Coverage Report

Created: 2026-01-09 07:43

next uncovered line (L), next uncovered region (R), next uncovered branch (B)
/rust/registry/src/index.crates.io-1949cf8c6b5b557f/pxfm-0.1.27/src/bessel/k1f.rs
Line
Count
Source
1
/*
2
 * // Copyright (c) Radzivon Bartoshyk 7/2025. All rights reserved.
3
 * //
4
 * // Redistribution and use in source and binary forms, with or without modification,
5
 * // are permitted provided that the following conditions are met:
6
 * //
7
 * // 1.  Redistributions of source code must retain the above copyright notice, this
8
 * // list of conditions and the following disclaimer.
9
 * //
10
 * // 2.  Redistributions in binary form must reproduce the above copyright notice,
11
 * // this list of conditions and the following disclaimer in the documentation
12
 * // and/or other materials provided with the distribution.
13
 * //
14
 * // 3.  Neither the name of the copyright holder nor the names of its
15
 * // contributors may be used to endorse or promote products derived from
16
 * // this software without specific prior written permission.
17
 * //
18
 * // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
19
 * // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
20
 * // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
21
 * // DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
22
 * // FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
23
 * // DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
24
 * // SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
25
 * // CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
26
 * // OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
27
 * // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
28
 */
29
use crate::common::f_fmla;
30
use crate::exponents::core_expf;
31
use crate::logs::fast_logf;
32
use crate::polyeval::{f_estrin_polyeval8, f_polyeval3, f_polyeval4};
33
34
/// Modified Bessel of the second kind of order 1
35
///
36
/// Max ULP 0.5
37
0
pub fn f_k1f(x: f32) -> f32 {
38
0
    let ux = x.to_bits();
39
0
    if ux >= 0xffu32 << 23 || ux == 0 {
40
        // |x| == 0, |x| == inf, |x| == NaN, x < 0
41
0
        if ux.wrapping_shl(1) == 0 {
42
0
            return f32::INFINITY;
43
0
        }
44
0
        if x.is_infinite() {
45
0
            return if x.is_sign_positive() { 0. } else { f32::NAN };
46
0
        }
47
0
        return x + f32::NAN;
48
0
    }
49
50
0
    let xb = x.to_bits();
51
52
0
    if xb >= 0x42cbc779u32 {
53
        // x > 101.889595
54
0
        return 0.;
55
0
    }
56
57
0
    if xb <= 0x3f800000u32 {
58
        // x <= 1.0
59
0
        if xb <= 0x34000000u32 {
60
            // |x| <= f32::EPSILON
61
0
            let dx = x as f64;
62
0
            let leading_term = 1. / dx;
63
0
            if xb <= 0x3109705fu32 {
64
                // |x| <= 2e-9
65
                // taylor series for tiny K1(x) ~ 1/x + O(x)
66
0
                return leading_term as f32;
67
0
            }
68
            // taylor series for small K1(x) ~ 1/x+1/4 (-1+2 EulerGamma-2 Log[2]+2 Log[x]) x + O(x^3)
69
            const C: f64 = f64::from_bits(0xbff3b5b6028a83d7); // -1+2 EulerGamma-2 Log[2]
70
0
            let log_x = fast_logf(x);
71
0
            let r = f_fmla(log_x, 2., C);
72
0
            let w0 = f_fmla(dx * 0.25, r, leading_term);
73
0
            return w0 as f32;
74
0
        }
75
0
        return k1f_small(x);
76
0
    }
77
78
0
    k1f_asympt(x)
79
0
}
80
81
/**
82
Computes
83
I1(x) = x/2 * (1 + 1 * (x/2)^2 + (x/2)^4 * P((x/2)^2))
84
85
Generated by Woflram Mathematica:
86
87
```text
88
<<FunctionApproximations`
89
ClearAll["Global`*"]
90
f[x_]:=(BesselI[1,x]*2/x-1-1/2(x/2)^2)/(x/2)^4
91
g[z_]:=f[2 Sqrt[z]]
92
{err, approx}=MiniMaxApproximation[g[z],{z,{0.000000001,1},3,2},WorkingPrecision->60]
93
poly=Numerator[approx][[1]];
94
coeffs=CoefficientList[poly,z];
95
TableForm[Table[Row[{"'",NumberForm[coeffs[[i+1]],{50,50}, ExponentFunction->(Null&)],"',"}],{i,0,Length[coeffs]-1}]]
96
poly=Denominator[approx][[1]];
97
coeffs=CoefficientList[poly,z];
98
TableForm[Table[Row[{"'",NumberForm[coeffs[[i+1]],{50,50}, ExponentFunction->(Null&)],"',"}],{i,0,Length[coeffs]-1}]]
99
```
100
**/
101
#[inline]
102
0
fn i1f_small(x: f32) -> f64 {
103
0
    let dx = x as f64;
104
0
    let x_over_two = dx * 0.5;
105
0
    let x_over_two_sqr = x_over_two * x_over_two;
106
0
    let x_over_two_p4 = x_over_two_sqr * x_over_two_sqr;
107
108
0
    let p_num = f_polyeval4(
109
0
        x_over_two_sqr,
110
0
        f64::from_bits(0x3fb5555555555355),
111
0
        f64::from_bits(0x3f6ebf07f0dbc49b),
112
0
        f64::from_bits(0x3f1fdc02bf28a8d9),
113
0
        f64::from_bits(0x3ebb5e7574c700a6),
114
    );
115
0
    let p_den = f_polyeval3(
116
0
        x_over_two_sqr,
117
0
        f64::from_bits(0x3ff0000000000000),
118
0
        f64::from_bits(0xbfa39b64b6135b5a),
119
0
        f64::from_bits(0x3f3fa729bbe951f9),
120
    );
121
0
    let p = p_num / p_den;
122
123
0
    let p1 = f_fmla(0.5, x_over_two_sqr, 1.);
124
0
    let p2 = f_fmla(x_over_two_p4, p, p1);
125
0
    p2 * x_over_two
126
0
}
127
128
/**
129
Series for
130
f(x) := BesselK(1, x) - Log(x)*BesselI(1, x) - 1/x
131
132
Generated by Wolfram Mathematica:
133
```text
134
<<FunctionApproximations`
135
ClearAll["Global`*"]
136
f[x_]:=(BesselK[1, x]-Log[x]BesselI[1,x]-1/x)/x
137
g[z_]:=f[Sqrt[z]]
138
{err, approx}=MiniMaxApproximation[g[z],{z,{0.000000001,1},3,3},WorkingPrecision->60]
139
poly=Numerator[approx][[1]];
140
coeffs=CoefficientList[poly,z];
141
TableForm[Table[Row[{"'",NumberForm[coeffs[[i+1]],{50,50}, ExponentFunction->(Null&)],"',"}],{i,0,Length[coeffs]-1}]]
142
poly=Denominator[approx][[1]];
143
coeffs=CoefficientList[poly,z];
144
TableForm[Table[Row[{"'",NumberForm[coeffs[[i+1]],{50,50}, ExponentFunction->(Null&)],"',"}],{i,0,Length[coeffs]-1}]]
145
```
146
**/
147
#[inline]
148
0
fn k1f_small(x: f32) -> f32 {
149
0
    let dx = x as f64;
150
0
    let rcp = 1. / dx;
151
0
    let x2 = dx * dx;
152
0
    let p_num = f_polyeval4(
153
0
        x2,
154
0
        f64::from_bits(0xbfd3b5b6028a83d6),
155
0
        f64::from_bits(0xbfb3fde2c83f7cca),
156
0
        f64::from_bits(0xbf662b2e5defbe8c),
157
0
        f64::from_bits(0xbefa2a63cc5c4feb),
158
    );
159
0
    let p_den = f_polyeval4(
160
0
        x2,
161
0
        f64::from_bits(0x3ff0000000000000),
162
0
        f64::from_bits(0xbf9833197207a7c6),
163
0
        f64::from_bits(0x3f315663bc7330ef),
164
0
        f64::from_bits(0xbeb9211958f6b8c3),
165
    );
166
0
    let p = p_num / p_den;
167
168
0
    let lg = fast_logf(x);
169
0
    let v_i = i1f_small(x);
170
0
    let z = f_fmla(lg, v_i, rcp);
171
0
    let z0 = f_fmla(p, dx, z);
172
0
    z0 as f32
173
0
}
174
175
/**
176
Generated by Wolfram Mathematica:
177
```text
178
<<FunctionApproximations`
179
ClearAll["Global`*"]
180
f[x_]:=Sqrt[x] Exp[x] BesselK[1,x]
181
g[z_]:=f[1/z]
182
{err, approx}=MiniMaxApproximation[g[z],{z,{0.000000001,1},7,7},WorkingPrecision->60]
183
poly=Numerator[approx][[1]];
184
coeffs=CoefficientList[poly,z];
185
TableForm[Table[Row[{"'",NumberForm[coeffs[[i+1]],{50,50}, ExponentFunction->(Null&)],"',"}],{i,0,Length[coeffs]-1}]]
186
poly=Denominator[approx][[1]];
187
coeffs=CoefficientList[poly,z];
188
TableForm[Table[Row[{"'",NumberForm[coeffs[[i+1]],{50,50}, ExponentFunction->(Null&)],"',"}],{i,0,Length[coeffs]-1}]]
189
```
190
**/
191
#[inline]
192
0
fn k1f_asympt(x: f32) -> f32 {
193
0
    let dx = x as f64;
194
0
    let recip = 1. / dx;
195
0
    let e = core_expf(x);
196
0
    let r_sqrt = dx.sqrt();
197
0
    let p_num = f_estrin_polyeval8(
198
0
        recip,
199
0
        f64::from_bits(0x3ff40d931ff6270d),
200
0
        f64::from_bits(0x402d250670ed7a6c),
201
0
        f64::from_bits(0x404e517b9b494d38),
202
0
        f64::from_bits(0x405cb02b7433a838),
203
0
        f64::from_bits(0x405a03e606a1b871),
204
0
        f64::from_bits(0x4045c98d4308dbcd),
205
0
        f64::from_bits(0x401d115c4ce0540c),
206
0
        f64::from_bits(0x3fd4213e72b24b3a),
207
    );
208
0
    let p_den = f_estrin_polyeval8(
209
0
        recip,
210
0
        f64::from_bits(0x3ff0000000000000),
211
0
        f64::from_bits(0x402681096aa3a87d),
212
0
        f64::from_bits(0x404623ab8d72ceea),
213
0
        f64::from_bits(0x40530af06ea802b2),
214
0
        f64::from_bits(0x404d526906fb9cec),
215
0
        f64::from_bits(0x403281caca389f1b),
216
0
        f64::from_bits(0x3ffdb93996948bb4),
217
0
        f64::from_bits(0x3f9a009da07eb989),
218
    );
219
0
    let v = p_num / p_den;
220
0
    let pp = v / (e * r_sqrt);
221
0
    pp as f32
222
0
}
223
224
#[cfg(test)]
225
mod tests {
226
    use super::*;
227
228
    #[test]
229
    fn test_k1f() {
230
        assert_eq!(f_k1f(0.3), 3.055992);
231
        assert_eq!(f_k1f(1.89), 0.16180483);
232
        assert_eq!(f_k1f(5.89), 0.0015156545);
233
        assert_eq!(f_k1f(101.89), 0.);
234
        assert_eq!(f_k1f(0.), f32::INFINITY);
235
        assert_eq!(f_k1f(-0.), f32::INFINITY);
236
        assert!(f_k1f(-0.5).is_nan());
237
        assert!(f_k1f(f32::NEG_INFINITY).is_nan());
238
        assert_eq!(f_k1f(f32::INFINITY), 0.);
239
    }
240
}