Coverage Report

Created: 2025-12-11 07:11

next uncovered line (L), next uncovered region (R), next uncovered branch (B)
/rust/registry/src/index.crates.io-1949cf8c6b5b557f/pxfm-0.1.27/src/tangent/tanpif.rs
Line
Count
Source
1
/*
2
 * // Copyright (c) Radzivon Bartoshyk 6/2025. All rights reserved.
3
 * //
4
 * // Redistribution and use in source and binary forms, with or without modification,
5
 * // are permitted provided that the following conditions are met:
6
 * //
7
 * // 1.  Redistributions of source code must retain the above copyright notice, this
8
 * // list of conditions and the following disclaimer.
9
 * //
10
 * // 2.  Redistributions in binary form must reproduce the above copyright notice,
11
 * // this list of conditions and the following disclaimer in the documentation
12
 * // and/or other materials provided with the distribution.
13
 * //
14
 * // 3.  Neither the name of the copyright holder nor the names of its
15
 * // contributors may be used to endorse or promote products derived from
16
 * // this software without specific prior written permission.
17
 * //
18
 * // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
19
 * // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
20
 * // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
21
 * // DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
22
 * // FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
23
 * // DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
24
 * // SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
25
 * // CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
26
 * // OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
27
 * // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
28
 */
29
use crate::common::f_fmla;
30
use crate::sin_cosf::ArgumentReducerPi;
31
use crate::tangent::evalf::tanpif_eval;
32
33
#[inline(always)]
34
0
fn tanpif_gen_impl(x: f32) -> f32 {
35
0
    let ix = x.to_bits();
36
0
    let e = ix & (0xff << 23);
37
0
    if e > (150 << 23) {
38
        // |x| > 2^23
39
0
        if e == (0xff << 23) {
40
            // x = nan or inf
41
0
            if (ix.wrapping_shl(9)) == 0 {
42
                // x = inf
43
0
                return f32::NAN;
44
0
            }
45
0
            return x + x; // x = nan
46
0
        }
47
0
        return f32::copysign(0.0, x);
48
0
    }
49
50
0
    let argument_reduction = ArgumentReducerPi { x: x as f64 };
51
52
0
    let (y, k) = argument_reduction.reduce();
53
54
0
    if y == 0.0 {
55
0
        let km = (k.abs() & 31) as i32; // k mod 32
56
57
0
        match km {
58
0
            0 => return 0.0f32.copysign(x),               // tanpi(n) = 0
59
0
            16 => return f32::copysign(f32::INFINITY, x), // tanpi(n+0.5) = ±∞
60
0
            8 => return f32::copysign(1.0, x),            // tanpi(n+0.25) = ±1
61
0
            24 => return -f32::copysign(1.0, x),          // tanpi(n+0.75) = ∓1
62
0
            _ => {}
63
        }
64
0
    }
65
66
0
    let ax = ix & 0x7fff_ffff;
67
0
    if ax < 0x38d1b717u32 {
68
        // taylor series for tan(PI*x) where |x| < 0.0001
69
0
        let dx = x as f64;
70
0
        let dx_sqr = dx * dx;
71
        // tan(PI*x) ~ PI*x + PI^3*x^3/3 + O(x^5)
72
0
        let r = f_fmla(
73
0
            dx_sqr,
74
0
            f64::from_bits(0x4024abbce625be53),
75
0
            f64::from_bits(0x400921fb54442d18),
76
        );
77
0
        return (r * dx) as f32;
78
0
    }
79
80
    // tanpif_eval returns:
81
    // - rs.tan_y = tan(pi/32 * y)          -> tangent of the remainder
82
    // - rs.tan_k = tan(pi/32 * k)          -> tan of the main angle multiple
83
0
    let rs = tanpif_eval(y, k);
84
85
    // Then computing tan through identities
86
    // num = tan(k*pi/32) + tan(y*pi/32)
87
0
    let num = rs.tan_y + rs.tan_k;
88
    // den = 1 - tan(k*pi/32) * tan(y*pi/32)
89
0
    let den = f_fmla(rs.tan_y, -rs.tan_k, 1.);
90
0
    (num / den) as f32
91
0
}
92
93
#[cfg(any(target_arch = "x86", target_arch = "x86_64"))]
94
#[target_feature(enable = "avx", enable = "fma")]
95
0
unsafe fn tanpif_fma_impl(x: f32) -> f32 {
96
0
    let ix = x.to_bits();
97
0
    let e = ix & (0xff << 23);
98
0
    if e > (150 << 23) {
99
        // |x| > 2^23
100
0
        if e == (0xff << 23) {
101
            // x = nan or inf
102
0
            if (ix.wrapping_shl(9)) == 0 {
103
                // x = inf
104
0
                return f32::NAN;
105
0
            }
106
0
            return x + x; // x = nan
107
0
        }
108
0
        return f32::copysign(0.0, x);
109
0
    }
110
111
0
    let argument_reduction = ArgumentReducerPi { x: x as f64 };
112
113
0
    let (y, k) = argument_reduction.reduce_fma();
114
115
0
    if y == 0.0 {
116
0
        let km = (k.abs() & 31) as i32; // k mod 32
117
118
0
        match km {
119
0
            0 => return 0.0f32.copysign(x),               // tanpi(n) = 0
120
0
            16 => return f32::copysign(f32::INFINITY, x), // tanpi(n+0.5) = ±∞
121
0
            8 => return f32::copysign(1.0, x),            // tanpi(n+0.25) = ±1
122
0
            24 => return -f32::copysign(1.0, x),          // tanpi(n+0.75) = ∓1
123
0
            _ => {}
124
        }
125
0
    }
126
127
0
    let ax = ix & 0x7fff_ffff;
128
0
    if ax < 0x38d1b717u32 {
129
        // taylor series for tan(PI*x) where |x| < 0.0001
130
0
        let dx = x as f64;
131
0
        let dx_sqr = dx * dx;
132
        // tan(PI*x) ~ PI*x + PI^3*x^3/3 + O(x^5)
133
0
        let r = f64::mul_add(
134
0
            dx_sqr,
135
0
            f64::from_bits(0x4024abbce625be53),
136
0
            f64::from_bits(0x400921fb54442d18),
137
        );
138
0
        return (r * dx) as f32;
139
0
    }
140
141
    // tanpif_eval returns:
142
    // - rs.tan_y = tan(pi/32 * y)          -> tangent of the remainder
143
    // - rs.tan_k = tan(pi/32 * k)          -> tan of the main angle multiple
144
    use crate::tangent::evalf::tanpif_eval_fma;
145
0
    let rs = tanpif_eval_fma(y, k);
146
147
    // Then computing tan through identities
148
    // num = tan(k*pi/32) + tan(y*pi/32)
149
0
    let num = rs.tan_y + rs.tan_k;
150
    // den = 1 - tan(k*pi/32) * tan(y*pi/32)
151
0
    let den = f64::mul_add(rs.tan_y, -rs.tan_k, 1.);
152
0
    (num / den) as f32
153
0
}
154
155
/// Computes tan(PI*x)
156
///
157
/// Max found ULP 0.5
158
#[inline]
159
0
pub fn f_tanpif(x: f32) -> f32 {
160
    #[cfg(not(any(target_arch = "x86", target_arch = "x86_64")))]
161
    {
162
        tanpif_gen_impl(x)
163
    }
164
    #[cfg(any(target_arch = "x86", target_arch = "x86_64"))]
165
    {
166
        use std::sync::OnceLock;
167
        static EXECUTOR: OnceLock<unsafe fn(f32) -> f32> = OnceLock::new();
168
0
        let q = EXECUTOR.get_or_init(|| {
169
0
            if std::arch::is_x86_feature_detected!("avx")
170
0
                && std::arch::is_x86_feature_detected!("fma")
171
            {
172
0
                tanpif_fma_impl
173
            } else {
174
0
                tanpif_gen_impl
175
            }
176
0
        });
177
0
        unsafe { q(x) }
178
    }
179
0
}
180
181
#[cfg(test)]
182
mod tests {
183
    use super::*;
184
185
    #[test]
186
    fn test_tanpif() {
187
        assert_eq!(f_tanpif(3.666738e-5), 0.00011519398);
188
        assert_eq!(f_tanpif(1.0355987e-25), 3.2534293e-25);
189
        assert_eq!(f_tanpif(5.5625), -5.0273395);
190
        assert_eq!(f_tanpif(-29.75), 1.0);
191
        assert_eq!(f_tanpif(-21.5625), 5.0273395);
192
        assert_eq!(f_tanpif(-15.611655), 2.7329326);
193
        assert_eq!(f_tanpif(115.30706), 1.4426143);
194
        assert!(f_tanpif(f32::INFINITY).is_nan());
195
        assert!(f_tanpif(f32::NAN).is_nan());
196
    }
197
}