Coverage Report

Created: 2025-12-05 07:37

next uncovered line (L), next uncovered region (R), next uncovered branch (B)
/rust/registry/src/index.crates.io-1949cf8c6b5b557f/pxfm-0.1.26/src/logs/log10dd.rs
Line
Count
Source
1
/*
2
 * // Copyright (c) Radzivon Bartoshyk 8/2025. All rights reserved.
3
 * //
4
 * // Redistribution and use in source and binary forms, with or without modification,
5
 * // are permitted provided that the following conditions are met:
6
 * //
7
 * // 1.  Redistributions of source code must retain the above copyright notice, this
8
 * // list of conditions and the following disclaimer.
9
 * //
10
 * // 2.  Redistributions in binary form must reproduce the above copyright notice,
11
 * // this list of conditions and the following disclaimer in the documentation
12
 * // and/or other materials provided with the distribution.
13
 * //
14
 * // 3.  Neither the name of the copyright holder nor the names of its
15
 * // contributors may be used to endorse or promote products derived from
16
 * // this software without specific prior written permission.
17
 * //
18
 * // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
19
 * // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
20
 * // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
21
 * // DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
22
 * // FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
23
 * // DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
24
 * // SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
25
 * // CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
26
 * // OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
27
 * // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
28
 */
29
use crate::double_double::DoubleDouble;
30
use crate::logs::log10dd_coeffs::LOG10_NEG_DD;
31
use crate::pow_tables::POW_INVERSE;
32
33
#[inline(always)]
34
0
fn log10_poly(z: f64) -> DoubleDouble {
35
    /*
36
      See ./notes/dd_log10.sollya
37
    */
38
    const P: [(u64, u64); 10] = [
39
        (0x3c695355baabd6d2, 0x3fdbcb7b1526e50e),
40
        (0xbc595355bababc0c, 0xbfcbcb7b1526e50e),
41
        (0xbc59c8c251be5fee, 0x3fc287a7636f435f),
42
        (0xbc49515e0a562cbe, 0xbfbbcb7b1526e50e),
43
        (0xbc5603802582ebad, 0x3fb63c62775250e2),
44
        (0x3c37a0e7de39c80c, 0xbfb287a7636f4371),
45
        (0x3c2c4afd722dc9ec, 0x3fafc3fa611f0291),
46
        (0xbc4a52f6541b67ee, 0xbfabcb7b14e178e5),
47
        (0x3c3ef541147ede8e, 0x3fa8b514ee02cfad),
48
        (0xbc28b9ea54e8f3b4, 0xbfa63c9d960501f1),
49
    ];
50
0
    let mut t = DoubleDouble::quick_mul_f64_add(
51
0
        DoubleDouble::from_bit_pair(P[9]),
52
0
        z,
53
0
        DoubleDouble::from_bit_pair(P[8]),
54
    );
55
0
    t = DoubleDouble::quick_mul_f64_add(t, z, DoubleDouble::from_bit_pair(P[7]));
56
0
    t = DoubleDouble::quick_mul_f64_add(t, z, DoubleDouble::from_bit_pair(P[6]));
57
0
    t = DoubleDouble::quick_mul_f64_add(t, z, DoubleDouble::from_bit_pair(P[5]));
58
0
    t = DoubleDouble::quick_mul_f64_add(t, z, DoubleDouble::from_bit_pair(P[4]));
59
0
    t = DoubleDouble::quick_mul_f64_add(t, z, DoubleDouble::from_bit_pair(P[3]));
60
0
    t = DoubleDouble::quick_mul_f64_add(t, z, DoubleDouble::from_bit_pair(P[2]));
61
0
    t = DoubleDouble::quick_mul_f64_add(t, z, DoubleDouble::from_bit_pair(P[1]));
62
0
    t = DoubleDouble::quick_mul_f64_add(t, z, DoubleDouble::from_bit_pair(P[0]));
63
0
    DoubleDouble::quick_mult_f64(t, z)
64
0
}
65
66
#[inline]
67
0
pub(crate) fn log10_dd(x: f64) -> DoubleDouble {
68
0
    let x_u = x.to_bits();
69
0
    let mut m = x_u & 0xfffffffffffff;
70
0
    let mut e: i64 = ((x_u >> 52) & 0x7ff) as i64;
71
72
    let t;
73
0
    if e != 0 {
74
0
        t = m | (0x3ffu64 << 52);
75
0
        m = m.wrapping_add(1u64 << 52);
76
0
        e -= 0x3ff;
77
0
    } else {
78
0
        /* x is a subnormal double  */
79
0
        let k = m.leading_zeros() - 11;
80
0
81
0
        e = -0x3fei64 - k as i64;
82
0
        m = m.wrapping_shl(k);
83
0
        t = m | (0x3ffu64 << 52);
84
0
    }
85
86
    /* now |x| = 2^_e*_t = 2^(_e-52)*m with 1 <= _t < 2,
87
    and 2^52 <= _m < 2^53 */
88
89
    //   log10(x) = log10(t) + E ยท log10(e)
90
0
    let mut t = f64::from_bits(t);
91
92
    // If m > sqrt(2) we divide it by 2 so ensure 1/sqrt(2) < t < sqrt(2)
93
0
    let c: usize = (m >= 0x16a09e667f3bcd) as usize;
94
    static CY: [f64; 2] = [1.0, 0.5];
95
    static CM: [u64; 2] = [44, 45];
96
97
0
    e = e.wrapping_add(c as i64);
98
0
    let be = e;
99
0
    let i = m >> CM[c];
100
0
    t *= CY[c];
101
102
0
    let r = f64::from_bits(POW_INVERSE[(i - 181) as usize]);
103
0
    let log10_r = DoubleDouble::from_bit_pair(LOG10_NEG_DD[(i - 181) as usize]);
104
105
0
    let z = f64::mul_add(r, t, -1.0);
106
107
    const LOG10_2_DD: DoubleDouble =
108
        DoubleDouble::from_bit_pair((0xbc49dc1da994fd21, 0x3fd34413509f79ff));
109
110
0
    let v = DoubleDouble::mul_f64_add(LOG10_2_DD, be as f64, log10_r);
111
112
0
    let p = log10_poly(z);
113
0
    DoubleDouble::f64_add(v.hi, DoubleDouble::new(v.lo + p.lo, p.hi))
114
0
}
115
116
#[cfg(test)]
117
mod tests {
118
    use super::*;
119
120
    #[test]
121
    fn test_log10_dd() {
122
        assert_eq!(log10_dd(10.).to_f64(), 1.);
123
    }
124
}