/rust/registry/src/index.crates.io-1949cf8c6b5b557f/pxfm-0.1.27/src/csc.rs
Line | Count | Source |
1 | | /* |
2 | | * // Copyright (c) Radzivon Bartoshyk 6/2025. All rights reserved. |
3 | | * // |
4 | | * // Redistribution and use in source and binary forms, with or without modification, |
5 | | * // are permitted provided that the following conditions are met: |
6 | | * // |
7 | | * // 1. Redistributions of source code must retain the above copyright notice, this |
8 | | * // list of conditions and the following disclaimer. |
9 | | * // |
10 | | * // 2. Redistributions in binary form must reproduce the above copyright notice, |
11 | | * // this list of conditions and the following disclaimer in the documentation |
12 | | * // and/or other materials provided with the distribution. |
13 | | * // |
14 | | * // 3. Neither the name of the copyright holder nor the names of its |
15 | | * // contributors may be used to endorse or promote products derived from |
16 | | * // this software without specific prior written permission. |
17 | | * // |
18 | | * // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" |
19 | | * // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
20 | | * // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE |
21 | | * // DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE |
22 | | * // FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL |
23 | | * // DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR |
24 | | * // SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER |
25 | | * // CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, |
26 | | * // OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE |
27 | | * // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
28 | | */ |
29 | | use crate::double_double::DoubleDouble; |
30 | | use crate::sin::{get_sin_k_rational, range_reduction_small, sincos_eval}; |
31 | | use crate::sin_table::SIN_K_PI_OVER_128; |
32 | | use crate::sincos_dyadic::{range_reduction_small_f128, sincos_eval_dyadic}; |
33 | | use crate::sincos_reduce::LargeArgumentReduction; |
34 | | |
35 | | #[cold] |
36 | 0 | fn csc_accurate(x: f64, argument_reduction: &mut LargeArgumentReduction, x_e: u64, k: u64) -> f64 { |
37 | | const EXP_BIAS: u64 = (1u64 << (11 - 1u64)) - 1u64; |
38 | 0 | let u_f128 = if x_e < EXP_BIAS + 16 { |
39 | 0 | range_reduction_small_f128(x) |
40 | | } else { |
41 | 0 | argument_reduction.accurate() |
42 | | }; |
43 | | |
44 | 0 | let sin_cos = sincos_eval_dyadic(&u_f128); |
45 | | |
46 | | // cos(k * pi/128) = sin(k * pi/128 + pi/2) = sin((k + 64) * pi/128). |
47 | 0 | let sin_k_f128 = get_sin_k_rational(k); |
48 | 0 | let cos_k_f128 = get_sin_k_rational(k.wrapping_add(64)); |
49 | | |
50 | | // sin(x) = sin(k * pi/128 + u) |
51 | | // = sin(u) * cos(k*pi/128) + cos(u) * sin(k*pi/128) |
52 | 0 | let r = (sin_k_f128 * sin_cos.v_cos) + (cos_k_f128 * sin_cos.v_sin); |
53 | 0 | r.reciprocal().fast_as_f64() |
54 | 0 | } |
55 | | |
56 | | /// Cosecant for double precision |
57 | | /// |
58 | | /// ULP 0.5 |
59 | 0 | pub fn f_csc(x: f64) -> f64 { |
60 | 0 | let x_e = (x.to_bits() >> 52) & 0x7ff; |
61 | | const E_BIAS: u64 = (1u64 << (11 - 1u64)) - 1u64; |
62 | | |
63 | | let y: DoubleDouble; |
64 | | let k; |
65 | | |
66 | 0 | let mut argument_reduction = LargeArgumentReduction::default(); |
67 | | |
68 | | // |x| < 2^32 (with FMA) or |x| < 2^23 (w/o FMA) |
69 | 0 | if x_e < E_BIAS + 16 { |
70 | | // |x| < 2^-26 |
71 | 0 | if x_e < E_BIAS - 26 { |
72 | | // Signed zeros. |
73 | 0 | if x == 0.0 { |
74 | 0 | return if x.is_sign_negative() { |
75 | 0 | f64::NEG_INFINITY |
76 | | } else { |
77 | 0 | f64::INFINITY |
78 | | }; |
79 | 0 | } |
80 | | |
81 | 0 | if x_e < E_BIAS - 52 { |
82 | 0 | return 1. / x; |
83 | 0 | } |
84 | | |
85 | | // For |x| < 2^-26, |sin(x) - x| < ulp(x)/2. |
86 | 0 | let rcp = DoubleDouble::from_quick_recip(x); |
87 | 0 | return DoubleDouble::f64_mul_f64_add(x, f64::from_bits(0x3fc5555555555555), rcp) |
88 | 0 | .to_f64(); |
89 | 0 | } |
90 | | |
91 | | // // Small range reduction. |
92 | 0 | (y, k) = range_reduction_small(x); |
93 | | } else { |
94 | | // Inf or NaN |
95 | 0 | if x_e > 2 * E_BIAS { |
96 | | // sin(+-Inf) = NaN |
97 | 0 | return x + f64::NAN; |
98 | 0 | } |
99 | | |
100 | | // Large range reduction. |
101 | 0 | (k, y) = argument_reduction.reduce(x); |
102 | | } |
103 | | |
104 | 0 | let r_sincos = sincos_eval(y); |
105 | | |
106 | | // Fast look up version, but needs 256-entry table. |
107 | | // cos(k * pi/128) = sin(k * pi/128 + pi/2) = sin((k + 64) * pi/128). |
108 | 0 | let sk = SIN_K_PI_OVER_128[(k & 255) as usize]; |
109 | 0 | let ck = SIN_K_PI_OVER_128[((k.wrapping_add(64)) & 255) as usize]; |
110 | | |
111 | 0 | let sin_k = DoubleDouble::from_bit_pair(sk); |
112 | 0 | let cos_k = DoubleDouble::from_bit_pair(ck); |
113 | | |
114 | 0 | let sin_k_cos_y = DoubleDouble::quick_mult(r_sincos.v_cos, sin_k); |
115 | 0 | let cos_k_sin_y = DoubleDouble::quick_mult(r_sincos.v_sin, cos_k); |
116 | | |
117 | | // sin_k_cos_y is always >> cos_k_sin_y |
118 | 0 | let mut rr = DoubleDouble::from_exact_add(sin_k_cos_y.hi, cos_k_sin_y.hi); |
119 | 0 | rr.lo += sin_k_cos_y.lo + cos_k_sin_y.lo; |
120 | | |
121 | 0 | rr = DoubleDouble::from_exact_add(rr.hi, rr.lo); |
122 | 0 | rr = rr.recip(); |
123 | | |
124 | 0 | let rlp = rr.lo + r_sincos.err; |
125 | 0 | let rlm = rr.lo - r_sincos.err; |
126 | | |
127 | 0 | let r_upper = rr.hi + rlp; // (rr.lo + ERR); |
128 | 0 | let r_lower = rr.hi + rlm; // (rr.lo - ERR); |
129 | | |
130 | | // Ziv's accuracy test |
131 | 0 | if r_upper == r_lower { |
132 | 0 | return rr.to_f64(); |
133 | 0 | } |
134 | | |
135 | 0 | csc_accurate(x, &mut argument_reduction, x_e, k) |
136 | 0 | } |
137 | | |
138 | | #[cfg(test)] |
139 | | mod tests { |
140 | | use super::*; |
141 | | |
142 | | #[test] |
143 | | fn test_csc() { |
144 | | assert_eq!(f_csc(0.000000014901161055069778), 67108864.62500001); |
145 | | assert_eq!(f_csc( 0.00000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000541722315998), f64::INFINITY); |
146 | | assert_eq!(f_csc(0.0), f64::INFINITY); |
147 | | assert_eq!(f_csc(-0.0), f64::NEG_INFINITY); |
148 | | assert!(f_csc(f64::NAN).is_nan()); |
149 | | assert_eq!(f_csc(1.0), 1.1883951057781212); |
150 | | assert_eq!(f_csc(-0.5), -2.085829642933488); |
151 | | } |
152 | | } |