/rust/registry/src/index.crates.io-1949cf8c6b5b557f/pxfm-0.1.27/src/bessel/k2f.rs
Line | Count | Source |
1 | | /* |
2 | | * // Copyright (c) Radzivon Bartoshyk 8/2025. All rights reserved. |
3 | | * // |
4 | | * // Redistribution and use in source and binary forms, with or without modification, |
5 | | * // are permitted provided that the following conditions are met: |
6 | | * // |
7 | | * // 1. Redistributions of source code must retain the above copyright notice, this |
8 | | * // list of conditions and the following disclaimer. |
9 | | * // |
10 | | * // 2. Redistributions in binary form must reproduce the above copyright notice, |
11 | | * // this list of conditions and the following disclaimer in the documentation |
12 | | * // and/or other materials provided with the distribution. |
13 | | * // |
14 | | * // 3. Neither the name of the copyright holder nor the names of its |
15 | | * // contributors may be used to endorse or promote products derived from |
16 | | * // this software without specific prior written permission. |
17 | | * // |
18 | | * // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" |
19 | | * // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
20 | | * // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE |
21 | | * // DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE |
22 | | * // FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL |
23 | | * // DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR |
24 | | * // SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER |
25 | | * // CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, |
26 | | * // OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE |
27 | | * // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
28 | | */ |
29 | | use crate::common::f_fmla; |
30 | | use crate::exponents::core_expf; |
31 | | use crate::logs::fast_logf; |
32 | | use crate::polyeval::{f_estrin_polyeval5, f_estrin_polyeval8, f_polyeval4, f_polyeval11}; |
33 | | |
34 | | /// Modified Bessel of the second kind of order 2 |
35 | | /// |
36 | | /// ulp 0.5 |
37 | 0 | pub fn f_k2f(x: f32) -> f32 { |
38 | 0 | let ux = x.to_bits(); |
39 | 0 | if ux >= 0xffu32 << 23 || ux == 0 { |
40 | | // |x| == 0, |x| == inf, |x| == NaN, x < 0 |
41 | 0 | if ux.wrapping_shl(1) == 0 { |
42 | | // |x| == 0 |
43 | 0 | return f32::INFINITY; |
44 | 0 | } |
45 | 0 | if x.is_infinite() { |
46 | 0 | return if x.is_sign_positive() { 0. } else { f32::NAN }; |
47 | 0 | } |
48 | 0 | return x + f32::NAN; // x == NaN |
49 | 0 | } |
50 | | |
51 | 0 | let xb = x.to_bits(); |
52 | | |
53 | 0 | if xb >= 0x42cbceefu32 { |
54 | | // |x| >= 101.90417 |
55 | 0 | return 0.; |
56 | 0 | } |
57 | | |
58 | 0 | if xb <= 0x3f800000u32 { |
59 | | // x <= 1.0 |
60 | 0 | if xb <= 0x3e9eb852u32 { |
61 | | // x <= 0.31 |
62 | 0 | if xb <= 0x34000000u32 { |
63 | | // x <= f32::EPSILON |
64 | 0 | let dx = x as f64; |
65 | 0 | let r = 2. / (dx * dx); |
66 | 0 | return r as f32; |
67 | 0 | } |
68 | 0 | return k2f_tiny(x); |
69 | 0 | } |
70 | 0 | return k2f_small(x); |
71 | 0 | } |
72 | | |
73 | 0 | k2f_asympt(x) |
74 | 0 | } |
75 | | |
76 | | #[inline] |
77 | 0 | fn k2f_tiny(x: f32) -> f32 { |
78 | | // Power series at zero for K2 |
79 | | // 2.0000000000000000/x^2-0.50000000000000000-0.12500000000000000 (-0.86593151565841245+1.0000000000000000 Log[x]) x^2-0.010416666666666667 (-1.5325981823250791+1.0000000000000000 Log[x]) x^4-0.00032552083333333333 (-1.9075981823250791+1.0000000000000000 Log[x]) x^6-0.0000054253472222222222 (-2.1742648489917458+1.0000000000000000 Log[x]) x^8+O[x]^9 |
80 | | //-0.50000000000000000+2.0000000000000000/x^2 + a3 * x^8 + x^6 * a2 + x^4 * a1 + x^2 * a0 |
81 | 0 | let dx = x as f64; |
82 | 0 | let log_x = fast_logf(x); |
83 | 0 | let a0 = f_fmla(-4.0000000000000000, log_x, 3.4637260626336498) * 0.031250000000000000; |
84 | 0 | let a1 = f_fmla(-12.000000000000000, log_x, 18.391178187900949) * 0.00086805555555555556; |
85 | 0 | let a2 = f_fmla(-24.000000000000000, log_x, 45.782356375801899) * 0.000013563368055555556; |
86 | 0 | let a3 = (log_x - 2.1742648489917458) * (-0.0000054253472222222222); |
87 | 0 | let dx_sqr = dx * dx; |
88 | 0 | let two_over_dx = 2. / dx_sqr; |
89 | 0 | let p = f_polyeval4(dx_sqr, a0, a1, a2, a3); |
90 | 0 | let r = f_fmla(p, dx_sqr, two_over_dx) - 0.5; |
91 | 0 | r as f32 |
92 | 0 | } |
93 | | |
94 | | /** |
95 | | Computes |
96 | | I2(x) = x^2 * R(x^2) |
97 | | |
98 | | Generated by Wolfram Mathematica: |
99 | | |
100 | | ```text |
101 | | <<FunctionApproximations` |
102 | | ClearAll["Global`*"] |
103 | | f[x_]:=BesselI[2,x]/x^2 |
104 | | g[z_]:=f[Sqrt[z]] |
105 | | {err,approx}=MiniMaxApproximation[g[z],{z,{0.3,1},4,4},WorkingPrecision->75] |
106 | | poly=Numerator[approx][[1]]; |
107 | | coeffs=CoefficientList[poly,z]; |
108 | | TableForm[Table[Row[{"'",NumberForm[coeffs[[i+1]],{50,50},ExponentFunction->(Null&)],"',"}],{i,0,Length[coeffs]-1}]] |
109 | | poly=Denominator[approx][[1]]; |
110 | | coeffs=CoefficientList[poly,z]; |
111 | | TableForm[Table[Row[{"'",NumberForm[coeffs[[i+1]],{50,50},ExponentFunction->(Null&)],"',"}],{i,0,Length[coeffs]-1}]] |
112 | | ``` |
113 | | **/ |
114 | | #[inline] |
115 | 0 | fn i2f_small(x: f32) -> f64 { |
116 | 0 | let dx = x as f64; |
117 | 0 | let x_sqr = dx * dx; |
118 | | |
119 | 0 | let p_num = f_estrin_polyeval5( |
120 | 0 | x_sqr, |
121 | 0 | f64::from_bits(0x3fc0000000000000), |
122 | 0 | f64::from_bits(0x3f81520c0669099e), |
123 | 0 | f64::from_bits(0x3f27310bf5c5e9b0), |
124 | 0 | f64::from_bits(0x3eb8e2947e0a6098), |
125 | 0 | f64::from_bits(0x3e336dfad46e2f35), |
126 | | ); |
127 | 0 | let p_den = f_estrin_polyeval5( |
128 | 0 | x_sqr, |
129 | 0 | f64::from_bits(0x3ff0000000000000), |
130 | 0 | f64::from_bits(0xbf900d253bb12edc), |
131 | 0 | f64::from_bits(0x3f1ed3d9ab228297), |
132 | 0 | f64::from_bits(0xbea14e6660c00303), |
133 | 0 | f64::from_bits(0x3e13eb951a6cf38f), |
134 | | ); |
135 | 0 | let p = p_num / p_den; |
136 | 0 | p * x_sqr |
137 | 0 | } |
138 | | |
139 | | /** |
140 | | Series for |
141 | | R(x^2) := (BesselK(2, x) - Log(x)*BesselI(2, x) - 2/x^2)/(1+x^2) |
142 | | |
143 | | Generated by Wolfram Mathematica: |
144 | | ```text |
145 | | <<FunctionApproximations` |
146 | | ClearAll["Global`*"] |
147 | | f[x_]:=(BesselK[2,x]-Log[x]BesselI[2,x]-2/(x^2))/(1+x^2) |
148 | | g[z_]:=f[Sqrt[z]] |
149 | | {err,approx}=MiniMaxApproximation[g[z],{z,{0.3,1.0},10,10},WorkingPrecision->60] |
150 | | poly=Numerator[approx][[1]]; |
151 | | coeffs=CoefficientList[poly,z]; |
152 | | TableForm[Table[Row[{"'",NumberForm[coeffs[[i+1]],{50,50},ExponentFunction->(Null&)],"',"}],{i,0,Length[coeffs]-1}]] |
153 | | poly=Denominator[approx][[1]]; |
154 | | coeffs=CoefficientList[poly,z]; |
155 | | TableForm[Table[Row[{"'",NumberForm[coeffs[[i+1]],{50,50},ExponentFunction->(Null&)],"',"}],{i,0,Length[coeffs]-1}]] |
156 | | ``` |
157 | | **/ |
158 | | #[inline] |
159 | 0 | fn k2f_small(x: f32) -> f32 { |
160 | 0 | let dx = x as f64; |
161 | 0 | let dx_sqr = dx * dx; |
162 | 0 | let p_num = f_polyeval11( |
163 | 0 | dx_sqr, |
164 | 0 | f64::from_bits(0xbfdff794c9ee3b5c), |
165 | 0 | f64::from_bits(0xc047d3276f18e5d2), |
166 | 0 | f64::from_bits(0xc09200ed3702875a), |
167 | 0 | f64::from_bits(0xc0c39f395c47be27), |
168 | 0 | f64::from_bits(0xc0e0ec95bd1a3192), |
169 | 0 | f64::from_bits(0xc0e5973cb871c8d0), |
170 | 0 | f64::from_bits(0xc0cdaf528de00d53), |
171 | 0 | f64::from_bits(0xc0afe6d3009de17c), |
172 | 0 | f64::from_bits(0xc098417b22844112), |
173 | 0 | f64::from_bits(0x4025c45260bb1b6a), |
174 | 0 | f64::from_bits(0x402f2bf6b95ffe0c), |
175 | | ); |
176 | 0 | let p_den = f_polyeval11( |
177 | 0 | dx_sqr, |
178 | 0 | f64::from_bits(0x3ff0000000000000), |
179 | 0 | f64::from_bits(0x405879a43b253224), |
180 | 0 | f64::from_bits(0x40a3a501408a0198), |
181 | 0 | f64::from_bits(0x40d8172abc4a8ccc), |
182 | 0 | f64::from_bits(0x40f9fcb05e98bdbd), |
183 | 0 | f64::from_bits(0x4109c45b54be586b), |
184 | 0 | f64::from_bits(0x4106ad7023dd0b90), |
185 | 0 | f64::from_bits(0x40ed7e988d2ba5a9), |
186 | 0 | f64::from_bits(0x40966305e1c1123a), |
187 | 0 | f64::from_bits(0xc090832b6a87317c), |
188 | 0 | f64::from_bits(0x403b48eb703f4644), |
189 | | ); |
190 | 0 | let p = p_num / p_den; |
191 | | |
192 | 0 | let two_over_dx_sqr = 2. / dx_sqr; |
193 | | |
194 | 0 | let lg = fast_logf(x); |
195 | 0 | let v_i = i2f_small(x); |
196 | 0 | let z = f_fmla(lg, v_i, two_over_dx_sqr); |
197 | 0 | let z0 = f_fmla(p, f_fmla(dx, dx, 1.), z); |
198 | 0 | z0 as f32 |
199 | 0 | } |
200 | | |
201 | | /** |
202 | | Generated by Wolfram Mathematica: |
203 | | ```text |
204 | | <<FunctionApproximations` |
205 | | ClearAll["Global`*"] |
206 | | f[x_]:=Sqrt[x] Exp[x] BesselK[1,x] |
207 | | g[z_]:=f[1/z] |
208 | | {err, approx}=MiniMaxApproximation[g[z],{z,{0.000000001,1},7,7},WorkingPrecision->60] |
209 | | poly=Numerator[approx][[1]]; |
210 | | coeffs=CoefficientList[poly,z]; |
211 | | TableForm[Table[Row[{"'",NumberForm[coeffs[[i+1]],{50,50}, ExponentFunction->(Null&)],"',"}],{i,0,Length[coeffs]-1}]] |
212 | | poly=Denominator[approx][[1]]; |
213 | | coeffs=CoefficientList[poly,z]; |
214 | | TableForm[Table[Row[{"'",NumberForm[coeffs[[i+1]],{50,50}, ExponentFunction->(Null&)],"',"}],{i,0,Length[coeffs]-1}]] |
215 | | ``` |
216 | | **/ |
217 | | #[inline] |
218 | 0 | fn k2f_asympt(x: f32) -> f32 { |
219 | 0 | let dx = x as f64; |
220 | 0 | let recip = 1. / dx; |
221 | 0 | let e = core_expf(x); |
222 | 0 | let r_sqrt = dx.sqrt(); |
223 | 0 | let p_num = f_estrin_polyeval8( |
224 | 0 | recip, |
225 | 0 | f64::from_bits(0x3ff40d931ff626f2), |
226 | 0 | f64::from_bits(0x402d954dceb445df), |
227 | 0 | f64::from_bits(0x405084ea6680d028), |
228 | 0 | f64::from_bits(0x406242344a8ea488), |
229 | 0 | f64::from_bits(0x406594aa56f50fea), |
230 | 0 | f64::from_bits(0x405aa04eb4f0af1c), |
231 | 0 | f64::from_bits(0x403dd3e8e63849ef), |
232 | 0 | f64::from_bits(0x4004e85453648d43), |
233 | | ); |
234 | 0 | let p_den = f_estrin_polyeval8( |
235 | 0 | recip, |
236 | 0 | f64::from_bits(0x3ff0000000000000), |
237 | 0 | f64::from_bits(0x4023da9f4e05358e), |
238 | 0 | f64::from_bits(0x4040a4e4ceb523c9), |
239 | 0 | f64::from_bits(0x404725c423c9f990), |
240 | 0 | f64::from_bits(0x403a60c00deededc), |
241 | 0 | f64::from_bits(0x40149975b84c3946), |
242 | 0 | f64::from_bits(0x3fc69439846db871), |
243 | 0 | f64::from_bits(0xbf6400819bac6f45), |
244 | | ); |
245 | 0 | let v = p_num / p_den; |
246 | 0 | let pp = v / (e * r_sqrt); |
247 | 0 | pp as f32 |
248 | 0 | } |
249 | | |
250 | | #[cfg(test)] |
251 | | mod tests { |
252 | | use super::*; |
253 | | |
254 | | #[test] |
255 | | fn test_k2f() { |
256 | | assert!(f_k2f(-1.).is_nan()); |
257 | | assert!(f_k2f(f32::NAN).is_nan()); |
258 | | assert_eq!(f_k2f(0.), f32::INFINITY); |
259 | | assert_eq!(f_k2f(0.65), 4.3059196); |
260 | | assert_eq!(f_k2f(1.65), 0.44830766); |
261 | | } |
262 | | } |