Coverage Report

Created: 2026-01-09 07:43

next uncovered line (L), next uncovered region (R), next uncovered branch (B)
/rust/registry/src/index.crates.io-1949cf8c6b5b557f/pxfm-0.1.27/src/logs/log2dd.rs
Line
Count
Source
1
/*
2
 * // Copyright (c) Radzivon Bartoshyk 8/2025. All rights reserved.
3
 * //
4
 * // Redistribution and use in source and binary forms, with or without modification,
5
 * // are permitted provided that the following conditions are met:
6
 * //
7
 * // 1.  Redistributions of source code must retain the above copyright notice, this
8
 * // list of conditions and the following disclaimer.
9
 * //
10
 * // 2.  Redistributions in binary form must reproduce the above copyright notice,
11
 * // this list of conditions and the following disclaimer in the documentation
12
 * // and/or other materials provided with the distribution.
13
 * //
14
 * // 3.  Neither the name of the copyright holder nor the names of its
15
 * // contributors may be used to endorse or promote products derived from
16
 * // this software without specific prior written permission.
17
 * //
18
 * // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
19
 * // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
20
 * // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
21
 * // DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
22
 * // FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
23
 * // DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
24
 * // SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
25
 * // CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
26
 * // OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
27
 * // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
28
 */
29
use crate::double_double::DoubleDouble;
30
use crate::logs::log2dd_coeffs::LOG2_NEG_DD;
31
use crate::pow_tables::POW_INVERSE;
32
33
#[inline(always)]
34
0
fn log2_poly(z: f64) -> DoubleDouble {
35
    /*
36
      See ./notes/dd_log2.sollya
37
    */
38
    const P: [(u64, u64); 10] = [
39
        (0x3c7777d0ffdb7a88, 0x3ff71547652b82fe),
40
        (0xbc6777d0fff4382c, 0xbfe71547652b82fe),
41
        (0x3c7d27ad39ed5b3e, 0x3fdec709dc3a03fd),
42
        (0xbc57748c64010a70, 0xbfd71547652b82fe),
43
        (0x3c771aed4208f9c1, 0x3fd2776c50ef9c06),
44
        (0x3c6dd0178c438bee, 0xbfcec709dc3a041c),
45
        (0x3c6054a5812d9fc4, 0x3fca61762a515608),
46
        (0x3c5662d846baea2e, 0xbfc7154764f1db89),
47
        (0x3c66b62df1fd3c4b, 0x3fc484dddfe20481),
48
        (0xbc6b16c93b93c1e3, 0xbfc2779d6a07c6b3),
49
    ];
50
0
    let mut t = DoubleDouble::from_bit_pair(P[9]);
51
0
    t = DoubleDouble::quick_mul_f64_add(t, z, DoubleDouble::from_bit_pair(P[8]));
52
0
    t = DoubleDouble::quick_mul_f64_add(t, z, DoubleDouble::from_bit_pair(P[7]));
53
0
    t = DoubleDouble::quick_mul_f64_add(t, z, DoubleDouble::from_bit_pair(P[6]));
54
0
    t = DoubleDouble::quick_mul_f64_add(t, z, DoubleDouble::from_bit_pair(P[5]));
55
0
    t = DoubleDouble::quick_mul_f64_add(t, z, DoubleDouble::from_bit_pair(P[4]));
56
0
    t = DoubleDouble::quick_mul_f64_add(t, z, DoubleDouble::from_bit_pair(P[3]));
57
0
    t = DoubleDouble::quick_mul_f64_add(t, z, DoubleDouble::from_bit_pair(P[2]));
58
0
    t = DoubleDouble::quick_mul_f64_add(t, z, DoubleDouble::from_bit_pair(P[1]));
59
0
    t = DoubleDouble::quick_mul_f64_add(t, z, DoubleDouble::from_bit_pair(P[0]));
60
0
    DoubleDouble::quick_mult_f64(t, z)
61
0
}
62
63
#[inline]
64
0
pub(crate) fn log2_dd(x: f64) -> DoubleDouble {
65
0
    let x_u = x.to_bits();
66
0
    let mut m = x_u & 0xfffffffffffff;
67
0
    let mut e: i64 = ((x_u >> 52) & 0x7ff) as i64;
68
69
    let t;
70
0
    if e != 0 {
71
0
        t = m | (0x3ffu64 << 52);
72
0
        m = m.wrapping_add(1u64 << 52);
73
0
        e -= 0x3ff;
74
0
    } else {
75
0
        /* x is a subnormal double  */
76
0
        let k = m.leading_zeros() - 11;
77
0
78
0
        e = -0x3fei64 - k as i64;
79
0
        m = m.wrapping_shl(k);
80
0
        t = m | (0x3ffu64 << 52);
81
0
    }
82
83
    /* now |x| = 2^_e*_t = 2^(_e-52)*m with 1 <= _t < 2,
84
    and 2^52 <= _m < 2^53 */
85
86
    //   log2(x) = log2(t) + E ยท log(2)
87
0
    let mut t = f64::from_bits(t);
88
89
    // If m > sqrt(2) we divide it by 2 so ensure 1/sqrt(2) < t < sqrt(2)
90
0
    let c: usize = (m >= 0x16a09e667f3bcd) as usize;
91
    static CY: [f64; 2] = [1.0, 0.5];
92
    static CM: [u64; 2] = [44, 45];
93
94
0
    e = e.wrapping_add(c as i64);
95
0
    let be = e;
96
0
    let i = m >> CM[c];
97
0
    t *= CY[c];
98
99
0
    let idx = (i - 181) as usize;
100
101
0
    let r = f64::from_bits(POW_INVERSE[idx]);
102
0
    let log_r = DoubleDouble::from_bit_pair(LOG2_NEG_DD[idx]);
103
104
0
    let z = f64::mul_add(r, t, -1.0);
105
106
0
    let v = DoubleDouble::full_add_f64(log_r, be as f64);
107
0
    let p = log2_poly(z);
108
0
    let z0 = DoubleDouble::new(v.lo + p.lo, p.hi);
109
0
    DoubleDouble::full_add_f64(z0, v.hi)
110
0
}
111
112
#[cfg(test)]
113
mod tests {
114
    use super::*;
115
116
    #[test]
117
    fn log2dd_test() {
118
        assert_eq!(log2_dd(0.0040283203125 / 2.).to_f64(), -8.955605880641546);
119
    }
120
}