&_MAX), |
2639 | | Some(Ratio::new(_MIN.numer, _MAX.numer)) |
2640 | | ); |
2641 | | assert_eq!(_MAX.checked_add(&_MIN), Some(-_1)); |
2642 | | assert_eq!(_MAX.checked_sub(&_MIN), None); |
2643 | | assert_eq!(_MAX.checked_mul(&_MIN), None); |
2644 | | assert_eq!(_MAX.checked_div(&_MIN), None); |
2645 | | } |
2646 | | } |
2647 | | |
2648 | | #[test] |
2649 | | fn test_round() { |
2650 | | assert_eq!(_1_3.ceil(), _1); |
2651 | | assert_eq!(_1_3.floor(), _0); |
2652 | | assert_eq!(_1_3.round(), _0); |
2653 | | assert_eq!(_1_3.trunc(), _0); |
2654 | | |
2655 | | assert_eq!(_NEG1_3.ceil(), _0); |
2656 | | assert_eq!(_NEG1_3.floor(), -_1); |
2657 | | assert_eq!(_NEG1_3.round(), _0); |
2658 | | assert_eq!(_NEG1_3.trunc(), _0); |
2659 | | |
2660 | | assert_eq!(_2_3.ceil(), _1); |
2661 | | assert_eq!(_2_3.floor(), _0); |
2662 | | assert_eq!(_2_3.round(), _1); |
2663 | | assert_eq!(_2_3.trunc(), _0); |
2664 | | |
2665 | | assert_eq!(_NEG2_3.ceil(), _0); |
2666 | | assert_eq!(_NEG2_3.floor(), -_1); |
2667 | | assert_eq!(_NEG2_3.round(), -_1); |
2668 | | assert_eq!(_NEG2_3.trunc(), _0); |
2669 | | |
2670 | | assert_eq!(_1_2.ceil(), _1); |
2671 | | assert_eq!(_1_2.floor(), _0); |
2672 | | assert_eq!(_1_2.round(), _1); |
2673 | | assert_eq!(_1_2.trunc(), _0); |
2674 | | |
2675 | | assert_eq!(_NEG1_2.ceil(), _0); |
2676 | | assert_eq!(_NEG1_2.floor(), -_1); |
2677 | | assert_eq!(_NEG1_2.round(), -_1); |
2678 | | assert_eq!(_NEG1_2.trunc(), _0); |
2679 | | |
2680 | | assert_eq!(_1.ceil(), _1); |
2681 | | assert_eq!(_1.floor(), _1); |
2682 | | assert_eq!(_1.round(), _1); |
2683 | | assert_eq!(_1.trunc(), _1); |
2684 | | |
2685 | | // Overflow checks |
2686 | | |
2687 | | let _neg1 = Ratio::from_integer(-1); |
2688 | | let _large_rat1 = Ratio::new(i32::MAX, i32::MAX - 1); |
2689 | | let _large_rat2 = Ratio::new(i32::MAX - 1, i32::MAX); |
2690 | | let _large_rat3 = Ratio::new(i32::MIN + 2, i32::MIN + 1); |
2691 | | let _large_rat4 = Ratio::new(i32::MIN + 1, i32::MIN + 2); |
2692 | | let _large_rat5 = Ratio::new(i32::MIN + 2, i32::MAX); |
2693 | | let _large_rat6 = Ratio::new(i32::MAX, i32::MIN + 2); |
2694 | | let _large_rat7 = Ratio::new(1, i32::MIN + 1); |
2695 | | let _large_rat8 = Ratio::new(1, i32::MAX); |
2696 | | |
2697 | | assert_eq!(_large_rat1.round(), One::one()); |
2698 | | assert_eq!(_large_rat2.round(), One::one()); |
2699 | | assert_eq!(_large_rat3.round(), One::one()); |
2700 | | assert_eq!(_large_rat4.round(), One::one()); |
2701 | | assert_eq!(_large_rat5.round(), _neg1); |
2702 | | assert_eq!(_large_rat6.round(), _neg1); |
2703 | | assert_eq!(_large_rat7.round(), Zero::zero()); |
2704 | | assert_eq!(_large_rat8.round(), Zero::zero()); |
2705 | | } |
2706 | | |
2707 | | #[test] |
2708 | | fn test_fract() { |
2709 | | assert_eq!(_1.fract(), _0); |
2710 | | assert_eq!(_NEG1_2.fract(), _NEG1_2); |
2711 | | assert_eq!(_1_2.fract(), _1_2); |
2712 | | assert_eq!(_3_2.fract(), _1_2); |
2713 | | } |
2714 | | |
2715 | | #[test] |
2716 | | fn test_recip() { |
2717 | | assert_eq!(_1 * _1.recip(), _1); |
2718 | | assert_eq!(_2 * _2.recip(), _1); |
2719 | | assert_eq!(_1_2 * _1_2.recip(), _1); |
2720 | | assert_eq!(_3_2 * _3_2.recip(), _1); |
2721 | | assert_eq!(_NEG1_2 * _NEG1_2.recip(), _1); |
2722 | | |
2723 | | assert_eq!(_3_2.recip(), _2_3); |
2724 | | assert_eq!(_NEG1_2.recip(), _NEG2); |
2725 | | assert_eq!(_NEG1_2.recip().denom(), &1); |
2726 | | } |
2727 | | |
2728 | | #[test] |
2729 | | #[should_panic(expected = "division by zero")] |
2730 | | fn test_recip_fail() { |
2731 | | let _a = Ratio::new(0, 1).recip(); |
2732 | | } |
2733 | | |
2734 | | #[test] |
2735 | | fn test_pow() { |
2736 | | fn test(r: Rational64, e: i32, expected: Rational64) { |
2737 | | assert_eq!(r.pow(e), expected); |
2738 | | assert_eq!(Pow::pow(r, e), expected); |
2739 | | assert_eq!(Pow::pow(r, &e), expected); |
2740 | | assert_eq!(Pow::pow(&r, e), expected); |
2741 | | assert_eq!(Pow::pow(&r, &e), expected); |
2742 | | #[cfg(feature = "num-bigint")] |
2743 | | test_big(r, e, expected); |
2744 | | } |
2745 | | |
2746 | | #[cfg(feature = "num-bigint")] |
2747 | | fn test_big(r: Rational64, e: i32, expected: Rational64) { |
2748 | | let r = BigRational::new_raw(r.numer.into(), r.denom.into()); |
2749 | | let expected = BigRational::new_raw(expected.numer.into(), expected.denom.into()); |
2750 | | assert_eq!((&r).pow(e), expected); |
2751 | | assert_eq!(Pow::pow(r.clone(), e), expected); |
2752 | | assert_eq!(Pow::pow(r.clone(), &e), expected); |
2753 | | assert_eq!(Pow::pow(&r, e), expected); |
2754 | | assert_eq!(Pow::pow(&r, &e), expected); |
2755 | | } |
2756 | | |
2757 | | test(_1_2, 2, Ratio::new(1, 4)); |
2758 | | test(_1_2, -2, Ratio::new(4, 1)); |
2759 | | test(_1, 1, _1); |
2760 | | test(_1, i32::MAX, _1); |
2761 | | test(_1, i32::MIN, _1); |
2762 | | test(_NEG1_2, 2, _1_2.pow(2i32)); |
2763 | | test(_NEG1_2, 3, -_1_2.pow(3i32)); |
2764 | | test(_3_2, 0, _1); |
2765 | | test(_3_2, -1, _3_2.recip()); |
2766 | | test(_3_2, 3, Ratio::new(27, 8)); |
2767 | | } |
2768 | | |
2769 | | #[test] |
2770 | | #[cfg(feature = "std")] |
2771 | | fn test_to_from_str() { |
2772 | | use std::string::{String, ToString}; |
2773 | | fn test(r: Rational64, s: String) { |
2774 | | assert_eq!(FromStr::from_str(&s), Ok(r)); |
2775 | | assert_eq!(r.to_string(), s); |
2776 | | } |
2777 | | test(_1, "1".to_string()); |
2778 | | test(_0, "0".to_string()); |
2779 | | test(_1_2, "1/2".to_string()); |
2780 | | test(_3_2, "3/2".to_string()); |
2781 | | test(_2, "2".to_string()); |
2782 | | test(_NEG1_2, "-1/2".to_string()); |
2783 | | } |
2784 | | #[test] |
2785 | | fn test_from_str_fail() { |
2786 | | fn test(s: &str) { |
2787 | | let rational: Result<Rational64, _> = FromStr::from_str(s); |
2788 | | assert!(rational.is_err()); |
2789 | | } |
2790 | | |
2791 | | let xs = ["0 /1", "abc", "", "1/", "--1/2", "3/2/1", "1/0"]; |
2792 | | for &s in xs.iter() { |
2793 | | test(s); |
2794 | | } |
2795 | | } |
2796 | | |
2797 | | #[cfg(feature = "num-bigint")] |
2798 | | #[test] |
2799 | | fn test_from_float() { |
2800 | | use num_traits::float::FloatCore; |
2801 | | fn test<T: FloatCore>(given: T, (numer, denom): (&str, &str)) { |
2802 | | let ratio: BigRational = Ratio::from_float(given).unwrap(); |
2803 | | assert_eq!( |
2804 | | ratio, |
2805 | | Ratio::new( |
2806 | | FromStr::from_str(numer).unwrap(), |
2807 | | FromStr::from_str(denom).unwrap() |
2808 | | ) |
2809 | | ); |
2810 | | } |
2811 | | |
2812 | | // f32 |
2813 | | test(core::f32::consts::PI, ("13176795", "4194304")); |
2814 | | test(2f32.powf(100.), ("1267650600228229401496703205376", "1")); |
2815 | | test( |
2816 | | -(2f32.powf(100.)), |
2817 | | ("-1267650600228229401496703205376", "1"), |
2818 | | ); |
2819 | | test( |
2820 | | 1.0 / 2f32.powf(100.), |
2821 | | ("1", "1267650600228229401496703205376"), |
2822 | | ); |
2823 | | test(684729.48391f32, ("1369459", "2")); |
2824 | | test(-8573.5918555f32, ("-4389679", "512")); |
2825 | | |
2826 | | // f64 |
2827 | | test( |
2828 | | core::f64::consts::PI, |
2829 | | ("884279719003555", "281474976710656"), |
2830 | | ); |
2831 | | test(2f64.powf(100.), ("1267650600228229401496703205376", "1")); |
2832 | | test( |
2833 | | -(2f64.powf(100.)), |
2834 | | ("-1267650600228229401496703205376", "1"), |
2835 | | ); |
2836 | | test(684729.48391f64, ("367611342500051", "536870912")); |
2837 | | test(-8573.5918555f64, ("-4713381968463931", "549755813888")); |
2838 | | test( |
2839 | | 1.0 / 2f64.powf(100.), |
2840 | | ("1", "1267650600228229401496703205376"), |
2841 | | ); |
2842 | | } |
2843 | | |
2844 | | #[cfg(feature = "num-bigint")] |
2845 | | #[test] |
2846 | | fn test_from_float_fail() { |
2847 | | use core::{f32, f64}; |
2848 | | |
2849 | | assert_eq!(Ratio::from_float(f32::NAN), None); |
2850 | | assert_eq!(Ratio::from_float(f32::INFINITY), None); |
2851 | | assert_eq!(Ratio::from_float(f32::NEG_INFINITY), None); |
2852 | | assert_eq!(Ratio::from_float(f64::NAN), None); |
2853 | | assert_eq!(Ratio::from_float(f64::INFINITY), None); |
2854 | | assert_eq!(Ratio::from_float(f64::NEG_INFINITY), None); |
2855 | | } |
2856 | | |
2857 | | #[test] |
2858 | | fn test_signed() { |
2859 | | assert_eq!(_NEG1_2.abs(), _1_2); |
2860 | | assert_eq!(_3_2.abs_sub(&_1_2), _1); |
2861 | | assert_eq!(_1_2.abs_sub(&_3_2), Zero::zero()); |
2862 | | assert_eq!(_1_2.signum(), One::one()); |
2863 | | assert_eq!(_NEG1_2.signum(), -<Ratio<i64>>::one()); |
2864 | | assert_eq!(_0.signum(), Zero::zero()); |
2865 | | assert!(_NEG1_2.is_negative()); |
2866 | | assert!(_1_NEG2.is_negative()); |
2867 | | assert!(!_NEG1_2.is_positive()); |
2868 | | assert!(!_1_NEG2.is_positive()); |
2869 | | assert!(_1_2.is_positive()); |
2870 | | assert!(_NEG1_NEG2.is_positive()); |
2871 | | assert!(!_1_2.is_negative()); |
2872 | | assert!(!_NEG1_NEG2.is_negative()); |
2873 | | assert!(!_0.is_positive()); |
2874 | | assert!(!_0.is_negative()); |
2875 | | } |
2876 | | |
2877 | | #[test] |
2878 | | #[cfg(feature = "std")] |
2879 | | fn test_hash() { |
2880 | | assert!(crate::hash(&_0) != crate::hash(&_1)); |
2881 | | assert!(crate::hash(&_0) != crate::hash(&_3_2)); |
2882 | | |
2883 | | // a == b -> hash(a) == hash(b) |
2884 | | let a = Rational64::new_raw(4, 2); |
2885 | | let b = Rational64::new_raw(6, 3); |
2886 | | assert_eq!(a, b); |
2887 | | assert_eq!(crate::hash(&a), crate::hash(&b)); |
2888 | | |
2889 | | let a = Rational64::new_raw(123456789, 1000); |
2890 | | let b = Rational64::new_raw(123456789 * 5, 5000); |
2891 | | assert_eq!(a, b); |
2892 | | assert_eq!(crate::hash(&a), crate::hash(&b)); |
2893 | | } |
2894 | | |
2895 | | #[test] |
2896 | | fn test_into_pair() { |
2897 | | assert_eq!((0, 1), _0.into()); |
2898 | | assert_eq!((-2, 1), _NEG2.into()); |
2899 | | assert_eq!((1, -2), _1_NEG2.into()); |
2900 | | } |
2901 | | |
2902 | | #[test] |
2903 | | fn test_from_pair() { |
2904 | | assert_eq!(_0, Ratio::from((0, 1))); |
2905 | | assert_eq!(_1, Ratio::from((1, 1))); |
2906 | | assert_eq!(_NEG2, Ratio::from((-2, 1))); |
2907 | | assert_eq!(_1_NEG2, Ratio::from((1, -2))); |
2908 | | } |
2909 | | |
2910 | | #[test] |
2911 | | fn ratio_iter_sum() { |
2912 | | // generic function to assure the iter method can be called |
2913 | | // for any Iterator with Item = Ratio<impl Integer> or Ratio<&impl Integer> |
2914 | | fn iter_sums<T: Integer + Clone>(slice: &[Ratio<T>]) -> [Ratio<T>; 3] { |
2915 | | let mut manual_sum = Ratio::new(T::zero(), T::one()); |
2916 | | for ratio in slice { |
2917 | | manual_sum = manual_sum + ratio; |
2918 | | } |
2919 | | [manual_sum, slice.iter().sum(), slice.iter().cloned().sum()] |
2920 | | } |
2921 | | // collect into array so test works on no_std |
2922 | | let mut nums = [Ratio::new(0, 1); 1000]; |
2923 | | for (i, r) in (0..1000).map(|n| Ratio::new(n, 500)).enumerate() { |
2924 | | nums[i] = r; |
2925 | | } |
2926 | | let sums = iter_sums(&nums[..]); |
2927 | | assert_eq!(sums[0], sums[1]); |
2928 | | assert_eq!(sums[0], sums[2]); |
2929 | | } |
2930 | | |
2931 | | #[test] |
2932 | | fn ratio_iter_product() { |
2933 | | // generic function to assure the iter method can be called |
2934 | | // for any Iterator with Item = Ratio<impl Integer> or Ratio<&impl Integer> |
2935 | | fn iter_products<T: Integer + Clone>(slice: &[Ratio<T>]) -> [Ratio<T>; 3] { |
2936 | | let mut manual_prod = Ratio::new(T::one(), T::one()); |
2937 | | for ratio in slice { |
2938 | | manual_prod = manual_prod * ratio; |
2939 | | } |
2940 | | [ |
2941 | | manual_prod, |
2942 | | slice.iter().product(), |
2943 | | slice.iter().cloned().product(), |
2944 | | ] |
2945 | | } |
2946 | | |
2947 | | // collect into array so test works on no_std |
2948 | | let mut nums = [Ratio::new(0, 1); 1000]; |
2949 | | for (i, r) in (0..1000).map(|n| Ratio::new(n, 500)).enumerate() { |
2950 | | nums[i] = r; |
2951 | | } |
2952 | | let products = iter_products(&nums[..]); |
2953 | | assert_eq!(products[0], products[1]); |
2954 | | assert_eq!(products[0], products[2]); |
2955 | | } |
2956 | | |
2957 | | #[test] |
2958 | | fn test_num_zero() { |
2959 | | let zero = Rational64::zero(); |
2960 | | assert!(zero.is_zero()); |
2961 | | |
2962 | | let mut r = Rational64::new(123, 456); |
2963 | | assert!(!r.is_zero()); |
2964 | | assert_eq!(r + zero, r); |
2965 | | |
2966 | | r.set_zero(); |
2967 | | assert!(r.is_zero()); |
2968 | | } |
2969 | | |
2970 | | #[test] |
2971 | | fn test_num_one() { |
2972 | | let one = Rational64::one(); |
2973 | | assert!(one.is_one()); |
2974 | | |
2975 | | let mut r = Rational64::new(123, 456); |
2976 | | assert!(!r.is_one()); |
2977 | | assert_eq!(r * one, r); |
2978 | | |
2979 | | r.set_one(); |
2980 | | assert!(r.is_one()); |
2981 | | } |
2982 | | |
2983 | | #[test] |
2984 | | fn test_const() { |
2985 | | const N: Ratio<i32> = Ratio::new_raw(123, 456); |
2986 | | const N_NUMER: &i32 = N.numer(); |
2987 | | const N_DENOM: &i32 = N.denom(); |
2988 | | |
2989 | | assert_eq!(N_NUMER, &123); |
2990 | | assert_eq!(N_DENOM, &456); |
2991 | | |
2992 | | let r = N.reduced(); |
2993 | | assert_eq!(r.numer(), &(123 / 3)); |
2994 | | assert_eq!(r.denom(), &(456 / 3)); |
2995 | | } |
2996 | | |
2997 | | #[test] |
2998 | | fn test_ratio_to_i64() { |
2999 | | assert_eq!(5, Rational64::new(70, 14).to_u64().unwrap()); |
3000 | | assert_eq!(-3, Rational64::new(-31, 8).to_i64().unwrap()); |
3001 | | assert_eq!(None, Rational64::new(-31, 8).to_u64()); |
3002 | | } |
3003 | | |
3004 | | #[test] |
3005 | | #[cfg(feature = "num-bigint")] |
3006 | | fn test_ratio_to_i128() { |
3007 | | assert_eq!( |
3008 | | 1i128 << 70, |
3009 | | Ratio::<i128>::new(1i128 << 77, 1i128 << 7) |
3010 | | .to_i128() |
3011 | | .unwrap() |
3012 | | ); |
3013 | | } |
3014 | | |
3015 | | #[test] |
3016 | | #[cfg(feature = "num-bigint")] |
3017 | | fn test_big_ratio_to_f64() { |
3018 | | assert_eq!( |
3019 | | BigRational::new( |
3020 | | "1234567890987654321234567890987654321234567890" |
3021 | | .parse() |
3022 | | .unwrap(), |
3023 | | "3".parse().unwrap() |
3024 | | ) |
3025 | | .to_f64(), |
3026 | | Some(411522630329218100000000000000000000000000000f64) |
3027 | | ); |
3028 | | assert_eq!(Ratio::from_float(5e-324).unwrap().to_f64(), Some(5e-324)); |
3029 | | assert_eq!( |
3030 | | // subnormal |
3031 | | BigRational::new(BigInt::one(), BigInt::one() << 1050).to_f64(), |
3032 | | Some(2.0f64.powi(-50).powi(21)) |
3033 | | ); |
3034 | | assert_eq!( |
3035 | | // definite underflow |
3036 | | BigRational::new(BigInt::one(), BigInt::one() << 1100).to_f64(), |
3037 | | Some(0.0) |
3038 | | ); |
3039 | | assert_eq!( |
3040 | | BigRational::from(BigInt::one() << 1050).to_f64(), |
3041 | | Some(core::f64::INFINITY) |
3042 | | ); |
3043 | | assert_eq!( |
3044 | | BigRational::from((-BigInt::one()) << 1050).to_f64(), |
3045 | | Some(core::f64::NEG_INFINITY) |
3046 | | ); |
3047 | | assert_eq!( |
3048 | | BigRational::new( |
3049 | | "1234567890987654321234567890".parse().unwrap(), |
3050 | | "987654321234567890987654321".parse().unwrap() |
3051 | | ) |
3052 | | .to_f64(), |
3053 | | Some(1.2499999893125f64) |
3054 | | ); |
3055 | | assert_eq!( |
3056 | | BigRational::new_raw(BigInt::one(), BigInt::zero()).to_f64(), |
3057 | | Some(core::f64::INFINITY) |
3058 | | ); |
3059 | | assert_eq!( |
3060 | | BigRational::new_raw(-BigInt::one(), BigInt::zero()).to_f64(), |
3061 | | Some(core::f64::NEG_INFINITY) |
3062 | | ); |
3063 | | assert_eq!( |
3064 | | BigRational::new_raw(BigInt::zero(), BigInt::zero()).to_f64(), |
3065 | | None |
3066 | | ); |
3067 | | } |
3068 | | |
3069 | | #[test] |
3070 | | fn test_ratio_to_f64() { |
3071 | | assert_eq!(Ratio::<u8>::new(1, 2).to_f64(), Some(0.5f64)); |
3072 | | assert_eq!(Rational64::new(1, 2).to_f64(), Some(0.5f64)); |
3073 | | assert_eq!(Rational64::new(1, -2).to_f64(), Some(-0.5f64)); |
3074 | | assert_eq!(Rational64::new(0, 2).to_f64(), Some(0.0f64)); |
3075 | | assert_eq!(Rational64::new(0, -2).to_f64(), Some(-0.0f64)); |
3076 | | assert_eq!(Rational64::new((1 << 57) + 1, 1 << 54).to_f64(), Some(8f64)); |
3077 | | assert_eq!( |
3078 | | Rational64::new((1 << 52) + 1, 1 << 52).to_f64(), |
3079 | | Some(1.0000000000000002f64), |
3080 | | ); |
3081 | | assert_eq!( |
3082 | | Rational64::new((1 << 60) + (1 << 8), 1 << 60).to_f64(), |
3083 | | Some(1.0000000000000002f64), |
3084 | | ); |
3085 | | assert_eq!( |
3086 | | Ratio::<i32>::new_raw(1, 0).to_f64(), |
3087 | | Some(core::f64::INFINITY) |
3088 | | ); |
3089 | | assert_eq!( |
3090 | | Ratio::<i32>::new_raw(-1, 0).to_f64(), |
3091 | | Some(core::f64::NEG_INFINITY) |
3092 | | ); |
3093 | | assert_eq!(Ratio::<i32>::new_raw(0, 0).to_f64(), None); |
3094 | | } |
3095 | | |
3096 | | #[test] |
3097 | | fn test_ldexp() { |
3098 | | use core::f64::{INFINITY, MAX_EXP, MIN_EXP, NAN, NEG_INFINITY}; |
3099 | | assert_eq!(ldexp(1.0, 0), 1.0); |
3100 | | assert_eq!(ldexp(1.0, 1), 2.0); |
3101 | | assert_eq!(ldexp(0.0, 1), 0.0); |
3102 | | assert_eq!(ldexp(-0.0, 1), -0.0); |
3103 | | |
3104 | | // Cases where ldexp is equivalent to multiplying by 2^exp because there's no over- or |
3105 | | // underflow. |
3106 | | assert_eq!(ldexp(3.5, 5), 3.5 * 2f64.powi(5)); |
3107 | | assert_eq!(ldexp(1.0, MAX_EXP - 1), 2f64.powi(MAX_EXP - 1)); |
3108 | | assert_eq!(ldexp(2.77, MIN_EXP + 3), 2.77 * 2f64.powi(MIN_EXP + 3)); |
3109 | | |
3110 | | // Case where initial value is subnormal |
3111 | | assert_eq!(ldexp(5e-324, 4), 5e-324 * 2f64.powi(4)); |
3112 | | assert_eq!(ldexp(5e-324, 200), 5e-324 * 2f64.powi(200)); |
3113 | | |
3114 | | // Near underflow (2^exp is too small to represent, but not x*2^exp) |
3115 | | assert_eq!(ldexp(4.0, MIN_EXP - 3), 2f64.powi(MIN_EXP - 1)); |
3116 | | |
3117 | | // Near overflow |
3118 | | assert_eq!(ldexp(0.125, MAX_EXP + 3), 2f64.powi(MAX_EXP)); |
3119 | | |
3120 | | // Overflow and underflow cases |
3121 | | assert_eq!(ldexp(1.0, MIN_EXP - 54), 0.0); |
3122 | | assert_eq!(ldexp(-1.0, MIN_EXP - 54), -0.0); |
3123 | | assert_eq!(ldexp(1.0, MAX_EXP), INFINITY); |
3124 | | assert_eq!(ldexp(-1.0, MAX_EXP), NEG_INFINITY); |
3125 | | |
3126 | | // Special values |
3127 | | assert_eq!(ldexp(INFINITY, 1), INFINITY); |
3128 | | assert_eq!(ldexp(NEG_INFINITY, 1), NEG_INFINITY); |
3129 | | assert!(ldexp(NAN, 1).is_nan()); |
3130 | | } |
3131 | | } |