Coverage Report

Created: 2025-12-05 07:37

next uncovered line (L), next uncovered region (R), next uncovered branch (B)
/rust/registry/src/index.crates.io-1949cf8c6b5b557f/pxfm-0.1.26/src/logs/log1pmxf.rs
Line
Count
Source
1
/*
2
 * // Copyright (c) Radzivon Bartoshyk 8/2025. All rights reserved.
3
 * //
4
 * // Redistribution and use in source and binary forms, with or without modification,
5
 * // are permitted provided that the following conditions are met:
6
 * //
7
 * // 1.  Redistributions of source code must retain the above copyright notice, this
8
 * // list of conditions and the following disclaimer.
9
 * //
10
 * // 2.  Redistributions in binary form must reproduce the above copyright notice,
11
 * // this list of conditions and the following disclaimer in the documentation
12
 * // and/or other materials provided with the distribution.
13
 * //
14
 * // 3.  Neither the name of the copyright holder nor the names of its
15
 * // contributors may be used to endorse or promote products derived from
16
 * // this software without specific prior written permission.
17
 * //
18
 * // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
19
 * // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
20
 * // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
21
 * // DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
22
 * // FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
23
 * // DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
24
 * // SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
25
 * // CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
26
 * // OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
27
 * // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
28
 */
29
use crate::polyeval::f_estrin_polyeval7;
30
31
/// Computes log(1+x) - x
32
///
33
/// ulp 0.5
34
0
pub fn f_log1pmxf(x: f32) -> f32 {
35
0
    let ux = x.to_bits().wrapping_shl(1);
36
0
    if ux >= 0xffu32 << 24 || ux == 0 {
37
        // |x| == 0, |x| == inf, x == NaN
38
0
        if ux == 0 {
39
0
            return x;
40
0
        }
41
0
        if x.is_infinite() {
42
0
            return f32::NAN;
43
0
        }
44
0
        return x + f32::NAN;
45
0
    }
46
47
0
    let ax = x.to_bits() & 0x7fff_ffffu32;
48
0
    let xd = x as f64;
49
50
    // Use log1p(x) = log(1 + x) for |x| > 2^-6;
51
0
    if ax > 0x3c80_0000u32 {
52
0
        if x == -1. {
53
0
            return f32::NEG_INFINITY;
54
0
        }
55
0
        let x1p = xd + 1.;
56
0
        if x1p <= 0. {
57
0
            if x1p == 0. {
58
0
                return f32::NEG_INFINITY;
59
0
            }
60
0
            return f32::NAN;
61
0
        }
62
0
        return (crate::logs::log1pf::core_logf(x1p) - xd) as f32;
63
0
    }
64
65
    // log(1+x) is expected to be used near zero
66
    // Polynomial generated by Sollya in form log(1+x) - x = x^2 * R(x):
67
    // d = [-2^-6; 2^-6];
68
    // f_log1pf = (log(1+x) - x)/x^2;
69
    // Q = fpminimax(f_log1pf, 6, [|0, D...|], d);
70
    // See ./notes/log1pmxf.sollya
71
72
0
    let xd_sqr = xd * xd;
73
0
    let p = f_estrin_polyeval7(
74
0
        xd,
75
0
        f64::from_bits(0xbfe0000000000000),
76
0
        f64::from_bits(0x3fd55555555561c8),
77
0
        f64::from_bits(0xbfd0000000000f5a),
78
0
        f64::from_bits(0x3fc999998d26deab),
79
0
        f64::from_bits(0xbfc555554878739c),
80
0
        f64::from_bits(0x3fc24ab2e3c10eca),
81
0
        f64::from_bits(0xbfc0017973fafec4),
82
0
    ) * xd_sqr;
83
0
    p as f32
84
0
}
85
86
#[cfg(test)]
87
mod tests {
88
    use super::*;
89
90
    #[test]
91
    fn test_log1pmxfm() {
92
        assert_eq!(f_log1pmxf(-0.0000014305108), -1.0231815e-12);
93
        assert_eq!(f_log1pmxf(0.0), 0.0);
94
        assert_eq!(f_log1pmxf(2.0), -0.9013877);
95
        assert_eq!(f_log1pmxf(-0.7), -0.50397277);
96
        assert_eq!(
97
            f_log1pmxf(-0.0000000000043243),
98
            -0.000000000000000000000009349785
99
        );
100
        assert!(f_log1pmxf(f32::INFINITY).is_nan());
101
        assert!(f_log1pmxf(f32::NAN).is_nan());
102
        assert!(f_log1pmxf(f32::NEG_INFINITY).is_nan());
103
        assert!(f_log1pmxf(-2.0).is_nan());
104
    }
105
}