/rust/registry/src/index.crates.io-1949cf8c6b5b557f/pxfm-0.1.27/src/sinmx.rs
Line | Count | Source |
1 | | /* |
2 | | * // Copyright (c) Radzivon Bartoshyk 8/2025. All rights reserved. |
3 | | * // |
4 | | * // Redistribution and use in source and binary forms, with or without modification, |
5 | | * // are permitted provided that the following conditions are met: |
6 | | * // |
7 | | * // 1. Redistributions of source code must retain the above copyright notice, this |
8 | | * // list of conditions and the following disclaimer. |
9 | | * // |
10 | | * // 2. Redistributions in binary form must reproduce the above copyright notice, |
11 | | * // this list of conditions and the following disclaimer in the documentation |
12 | | * // and/or other materials provided with the distribution. |
13 | | * // |
14 | | * // 3. Neither the name of the copyright holder nor the names of its |
15 | | * // contributors may be used to endorse or promote products derived from |
16 | | * // this software without specific prior written permission. |
17 | | * // |
18 | | * // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" |
19 | | * // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
20 | | * // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE |
21 | | * // DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE |
22 | | * // FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL |
23 | | * // DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR |
24 | | * // SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER |
25 | | * // CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, |
26 | | * // OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE |
27 | | * // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
28 | | */ |
29 | | use crate::common::f_fmla; |
30 | | use crate::double_double::DoubleDouble; |
31 | | use crate::polyeval::f_estrin_polyeval5; |
32 | | use crate::sin::{range_reduction_small, sincos_eval}; |
33 | | use crate::sin_helper::sincos_eval_dd; |
34 | | use crate::sin_table::SIN_K_PI_OVER_128; |
35 | | use crate::sincos_reduce::LargeArgumentReduction; |
36 | | |
37 | | #[cold] |
38 | | #[inline(never)] |
39 | 0 | fn sinmx_accurate(y: DoubleDouble, sin_k: DoubleDouble, cos_k: DoubleDouble, x: f64) -> f64 { |
40 | 0 | let r_sincos = sincos_eval_dd(y); |
41 | | |
42 | | // k is an integer and -pi / 256 <= y <= pi / 256. |
43 | | // Then sin(x) = sin((k * pi/128 + y) |
44 | | // = sin(y) * cos(k*pi/128) + cos(y) * sin(k*pi/128) |
45 | | |
46 | 0 | let sin_k_cos_y = DoubleDouble::quick_mult(r_sincos.v_cos, sin_k); |
47 | 0 | let cos_k_sin_y = DoubleDouble::quick_mult(r_sincos.v_sin, cos_k); |
48 | | |
49 | 0 | let mut rr = DoubleDouble::full_dd_add(sin_k_cos_y, cos_k_sin_y); |
50 | 0 | rr = DoubleDouble::full_add_f64(rr, -x); |
51 | 0 | rr.to_f64() |
52 | 0 | } |
53 | | |
54 | | #[cold] |
55 | 0 | fn sinmx_near_zero_hard(x: f64) -> f64 { |
56 | | const C: [(u64, u64); 8] = [ |
57 | | (0xb37137ef120d4bbd, 0xb6db8d4e2aa9f813), |
58 | | (0xbc6555555554e720, 0xbfc5555555555555), |
59 | | (0x3c01110fff8e3ea0, 0x3f81111111111111), |
60 | | (0xbb6314569388b856, 0xbf2a01a01a01a01a), |
61 | | (0xbb61f946e615f3cd, 0x3ec71de3a556c723), |
62 | | (0x3a8998bc94bd3bf0, 0xbe5ae64567f2d4df), |
63 | | (0xba702e73490290eb, 0x3de61245e54b6747), |
64 | | (0xba0182df5b1ffd4c, 0xbd6ae4894bb27213), |
65 | | ]; |
66 | 0 | let x2 = DoubleDouble::from_exact_mult(x, x); |
67 | 0 | let mut p = DoubleDouble::mul_add( |
68 | 0 | x2, |
69 | 0 | DoubleDouble::from_bit_pair(C[7]), |
70 | 0 | DoubleDouble::from_bit_pair(C[6]), |
71 | | ); |
72 | 0 | p = DoubleDouble::mul_add(x2, p, DoubleDouble::from_bit_pair(C[5])); |
73 | 0 | p = DoubleDouble::mul_add(x2, p, DoubleDouble::from_bit_pair(C[4])); |
74 | 0 | p = DoubleDouble::mul_add(x2, p, DoubleDouble::from_bit_pair(C[3])); |
75 | 0 | p = DoubleDouble::mul_add(x2, p, DoubleDouble::from_bit_pair(C[2])); |
76 | 0 | p = DoubleDouble::mul_add(x2, p, DoubleDouble::from_bit_pair(C[1])); |
77 | 0 | p = DoubleDouble::mul_add(x2, p, DoubleDouble::from_bit_pair(C[0])); |
78 | 0 | p = DoubleDouble::quick_mult_f64(p, x); |
79 | 0 | p.to_f64() |
80 | 0 | } |
81 | | |
82 | | /// Computes sin(x) - x |
83 | | /// |
84 | | /// ULP 0.5 |
85 | 0 | pub fn f_sinmx(x: f64) -> f64 { |
86 | 0 | let x_e = (x.to_bits() >> 52) & 0x7ff; |
87 | | const E_BIAS: u64 = (1u64 << (11 - 1u64)) - 1u64; |
88 | | |
89 | | let y: DoubleDouble; |
90 | | let k; |
91 | | |
92 | 0 | let mut argument_reduction = LargeArgumentReduction::default(); |
93 | | |
94 | | // |x| < 2^32 (with FMA) or |x| < 2^23 (w/o FMA) |
95 | 0 | if x_e < E_BIAS + 16 { |
96 | 0 | if x_e < E_BIAS - 6 { |
97 | | // |x| < 2^-6 |
98 | 0 | if x_e < E_BIAS - 32 { |
99 | | // |x| < 2^-32 |
100 | | // Signed zeros. |
101 | 0 | if x == 0.0 { |
102 | 0 | return x; |
103 | 0 | } |
104 | | |
105 | | // For |x| < 2^-32, taylor series sin(x) - x ~ -x^3/6 |
106 | 0 | let x2 = x * x; |
107 | 0 | let c = f_fmla( |
108 | 0 | x2, |
109 | 0 | f64::from_bits(0x3f81111111111111), |
110 | 0 | f64::from_bits(0xbfc5555555555555), |
111 | 0 | ) * x2; |
112 | 0 | return c * x; |
113 | 0 | } |
114 | | |
115 | | // Generated by Sollya: |
116 | | // d = [2^-26, pi/16]; |
117 | | // f_sinmx = (sin(x) - x)/x; |
118 | | // Q = fpminimax(f_sinmx, [|0, 2, 4, 6, 8, 10, 12|], [|127, 127, D...|], d); |
119 | 0 | let x2 = DoubleDouble::from_exact_mult(x, x); |
120 | 0 | let p = f_estrin_polyeval5( |
121 | 0 | x2.hi, |
122 | 0 | f64::from_bits(0x3f81111111111111), |
123 | 0 | f64::from_bits(0xbf2a01a01a019d2f), |
124 | 0 | f64::from_bits(0x3ec71de3a5269512), |
125 | 0 | f64::from_bits(0xbe5ae642b76ba0f5), |
126 | 0 | f64::from_bits(0x3de6035da3c7eaed), |
127 | | ); |
128 | 0 | let mut c = DoubleDouble::mul_f64_add( |
129 | 0 | x2, |
130 | 0 | p, |
131 | 0 | DoubleDouble::from_bit_pair((0xbc655542976eb2af, 0xbfc5555555555555)), |
132 | | ); |
133 | 0 | c = DoubleDouble::mul_add( |
134 | 0 | x2, |
135 | 0 | c, |
136 | 0 | DoubleDouble::from_bit_pair((0x34b215c35dc9e9be, 0xb832bde584573661)), |
137 | 0 | ); |
138 | 0 | c = DoubleDouble::quick_mult_f64(c, x); |
139 | 0 | let err = f_fmla( |
140 | 0 | x2.hi, |
141 | 0 | f64::from_bits(0x3cc0000000000000), // 2^-51 |
142 | 0 | f64::from_bits(0x3bc0000000000000), // 2^-67 |
143 | | ); |
144 | 0 | let ub = c.hi + (c.lo + err); |
145 | 0 | let lb = c.hi + (c.lo - err); |
146 | 0 | if ub == lb { |
147 | 0 | return c.to_f64(); |
148 | 0 | } |
149 | 0 | return sinmx_near_zero_hard(x); |
150 | 0 | } |
151 | | // // Small range reduction. |
152 | 0 | (y, k) = range_reduction_small(x); |
153 | | } else { |
154 | | // Inf or NaN |
155 | 0 | if x_e > 2 * E_BIAS { |
156 | | // sin(+-Inf) = NaN |
157 | 0 | return x + f64::NAN; |
158 | 0 | } |
159 | | |
160 | | // Large range reduction. |
161 | 0 | (k, y) = argument_reduction.reduce(x); |
162 | | } |
163 | | |
164 | 0 | let r_sincos = sincos_eval(y); |
165 | | |
166 | | // cos(k * pi/128) = sin(k * pi/128 + pi/2) = sin((k + 64) * pi/128). |
167 | 0 | let sk = SIN_K_PI_OVER_128[(k & 255) as usize]; |
168 | 0 | let ck = SIN_K_PI_OVER_128[((k.wrapping_add(64)) & 255) as usize]; |
169 | | |
170 | 0 | let sin_k = DoubleDouble::from_bit_pair(sk); |
171 | 0 | let cos_k = DoubleDouble::from_bit_pair(ck); |
172 | | |
173 | 0 | let sin_k_cos_y = DoubleDouble::quick_mult(r_sincos.v_cos, sin_k); |
174 | 0 | let cos_k_sin_y = DoubleDouble::quick_mult(r_sincos.v_sin, cos_k); |
175 | | |
176 | | // sin_k_cos_y is always >> cos_k_sin_y |
177 | 0 | let mut rr = DoubleDouble::from_exact_add(sin_k_cos_y.hi, cos_k_sin_y.hi); |
178 | 0 | rr.lo += sin_k_cos_y.lo + cos_k_sin_y.lo; |
179 | | |
180 | 0 | rr = DoubleDouble::from_exact_add(rr.hi, rr.lo); |
181 | 0 | rr = DoubleDouble::full_add_f64(rr, -x); |
182 | | |
183 | 0 | let rlp = rr.lo + r_sincos.err; |
184 | 0 | let rlm = rr.lo - r_sincos.err; |
185 | | |
186 | 0 | let r_upper = rr.hi + rlp; // (rr.lo + ERR); |
187 | 0 | let r_lower = rr.hi + rlm; // (rr.lo - ERR); |
188 | | |
189 | | // Ziv's accuracy test |
190 | 0 | if r_upper == r_lower { |
191 | 0 | return rr.to_f64(); |
192 | 0 | } |
193 | | |
194 | 0 | sinmx_accurate(y, sin_k, cos_k, x) |
195 | 0 | } |
196 | | |
197 | | #[cfg(test)] |
198 | | mod tests { |
199 | | use super::*; |
200 | | |
201 | | #[test] |
202 | | fn f_sinf_test() { |
203 | | assert_eq!(f_sinmx(0.0), 0.0); |
204 | | assert_eq!(f_sinmx(1.0), -0.1585290151921035); |
205 | | assert_eq!(f_sinmx(0.3), -0.0044797933386604245); |
206 | | assert_eq!(f_sinmx(-1.0), 0.1585290151921035); |
207 | | assert_eq!(f_sinmx(-0.3), 0.0044797933386604245); |
208 | | assert_eq!(f_sinmx(std::f64::consts::PI / 2.), -0.5707963267948966); |
209 | | assert!(f_sinmx(f64::INFINITY).is_nan()); |
210 | | assert!(f_sinmx(f64::NEG_INFINITY).is_nan()); |
211 | | } |
212 | | } |